JP3849024B2 - Organozinc complex and method for producing the same - Google Patents

Organozinc complex and method for producing the same Download PDF

Info

Publication number
JP3849024B2
JP3849024B2 JP2003084455A JP2003084455A JP3849024B2 JP 3849024 B2 JP3849024 B2 JP 3849024B2 JP 2003084455 A JP2003084455 A JP 2003084455A JP 2003084455 A JP2003084455 A JP 2003084455A JP 3849024 B2 JP3849024 B2 JP 3849024B2
Authority
JP
Japan
Prior art keywords
polymerization
reaction
organozinc complex
complex
organozinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003084455A
Other languages
Japanese (ja)
Other versions
JP2004292328A (en
Inventor
真伸 内山
稔 小林
義則 根東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2003084455A priority Critical patent/JP3849024B2/en
Publication of JP2004292328A publication Critical patent/JP2004292328A/en
Application granted granted Critical
Publication of JP3849024B2 publication Critical patent/JP3849024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Polymerization Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、新規な有機亜鉛錯体に関し、この錯体が関与する反応系中に活性水素等のプロトン源が存在する条件下に、保護しない状態で共存させても、失活することなく、触媒や反応物等として使用することができる有機亜鉛錯体に関する。
【0002】
【従来の技術】
有機亜鉛化合物は、最も古くから知られる有機金属化合物の一つであり、有機合成試薬としては、有機マグネシウム化合物、有機リチウム化合物等の高反応性炭素求核試薬と比較して、その穏和な反応性からもたらされる官能基共存性が注目されている。
しかしながら、有機亜鉛試薬を用いる場合であっても、活性水素等のプロトン源が系内に存在する場合には、依然として保護基を用いる必要があった。例えば、水酸基はシリル基等で保護する必要があり、また、反応溶媒にも無水の有機溶媒を選択する必要があった。
【0003】
【発明が解決しようとする課題】
したがって、活性水素等によっても失活しない有機亜鉛試薬の開発は長年の課題であり、水中での反応を可能にするものとして有機溶媒を使用しないグリーンケミストリーの観点からも熱望されていた。
このような状況に鑑み、本発明者らは優れた反応特性を有する錯体設計を実現すべく、鋭意検討した結果、特定の構造の亜鉛錯体において、活性水素の存在下でも失活することなく反応を進行できることを見出し、本発明を完成するに至った。すなわち、本発明は活性水素の存在下でも反応を進行できる亜鉛試薬として新規なアート型亜鉛錯体およびその製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記目的を達成するため、本発明は以下の構成とする。
すなわち、本発明の有機亜鉛錯体は、一般式R4ZnM1 2またはR4ZnM2で表されることを特徴とする。
(式中、4つのRは全て tert- ブチル基であり、M 1 はLiまたはNaであり、M 2 はMgである。)
