JP3848611B2 - Strengthening method of foundation foundation of structure - Google Patents

Strengthening method of foundation foundation of structure Download PDF

Info

Publication number
JP3848611B2
JP3848611B2 JP2002279460A JP2002279460A JP3848611B2 JP 3848611 B2 JP3848611 B2 JP 3848611B2 JP 2002279460 A JP2002279460 A JP 2002279460A JP 2002279460 A JP2002279460 A JP 2002279460A JP 3848611 B2 JP3848611 B2 JP 3848611B2
Authority
JP
Japan
Prior art keywords
foundation
ground
water
strength
strainer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002279460A
Other languages
Japanese (ja)
Other versions
JP2004116075A (en
Inventor
剛 笹倉
輝 吉田
智 真鍋
一三 小林
幹雄 畔柳
道孝 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2002279460A priority Critical patent/JP3848611B2/en
Publication of JP2004116075A publication Critical patent/JP2004116075A/en
Application granted granted Critical
Publication of JP3848611B2 publication Critical patent/JP3848611B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Foundations (AREA)
  • Bridges Or Land Bridges (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水浸状態にある構造物としての橋梁基礎や護岸ケーソンなどの基礎地盤の強度増加方法に関するものである。
【0002】
【従来の技術】
水浸状態にある構造物の基礎としてのサクション基礎は、例えば海洋に構築する橋梁基礎などに用いられるものであるが、このサクション基礎1は図9にも示すように底面のスカート部1aを開口し、内部の中空部を前記開口に連通する貯水部2に形成し、基礎外部の水面3と基礎内部の水面4との水位の差である水頭差により水圧による押さえ効果を得るとともに、基礎地盤5内の浸透流により地盤の強度増加を図り、構造物に作用する外力に対して安定性を確保するものである。
【0003】
すなわち、基礎底部フーチングの水平部であるスカート部1aには、基礎外から鉛直下向きに作用する水圧と、基礎内部から鉛直上向きに作用する水圧が作用するが、水頭差により基礎内の水圧の方が減少しているため、基礎外からの水圧の方が相対的に大きくなる。この結果、サクション基礎1には鉛直下向きの力が作用することになり、これが水頭差による押さえ効果となる。
【0004】
また、基礎底面の開口に透水性多孔体6を配設し、この透水性多孔体6を介して地下水をサクション基礎1内の貯水部2に揚水することで基礎地盤5内に浸透流16を人工的に生成する。この場合、水頭差が大きくなれば、浸透流16の流速(流量)が大きくなり、地盤の間隙水圧が減少する。これにより、浸透流16の発生域では間隙水圧が減少し、有効拘束圧が増加し、基礎地盤5の剪断強度が向上し、基礎の支持力の改善が図られる。図中14は貯水部2に開口する排水管を示し、貯水部2内の水量を調節する排水ポンプ15が付設されている。
【0005】
図中7はサクション基礎1の周囲の地盤面に敷設した遮水材料で、例えば、ゴムシート、水中モルタル、アスファルトマットなどの難透水性材料を用い、上部からの水の浸入を阻止する機能を付与する。これにより、揚水距離が長くなり、基礎底面からの揚水による基礎地盤5内の間隙水圧低下の影響範囲を大きくすることができ、基礎地盤5内の強度増加およびその範囲を大きくできる。
【0006】
ところで、基礎地盤5の強度増加を図るものとして、従来、例えば地震発生時の液状化対策として、地下水を排水して地盤の液状化を防止するものがあり、これは、感震器で地震を感知すると地盤内の地下水を排水管で吸引するものである(例えば特許文献1参照。)。
【0007】
【特許文献1】
特開平6−212617号公報
【0008】
【発明が解決しようとする課題】
前記特開平6−212617号公報に記載の技術もサクション作用によって基礎の支持力を増強し、構造物の安全性を確保するものであるが、これは外力が地震による振動に限定され、例えば、海洋構造物などのような水浸状態にある構造物の基礎としてのサクション基礎に対する波浪、潮流などの外力や風、上載荷重などによる上部工からの反力の全てに対応する事は困難であり、構造物の安定性が十分であるとはいえなかった。
【0009】
本発明の目的は前記従来例の不都合を解消し、水浸状態にある構造物の基礎に加わる外力や反力に対して、サクション作用を利用して外力や反力の規模に対応させて地盤強度の増加を図ることができるのはもちろんのこと、地盤深部まで強度増加を図ることができ、この場合の設備も容易に設置できる構造物の基礎地盤の強度増加方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明は前記目的を達成するため、第1に、基礎外部の海洋などの水面と基礎内部の貯水部の水面との水頭差と、基礎地盤内の浸透流とにより水浸状態にある構造物の基礎地盤の強度を増加させる方法であって、前記構造物に作用する外力の大きさを検出し、その検出値に基づいて、前記貯水部に開口する排水設備で排水量を増加し、基礎内部の水圧を減少させるとともに基礎地盤内の間隙水圧を減少させて地盤強度を増加させる構造物の基礎地盤の強度増加方法において、基礎地盤内にカセットタイプのストレーナを基礎底面から基礎地盤内に鉛直に挿入し上端を基礎内部の貯水部に開口させて配設し、このストレーナにより吸水し、地盤の深部にまで達するように間隙水圧を減少させて地盤強度を増加させることを要旨とするものである。
【0011】
第2に、基礎外部の海洋などの水面と基礎内部の貯水部の水面との水頭差と、基礎地盤内の浸透流とにより水浸状態にある構造物の基礎地盤の強度を増加させる方法であって、前記構造物に作用する外力の大きさを検出し、その検出値に基づいて、前記貯水部に開口する排水設備で排水量を増加し、基礎内部の水圧を減少させるとともに基礎地盤内の間隙水圧を減少させて地盤強度を増加させる構造物の基礎地盤の強度増加方法において、ストレーナを基礎地盤内に水平に配設し、このストレーナを基礎内部の貯水部または基礎外部に配設した排水設備に連通し、ストレーナにより吸水し、地盤の深部にまで達するように間隙水圧を減少させて地盤強度を増加させることを要旨とするものである。
【0012】
請求項1記載の本発明によれば、構造物に作用する外力が大きい場合は、その大きさに対応させて基礎内部の貯水部の水を排出して水位を低くすれば、基礎外部の水面との水頭差が大きくなり、これにより基礎内部の水圧が減少し基礎地盤内の浸透流の流速(流量)が大きくなり、基礎地盤内の間隙水圧が減少して地盤強度が増加する。
【0013】
そして、基礎地盤内にストレーナを配設することで、地盤深部まで強度増加が行える。この場合、ストレーナはカセットタイプとして基礎底面から基礎地盤内に鉛直に挿入することで、設置が容易となり、また、揚水時における砂などによる目詰まりが発生しても、簡単に交換できる。そして、上端を基礎内部の貯水部に開口することで、貯水部に開口する排水設備を利用してストレーナからの揚水も行うことができ、揚水のための設備を別途設けずにすむ。
【0014】
請求項2記載の本発明によれば、構造物に作用する外力が大きい場合は、その大きさに対応させて基礎内部の貯水部の水を排出して水位を低くすれば、基礎外部の水面との水頭差が大きくなり、これにより基礎内部の水圧が減少し基礎地盤内の浸透流の流速(流量)が大きくなり、基礎地盤内の間隙水圧が減少して地盤強度が増加する。