【0005】
また、本発明の有機亜鉛錯体は、活性水素等のプロトン源が系内に存在しても保護基を必要としない、重合開始剤を含む重合触媒、または交換反応の前躯体として好適に使用される。
さらに、本発明の上記有機亜鉛錯体の製造方法は、−50℃以下、好ましくは−78℃前後の温度で、不活性ガスの雰囲気下、無水有機溶媒、塩化亜鉛、及びt - ブチルリチウムを混合し攪拌することを含み、
前記無水有機溶媒が、テトラヒドロフラン(THF)、またはジエチルエーテル、ジプロピルエーテル等のエーテル系溶媒であり、
また、前記 - ブチルリチウム対塩化亜鉛のモル比が4:1である
【0006】
【発明の実施の形態】
以下に本発明を詳細に説明する。
上記式中の4つのRは全て tert- ブチル基である。
【0007】
また、本発明に係る亜鉛錯体のRが4つ全てtert−ブチル基である四配位アート型亜鉛錯体(tert−BuZnLi)の場合に、嵩高いtert−ブチル配位子が有効なダミー配位子として機能して亜鉛金属が周囲から遮蔽されるので、反応系内に活性水素が存在しても亜鉛錯体の失活が抑制され好ましい。
このようなアート型亜鉛錯体は、N−イソプロピルアクリルアミド、ヒドロキシエチルアクリレート、アクリルアミド等における重合触媒あるいはハロゲン化アリールのアルキル化、アリル化、アシル化反応等における反応物として好適に使用することができる。
さらに、本発明のtert−BuZnLiを始めとする亜鉛錯体を、重合開始剤として使用する場合、使用する重合溶媒は、THF中よりも活性プロトンを有するHOあるいはMeOH中において極めて有効である(図1)。これはかかる錯体が塩基性を殆ど有していないためであると考えられる。図1は、N−イソプロピルアクリルアミドの重合を、tert−BuZnLiを重合触媒として、それぞれ重合溶媒をTHF、HO、MeOHで行った場合の重合反応時間と収率の比較を示す。
【0008】
本発明にかかる亜鉛錯体の合成反応は、いずれの場合も、通常、例えば、窒素ガス、アルゴンガス等の不活性ガス雰囲気下、無水テトラヒドロフラン、ジエチルエーテル、ジプロピルエーテル等のエーテル系溶媒中で反応が行われる。
反応温度は、 - ブチルリチウムの添加時が通常−50℃以下、好ましくは−78℃前後で、その後は、通常0℃程度の温度で30分間程の攪拌を行えば良く、これを反応基質と作用させる工程(重合反応時または交換反応時)では、試薬の種類によっても自ずと異なるが、通常は室温乃至その前後の適当な温度で数分間乃至数時間攪拌を行うことで足りる。
ハロゲン−金属交換反応後は、反応液に亜硫酸水素ナトリウム水溶液および飽和塩化アンモニウム水溶液を加えて反応を完全に終了させた後、常法に従い適当な抽出溶媒(例えばクロロホルム、ジクロロメタン、ジクロロエタン等のハロゲン化炭化水素、ジエチルエーテル、ジイソプロピルエーテル等のエーテル系溶媒、ベンゼン、トルエン等の芳香族炭化水素系溶媒等)による抽出、硫酸マグネシウム等による脱水乾燥、溶媒留去、シリカゲルカラム等による精製等の後処理操作を行うことにより、目的とする化合物が容易に且つ高収率で得られる。
【0009】
【実施例】
本発明にかかるアート型亜鉛化合物の合成法を、tert−BuZnLiを例に説明する。
実施例1
t−BuZnLiの調製
アルゴン雰囲気下、20mlナスフラスコにTHF5ml、塩化亜鉛2.0ml(1.0ミリモル)を加え、これに−78℃でt−ブチルリチウム2.75ml(4.0ミリモル)を滴下した。この溶液を、0℃で30分間攪拌し、t−BuZnLi(1.0ミリモル)のTHF溶液を得た。
【0010】
上記亜鉛錯体を重合触媒として使用した重合反応を、N−イソプロピルアクリルアミドの重合を例に説明する。
実施例2
N−イソプロピルアクリルアミドの重合例
実施例1に記載の方法で得たt−BuZnLiのTHF溶液を調製し、これを、アルゴン雰囲気下、0℃にてN−イソプロピルアクリルアミド1.13g(50ミリモル)の水溶液に加え、常温で3時間攪拌した。反応液に塩酸1mlを加えた後、80℃以上の温度での濾過と遠心分離により沈殿物を回収し、THF/エーテルで再沈殿して精製し、目的とするポリマー1.04gを収率92%で得た。
【化1】