【0015】
そして、基礎地盤内にストレーナを配設することで、地盤深部まで強度増加が行える。この場合、ストレーナは自在ボーリングマシンなどにより基礎地盤内に水平に配設し、基礎内部の貯水部または基礎外部に配設した排水設備に連通することで、基礎地盤の種々の深度から揚水でき、間隙水圧を広い範囲で減少できる。
【0016】
【発明の実施の形態】
以下、図面について本発明の実施の形態を詳細に説明する。図1は本発明の構造物の基礎地盤の強度増加方法の一般例を示す縦断正面図で、図9に示した従来例と同一の構成要素には同一の参照符号を付してある。本発明方法が実施される基礎も一例としてサクション基礎1であり、底面のスカート部1aを開口し、内部の中空部を前記開口に連通する貯水部2に形成し、基礎外部の水面3と基礎内部の水面4との水位の差である水頭差により水圧による押さえ効果を得るとともに、基礎地盤5内の浸透流により地盤の強度増加を図るものである。
【0017】
かかるサクション基礎1において、本発明はこのサクション基礎1に作用する波浪、潮流などの外力の変動、風、上載荷重などによる上部工8からの反力の変動を検出するものとして、波高計10をサクション基礎1設置近傍の水面などに、潮力計11をサクション基礎1の側部に、荷重計12をサクション基礎1の上部の上部工8の下面などに設置する。
【0018】
前記波高計10は例えば波による繰り返し荷重を検知するセンサであり、潮力計11は潮の干満作用などによる潮流の作用を検知するセンサであり、荷重計12は上部工8より作用する荷重を感知するセンサで、上部工自重、上部工に作用する風荷重、車両、電車などの移動荷重などを感知するものである。
【0019】
また、基礎地盤5の間隙水圧を計測するものとして間隙水圧計13をサクション基礎1の底部に配設する。図示の例ではスカート部1aの底部および基礎底面の開口に配設した透水性多孔体6に設置した。
【0020】
次にかかる波高計10、潮力計11、荷重計12などの外力や反力を検出するセンサや間隙水圧計13を用いてサクション基礎1の基礎地盤の強度を増加する方法を図2のフローチャートについて説明する。波浪、潮流などの外力や風、上載荷重などによる上部工8からの反力がサクション基礎1に作用すると、これが波高計10、潮力計11、荷重計12で検出される。
【0021】
そして、検出された値が設計時の荷重を越える値で大きな変動が認められると、コンピュータを利用する制御装置のはたらきで排水ポンプ15を作動し、基礎内部の貯水部2の水を外部に排出し、排水量を増加することで基礎外部の水面3と基礎内部の水面4との水位の差である水頭差Hを大きくする。
【0022】
水頭差Hが大きくなれば、基礎地盤5内に人工的に生成されている浸透流16の流速(流量)が大きくなり、基礎地盤5内の地下水が基礎底面の開口に配設した透水性多孔体6を通過して貯水部2に揚水され、これにより基礎地盤5の間隙水圧が減少する。よって、この間隙水圧の値を間隙水圧計13で計測し、基礎の安定性を得るのに必要な強度を確保する。基礎地盤5内の間隙水圧の変化と地盤強度の変化の関係は、対象とする地盤に対して試験を行い、予め把握しておく。貯水部2に揚水された地下水は排水ポンプ15で外部に排出する。
【0023】
このように基礎地盤5からの揚水は浸透流により行われるものであるが、前記した第1実施形態では基礎底面に透水性多孔体6を配設し基礎地盤5内の水を直接吸引するものであるため、基礎地盤5の上層付近のみでしか浸透流を発生させることができず、浸透流が発生しない深い位置の基礎地盤5の強度増加は期待できない。
【0024】
そこで、深い位置の地盤まで浸透流を発生させるために、本発明では、図3に示すように複数のストレーナ17を基礎地盤5内に配設して、基礎地盤5内の地下水を吸引することで、より深部の地盤まで間隙水圧を減少させることが可能となり、地盤深部まで強度増加を図れる。このストレーナ17を用いた揚水システムはサクション基礎1だけでなく、既設の橋梁基礎、ケーソン護岸などにも適用可能である。
【0025】
図3はその基本形態を示し、基礎底面から地盤内にストレーナ17を鉛直に挿入し、ストレーナ17の上端をサクション基礎1の底部の透水性多孔体6を貫通させて貯水部2に開口するものである。これにより、ストレーナ17の全側面から吸水でき、ストレーナ17の長さ分だけ地盤深部まで吸水でき、揚水範囲を大きくできる。そして、ストレーナ17で吸水した水は貯水部2に入り、排水ポンプ15で外部に排水される。
【0026】
ストレーナ17を設置した場合、吸水時に砂の細粒分などによる目詰まりが発生し吸水機能低下が予測されるが、これに対しては図4の第1実施形態に示すようにストレーナ17をカセット式とし、隔壁18をサクション基礎1の内部に設置し基礎底部を圧気下とし、この状態でストレーナ17の交換作業を行うようにすれば、目詰まりに対処できる。
【0027】
また、ストレーナ17の配設は、サクション基礎1の施工前でも施工後でも可能ではあるが、配管の挿入や施工性を考慮すると、図5に示すように基礎施工前に遮水壁19などにより施工場所の水を排水した状態で、ストレーナ17を基礎地盤5に挿入する方法を採用する方が望ましい。ストレーナ17を挿入するための地盤の削孔は、遮水壁19などにより地盤面を露出した後、ボーリング掘削マシンにより削孔し、この孔内にストレーナ17を挿入する。
【0028】
図6はストレーナ17を設置する場合の第2実施形態を示し、ストレーナ17を水平に配置する。配設方法としては、図6にも示すように地上から自在ボーリングマシン20により基礎地盤5内に深部にいたるようにして複数段にわたって水平に挿入する。
【0029】
この水平に配設したストレーナ17の排水手段は、図7に示すように複数段のストレーナ17を鉛直方向に排水管21で接続して連通させ、この排水管21の上端をサクション基礎1の底部の透水性多孔体6を貫通させて貯水部2に開口する。これにより、ストレーナ17で吸水された水は排水管21をとおって貯水部2に流入し、排水ポンプ15で外部に排出される。
【0030】
図8の他の排水手段を示し、前記のように自在ボーリングマシン20によってストレーナ17を設置した後に、自在ボーリングマシン20によって形成されたボーリング孔を使用し、このボーリング孔をそのまま排水経路22とする。
【0031】
【発明の効果】
以上述べたように本発明の構造物の基礎地盤の強度増加方法は、水浸状態にある構造物の基礎に加わる外力や反力に対して、外力や反力の変動を検知し、検知した外力や反力の規模に対応させてサクション作用を利用して地盤強度の増加を図ることができ、しかも、基礎地盤の深部にまで強度増加が図れて安定性を向上でき、この場合の設備の設置も容易に行えるものである。
【図面の簡単な説明】
【図1】 本発明の構造物の基礎地盤の強度増加方法の一般例を示す縦断正面図である。
【図2】 本発明の構造物の基礎地盤の強度増加方法の一般例を示す地盤強化のフローチャートである。
【図3】 本発明の構造物の基礎地盤の強度増加方法の一般例を示す縦断正面図である。
【図4】 本発明の構造物の基礎地盤の強度増加方法の第1実施形態を示すストレーナの交換・設置状態の縦断正面図である。
【図5】 本発明の構造物の基礎地盤の強度増加方法の第1実施形態を示すストレーナの設置状態の縦断正面図である。
【図6】 本発明の構造物の基礎地盤の強度増加方法の第2実施形態を示す縦断正面図である。
【図7】 本発明の構造物の基礎地盤の強度増加方法の第2実施形態を示す排水設備を設けた状態の縦断正面図である。
【図8】 本発明の構造物の基礎地盤の強度増加方法の第2実施形態を示す他の排水設備を設けた状態の縦断正面図である。
【図9】 サクション基礎の縦断正面図である。
【符号の説明】
1…サクション基礎 1a…スカート部
2…貯水部 3…水面
4…水面 5…基礎地盤
6…透水性多孔体 7…遮水材料
8…上部工 10…波高計
11…潮力計 12…荷重計
13…間隙水圧計 14…排水管
15…排水ポンプ 16…浸透流
17…ストレーナ 18…隔壁
19…遮水壁 20…自在ボーリングマシン
21…排水管 22…排水経路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for increasing the strength of foundation ground such as a bridge foundation or a seawall caisson as a structure in a water-immersed state.