Figure 0003849024
得られたポリマーを、NMRおよびUV透過率の温度変化が約31℃において観測されることから同定した。NMRの結果を以下に示す。
1H NMR
(400MHz、DMSO−d、140℃)δ6.5(br、1H)、4.9(br、1H)、2.1(br、1H)、1.7−1.3(m、2H)、1.1(s、6H)
【0011】
次に、上記亜鉛錯体を交換反応に使用した例について、ハロゲン−亜鉛交換反応を例に説明する。なお、下記の[化2]で示した反応式にしたがって、表1記載の7種類のハロゲン−亜鉛交換反応例を行った。
【化2】
Figure 0003849024
【表1】
Figure 0003849024
(付記)
a:収率は1H NMRインデグレーションに基づき計算して得た。
b:重水素含有量は約80%と見積もった。
【0012】
上記表1中、No.4のp−アリルベンジルアルコールの合成例を以下に示す。
実施例3
p−アリルベンジルアルコールの合成例
実施例1に記載の方法でt−BuZnLiのTHF溶液を調製した後、この溶液に、アルゴン雰囲気下、−78℃にて4−ヨードベンジルアルコール709.1mg(1.0ミリモル)を加え、室温で1時間攪拌した。次いで、これにヨウ化アリル0.60ml(3.3ミリモル)を加え、室温で6時間攪拌した。反応液に亜硫酸水素ナトリウム水溶液および飽和塩化アンモニウム水溶液を各10ml加え、クロロホルムで抽出、硫酸マグネシウムで脱水後、溶媒を減圧留去した。生成物はNMRにより同定した。収率:82%。
1H NMR(400MHz、CDCl)δ7.29(d、J=8.0Hz、2H、フェニレン)、7.19(d、J=8.0Hz、2H、フェニレン)、5.96(ddt、J=10.0、6.8、6.8Hz、1H、アリル)、5.09(d、J=6.8Hz、1H、アリル)、5.06(t、J=1.2Hz、1H、アリル)、4.66(d、J=4.8Hz、2H、−CHOH)
3.39(d、J=6.8Hz、2H、アリル)、1.65(s、1H、−OH)
【0013】
実施例4
表1のNo.7のp−メチルベンジルアルコールを、上記合成法に準じて合成し、その同定データを以下に示す。
1H NMR(400MHz、CDCl)δ7.26(d、J=8.0Hz、2H、フェニレン)、7.17(d、J=8.0Hz、2H、フェニレン)、4.65(d、J=5.2Hz、2H、−CHOH)、2.35(s、3H、メチル)、1.55(s、1H、−OH)
【0014】
実施例5
p−アリルアニリンを合成し、その同定データを以下に示す。
1H NMR(400MHz、CDCl3)δ7.40(d、J=9.0Hz、2H、フェニレン)、6.39(d、J=9.0Hz、2H、フェニレン)、5.90(m、1H、アリル)、5.26(dd、J=17.2、1.6Hz、1H、アリル)、5.16(dd、J=10.4、1.6Hz,1H、アリル)、3.74(m、2H、アリル)、2.04(s、2H、−NH
【0015】
【発明の効果】
以上説明したように、本発明の有機亜鉛化合物を、重合触媒や反応物等として使用すると、活性水素等のプロトン源を有する官能基が共存する条件下でも保護基による保護を必要とすることなく、失活を抑制することが可能であるため、反応工程が簡略化されるのみならず、水を溶媒とする反応にも使用可能となるため、環境的にも好ましく、本発明の有用性は高いと考えられる。
【図面の簡単な説明】
【図1】 HO、MeOH、THFをそれぞれ溶媒とした、N−イソプロピルアクリルアミドの重合について、重合時間と収率の関係を各溶媒との比較において示す。[0001]
[Technical field to which the invention belongs]
The present invention relates to a novel organozinc complex, and in the presence of a proton source such as active hydrogen in a reaction system involving this complex, the catalyst or The present invention relates to an organozinc complex that can be used as a reactant.
[0002]
[Prior art]
The organozinc compound is one of the oldest known organometallic compounds, and the organic synthesis reagent has a mild reaction compared to highly reactive carbon nucleophiles such as organomagnesium compounds and organolithium compounds. The functional group coexistence brought about by the property attracts attention.
However, even when an organozinc reagent is used, it is still necessary to use a protecting group when a proton source such as active hydrogen is present in the system. For example, the hydroxyl group must be protected with a silyl group and the like, and an anhydrous organic solvent must be selected as the reaction solvent.
[0003]
[Problems to be solved by the invention]
Accordingly, the development of an organozinc reagent that is not inactivated even by active hydrogen or the like has been a long-standing problem, and it has been eagerly desired from the viewpoint of green chemistry that does not use an organic solvent, as it enables a reaction in water.
In view of such a situation, the present inventors have intensively studied to realize a complex design having excellent reaction characteristics. As a result, the zinc complex having a specific structure can be reacted without being deactivated even in the presence of active hydrogen. The present invention has been completed. That is, an object of the present invention is to provide a novel art-type zinc complex as a zinc reagent capable of proceeding with reaction even in the presence of active hydrogen and a method for producing the same.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
That is, the organozinc complex of the present invention is characterized by being represented by the general formula R 4 ZnM 1 2 or R 4 ZnM 2 .
(In the formula, all four Rs are tert- butyl groups, M 1 is Li or Na, and M 2 is Mg .)
[0005]
The organozinc complex of the present invention is suitably used as a polymerization catalyst containing a polymerization initiator or a precursor of an exchange reaction that does not require a protective group even when a proton source such as active hydrogen is present in the system. The
Furthermore, the method for producing the organozinc complex of the present invention comprises mixing an anhydrous organic solvent, zinc chloride, and t - butyllithium in an inert gas atmosphere at a temperature of −50 ° C. or lower, preferably around −78 ° C. and the method comprising stirring,
The anhydrous organic solvent is tetrahydrofuran (THF) or an ether solvent such as diethyl ether or dipropyl ether ,
Further, the t - molar ratio of butyl lithium to zinc chloride 4: 1.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
All four Rs in the above formula are tert- butyl groups.
[0007]
In the case of a four-coordinate art-type zinc complex (tert-Bu 4 ZnLi 2 ) in which all four Rs of the zinc complex according to the present invention are tert-butyl groups, a bulky tert-butyl ligand is effective. Since zinc metal functions as a dummy ligand and is shielded from the surroundings, deactivation of the zinc complex is preferably suppressed even when active hydrogen is present in the reaction system.
Such an art-type zinc complex can be suitably used as a polymerization catalyst in N-isopropylacrylamide, hydroxyethyl acrylate, acrylamide or the like, or a reactant in alkylation, allylation, acylation reaction of aryl halide, and the like.
Furthermore, when the zinc complex including tert-Bu 4 ZnLi 2 of the present invention is used as a polymerization initiator, the polymerization solvent used is extremely effective in H 2 O or MeOH having active protons than in THF. (FIG. 1). This is considered to be because such a complex has almost no basicity. FIG. 1 shows a comparison of the polymerization reaction time and yield when N-isopropylacrylamide polymerization is carried out using tert-Bu 4 ZnLi 2 as a polymerization catalyst and THF, H 2 O, and MeOH, respectively.
[0008]
In any case, the synthesis reaction of the zinc complex according to the present invention is usually performed in an ether solvent such as anhydrous tetrahydrofuran, diethyl ether or dipropyl ether under an inert gas atmosphere such as nitrogen gas or argon gas. Is done.
The reaction temperature is usually −50 ° C. or less, preferably around −78 ° C. when t - butyllithium is added, and then stirring is usually performed at a temperature of about 0 ° C. for about 30 minutes. In the step of reacting with (at the time of polymerization reaction or exchange reaction), although it naturally varies depending on the type of reagent, it is usually sufficient to stir at room temperature or an appropriate temperature around it for several minutes to several hours.
After the halogen-metal exchange reaction, an aqueous solution of sodium hydrogen sulfite and a saturated aqueous solution of ammonium chloride are added to the reaction solution to complete the reaction, and then a suitable extraction solvent (for example, halogenation of chloroform, dichloromethane, dichloroethane, etc.) is performed according to a conventional method. Post-treatment such as extraction with hydrocarbons, diethyl ether, diisopropyl ether and other ether solvents, benzene, toluene and other aromatic hydrocarbon solvents, dehydration and drying with magnesium sulfate, solvent evaporation, silica gel column purification, etc. By performing the operation, the target compound can be obtained easily and in high yield.
[0009]
【Example】
A method for synthesizing the art-type zinc compound according to the present invention will be described using tert-Bu 4 ZnLi 2 as an example.
Example 1
Preparation of t-Bu 4 ZnLi 2 Under an argon atmosphere, 5 ml of THF and 2.0 ml (1.0 mmol) of zinc chloride were added to a 20 ml eggplant flask, and 2.75 ml (4.0 mmol) of t-butyllithium was added thereto at −78 ° C. ) Was added dropwise. This solution was stirred at 0 ° C. for 30 minutes to obtain a THF solution of t-Bu 4 ZnLi 2 (1.0 mmol).
[0010]
A polymerization reaction using the zinc complex as a polymerization catalyst will be described by taking N-isopropylacrylamide polymerization as an example.
Example 2
Polymerization Example of N-Isopropylacrylamide A THF solution of t-Bu 4 ZnLi 2 obtained by the method described in Example 1 was prepared, and this was added to 1.13 g (50 of N-isopropylacrylamide at 0 ° C. in an argon atmosphere. The solution was stirred at room temperature for 3 hours. After adding 1 ml of hydrochloric acid to the reaction solution, the precipitate was recovered by filtration and centrifugation at a temperature of 80 ° C. or higher, and purified by reprecipitation with THF / ether, yielding 1.04 g of the desired polymer in a yield of 92 %.
[Chemical 1]
Figure 0003849024
The resulting polymer was identified from the observed temperature change in NMR and UV transmission at about 31 ° C. The result of NMR is shown below.
1H NMR
(400 MHz, DMSO-d 6 , 140 ° C.) δ 6.5 (br, 1H), 4.9 (br, 1H), 2.1 (br, 1H), 1.7-1.3 (m, 2H) 1.1 (s, 6H)
[0011]
Next, an example in which the zinc complex is used for the exchange reaction will be described by taking a halogen-zinc exchange reaction as an example. In addition, according to the reaction formula shown in the following [Chemical Formula 2], seven types of halogen-zinc exchange reaction examples shown in Table 1 were performed.
[Chemical 2]
Figure 0003849024
[Table 1]
Figure 0003849024
(Appendix)
a: Yield was calculated based on 1H NMR indexation.
b: The deuterium content was estimated to be about 80%.
[0012]
In Table 1 above, no. A synthesis example of p-allylbenzyl alcohol 4 is shown below.
Example 3
Synthesis Example of p-Allylbenzyl Alcohol After preparing a THF solution of t-Bu 4 ZnLi 2 by the method described in Example 1, 4-iodobenzyl alcohol 709. was added to this solution at −78 ° C. in an argon atmosphere. 1 mg (1.0 mmol) was added, and the mixture was stirred at room temperature for 1 hour. Next, 0.60 ml (3.3 mmol) of allyl iodide was added thereto, and the mixture was stirred at room temperature for 6 hours. 10 ml each of an aqueous sodium hydrogen sulfite solution and a saturated aqueous ammonium chloride solution were added to the reaction solution, extracted with chloroform, dehydrated with magnesium sulfate, and the solvent was distilled off under reduced pressure. The product was identified by NMR. Yield: 82%.
1H NMR (400 MHz, CDCl 3 ) δ 7.29 (d, J = 8.0 Hz, 2H, phenylene), 7.19 (d, J = 8.0 Hz, 2H, phenylene), 5.96 (ddt, J = 10.0, 6.8, 6.8 Hz, 1H, allyl), 5.09 (d, J = 6.8 Hz, 1H, allyl), 5.06 (t, J = 1.2 Hz, 1H, allyl) 4.66 (d, J = 4.8 Hz, 2H, —CH 2 OH)
3.39 (d, J = 6.8 Hz, 2H, allyl), 1.65 (s, 1H, -OH)
[0013]
Example 4
No. in Table 1 7 p-methylbenzyl alcohol was synthesized according to the above synthesis method, and identification data thereof are shown below.
1H NMR (400 MHz, CDCl 3 ) δ 7.26 (d, J = 8.0 Hz, 2H, phenylene), 7.17 (d, J = 8.0 Hz, 2H, phenylene), 4.65 (d, J = 5.2 Hz, 2H, —CH 2 OH), 2.35 (s, 3H, methyl), 1.55 (s, 1H, —OH)
[0014]
Example 5
p-Allylaniline was synthesized and its identification data is shown below.
1H NMR (400 MHz, CDCl3) δ 7.40 (d, J = 9.0 Hz, 2H, phenylene), 6.39 (d, J = 9.0 Hz, 2H, phenylene), 5.90 (m, 1H, allyl) ), 5.26 (dd, J = 17.2, 1.6 Hz, 1H, allyl), 5.16 (dd, J = 10.4, 1.6 Hz, 1H, allyl), 3.74 (m, 2H, allyl), 2.04 (s, 2H, -NH 2)
[0015]
【The invention's effect】
As described above, when the organozinc compound of the present invention is used as a polymerization catalyst or a reaction product, it is not necessary to protect with a protecting group even under conditions where a functional group having a proton source such as active hydrogen coexists. In addition, since it is possible to suppress deactivation, not only the reaction process is simplified, but also the reaction using water as a solvent can be used, which is environmentally preferable. It is considered high.
[Brief description of the drawings]
FIG. 1 shows the relationship between the polymerization time and the yield of N-isopropylacrylamide polymerization using H 2 O, MeOH, and THF as solvents in comparison with each solvent.

Claims (9)

一般式R4ZnM1 2またはR4ZnM2で表される有機亜鉛錯体。
(式中、4つのRは全て tert- ブチル基であり、M1はLiまたはNaであり、M2はMgである。)
An organozinc complex represented by the general formula R 4 ZnM 1 2 or R 4 ZnM 2 .
(In the formula, all four Rs are tert- butyl groups , M 1 is Li or Na, and M 2 is Mg.)
重合触媒または交換反応の前駆体として使用される請求項1に記載の有機亜鉛錯体。The organozinc complex according to claim 1, which is used as a polymerization catalyst or a precursor of an exchange reaction. 請求項1又は2に記載の有機亜鉛錯体の製造方法であって、−50℃以下の温度で、不活性ガスの雰囲気下、無水有機溶媒、塩化亜鉛、及びt - ブチルリチウムを混合し攪拌することを含み、
前記無水有機溶媒が、テトラヒドロフラン、またはエーテルであり、
前記 - ブチルリチウム対塩化亜鉛のモル比が4:1である有機亜鉛錯体の製造方法。
A manufacturing method of an organic zinc complex as claimed in claim 1 or 2, at -50 ° C. or less of the temperature, under an atmosphere of an inert gas, anhydrous organic solvent, zinc chloride, and t - stirred mixture of butyllithium Including
The anhydrous organic solvent is tetrahydrofuran or ether;
A method for producing an organozinc complex, wherein the molar ratio of t - butyllithium to zinc chloride is 4: 1.
請求項1又は2に記載の有機亜鉛錯体を、溶媒及び/又は基質にプロトン源が存在する条件下で、重合触媒として使用する有機亜鉛錯体の使用方法。A method of using an organozinc complex in which the organozinc complex according to claim 1 or 2 is used as a polymerization catalyst under conditions where a proton source is present in a solvent and / or a substrate. 請求項1又は2に記載の有機亜鉛錯体を、溶媒及び/又は基質にプロトン源が存在する条件下で、交換反応の前駆体として使用する有機亜鉛錯体の使用方法。 A method for using an organozinc complex in which the organozinc complex according to claim 1 or 2 is used as a precursor for an exchange reaction under a condition in which a proton source is present in a solvent and / or a substrate. さらに、重合溶媒が、THF、H2O、又はMeOHである請求項4に記載の方法。Further, the polymerization solvent, THF, H 2 O, or method according to claim 4 is MeOH. さらに、重合反応における基質が、N-イソプロピルアクリルアミド、ヒドロキシエチルアクリレート、又はアクリルアミドである請求項4又は6に記載の方法。The method according to claim 4 or 6 , wherein the substrate in the polymerization reaction is N-isopropylacrylamide, hydroxyethyl acrylate, or acrylamide. さらに、交換反応における基質が、ハロゲン化アリールである請求項5に記載の方法。  The method according to claim 5, wherein the substrate in the exchange reaction is an aryl halide. 請求項1又は2に記載の有機亜鉛錯体を用いて、プロトン源存在下重合反応を実施する重合方法。A polymerization method for carrying out a polymerization reaction in the presence of a proton source using the organozinc complex according to claim 1 .
JP2003084455A 2003-03-26 2003-03-26 Organozinc complex and method for producing the same Expired - Lifetime JP3849024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084455A JP3849024B2 (en) 2003-03-26 2003-03-26 Organozinc complex and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084455A JP3849024B2 (en) 2003-03-26 2003-03-26 Organozinc complex and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004292328A JP2004292328A (en) 2004-10-21
JP3849024B2 true JP3849024B2 (en) 2006-11-22

Family

ID=33399622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084455A Expired - Lifetime JP3849024B2 (en) 2003-03-26 2003-03-26 Organozinc complex and method for producing the same

Country Status (1)

Country Link
JP (1) JP3849024B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5374151B2 (en) * 2006-06-05 2013-12-25 国立大学法人 東京大学 Polymerization initiator
JP2007320938A (en) * 2006-06-05 2007-12-13 Univ Of Tokyo Lithium t-butyldiethyl zincate, method for producing the same and method for using the same
JP2009215472A (en) * 2008-03-11 2009-09-24 Kyoto Univ Process for producing living radical polymer having functional group at terminal
TW201011043A (en) 2008-06-20 2010-03-16 Chugai Pharmaceutical Co Ltd Crystal of spiroketal derivatives and process for preparation of spiroketal derivatives
JP5775770B2 (en) * 2011-09-20 2015-09-09 東ソー・ファインケム株式会社 Polymerization initiator and polymerization method of vinyl monomer
JP2013064085A (en) * 2011-09-20 2013-04-11 Tosoh Finechem Corp Method for polymerizing sulfonic acid group-containing vinyl monomer
JP6317212B2 (en) * 2014-08-27 2018-04-25 国立大学法人徳島大学 Novel transesterification catalyst and method for producing ester compound using the same
SG11202004505QA (en) 2017-11-15 2020-06-29 Univ Tokushima Vinyl alcohol-vinyl acetate copolymer
CN113795520A (en) 2019-05-10 2021-12-14 积水化学工业株式会社 Vinyl alcohol-amino acid ester copolymer

Also Published As

Publication number Publication date
JP2004292328A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP3849024B2 (en) Organozinc complex and method for producing the same
CN113402350B (en) Biaryl compound and preparation method and application thereof
WO2014077321A1 (en) Aluminum catalyst
US5880305A (en) Process for preparation of SioH-functional carbosilane dendrimers
US11890602B2 (en) Application of the ionic iron (III) complex as catalyst in preparation of benzylamine compound
CN114853658B (en) Synthesis method of 9- (4-bromophenyl) carbazole
JPH0332548B2 (en)
WO2011009934A1 (en) Tris(1,2,3-triazol-4-yl)methane organometallic compounds as catalysts and processes using them.
JP3885497B2 (en) Method for producing 1,2,4-butanetriol
CN114478351A (en) Method for synthesizing alpha-alkyl substituted indole-3-formaldehyde compound
CN108623496B (en) Preparation method of 3-ethyl-4-fluorobenzonitrile
JP4163763B2 (en) Method for alkylating cyclopentadiene compounds
CN111217847A (en) Thiosilane ligand, preparation method thereof and application thereof in aryl boronization catalytic reaction
JPH11255820A (en) Preparation of narrow distribution poly(p-yydroxy-styrene)
JP4114262B2 (en) Ferrocenylaminophosphine and catalyst containing the phosphine
JP3856905B2 (en) Method for producing trityltetrakis (pentafluorophenyl) borate
CN114031487B (en) Synthesis method of 2-aryl acetophenone compound
JP4807549B2 (en) Siloxanes, silanols and silanes, and methods for producing the same
CN114276487B (en) Organic phosphine polymer, catalyst containing same, synthesis method and application thereof
CN115260103B (en) Preparation method of 4,5-dihalogen-1- (difluoromethyl) -1H-imidazole
KR20030062591A (en) Novel Process for Preparation of Dialkoxy Trityl Halide
JP3340760B2 (en) Para-tert-butoxyphenyldimethylcarbinol and process for producing the same
WO2000056691A1 (en) Synthesis of vapol ligands
JPH04185642A (en) Production of polysilane
CN115160120A (en) Method for synthesizing polyalkoxy aromatic ketone

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

R150 Certificate of patent or registration of utility model

Ref document number: 3849024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term