[0002]
[Prior art]
The suction foundation as the foundation of the structure in the water immersion state is used for, for example, a bridge foundation constructed in the ocean. This suction foundation 1 opens the skirt portion 1a on the bottom as shown in FIG. In addition, the internal hollow portion is formed in the water storage portion 2 that communicates with the opening, and a pressurizing effect by water pressure is obtained by a water head difference that is a difference in water level between the water surface 3 outside the foundation and the water surface 4 inside the foundation, and the foundation ground The strength of the ground is increased by the osmotic flow in 5, and stability is secured against the external force acting on the structure.
[0003]
In other words, the skirt portion 1a, which is the horizontal portion of the foundation bottom footing, is subjected to water pressure that acts vertically downward from the outside of the foundation and water pressure that acts vertically upward from the inside of the foundation. Since the pressure decreases, the water pressure from outside the foundation becomes relatively large. As a result, a vertically downward force acts on the suction foundation 1, which is a pressing effect due to a water head difference.
[0004]
In addition, a permeable porous body 6 is disposed in the opening on the bottom surface of the foundation, and the osmotic flow 16 is generated in the foundation ground 5 by pumping groundwater into the water storage section 2 in the suction foundation 1 through the permeable porous body 6. Generate artificially. In this case, if the water head difference increases, the flow velocity (flow rate) of the osmotic flow 16 increases and the pore water pressure in the ground decreases. As a result, the pore water pressure is reduced in the region where the osmotic flow 16 is generated, the effective restraint pressure is increased, the shear strength of the foundation ground 5 is improved, and the support force of the foundation is improved. In the figure, reference numeral 14 denotes a drain pipe that opens to the water reservoir 2, and a drain pump 15 that adjusts the amount of water in the water reservoir 2 is attached.
[0005]
In the figure, reference numeral 7 denotes a water-impervious material laid on the ground surface around the suction foundation 1, for example, a non-permeable material such as rubber sheet, underwater mortar, and asphalt mat, and has a function of preventing water from entering from above. Give. Thereby, a pumping distance becomes long, the influence range of the pore water pressure fall in the foundation ground 5 by the pumping from a foundation bottom face can be enlarged, the intensity | strength increase in the foundation ground 5 and its range can be enlarged.
[0006]
By the way, as a measure to increase the strength of the foundation ground 5, conventionally, for example, as a countermeasure against liquefaction in the event of an earthquake, there is one that drains groundwater to prevent liquefaction of the ground. When detected, groundwater in the ground is sucked through a drain pipe (for example, see Patent Document 1).
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 6-212617
[Problems to be solved by the invention]
The technology described in JP-A-6-212617 also enhances the supporting force of the foundation by the suction action and ensures the safety of the structure, but this is limited to vibration caused by an earthquake, for example, It is difficult to deal with all the reaction force from superstructure due to external forces such as waves, tidal currents, winds, and overloads on the suction foundation as a foundation of a flooded structure such as an offshore structure. The stability of the structure was not sufficient.
[0009]
The object of the present invention is to solve the inconvenience of the conventional example, and to respond to the external force and reaction force applied to the foundation of the structure in the water-immersed state by using the suction action to correspond to the scale of the external force and reaction force. It is an object of the present invention to provide a method for increasing the strength of the foundation ground of a structure, which can increase the strength to the deep part of the ground as well as increase the strength, and can easily install equipment in this case.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, first, a structure that is in a water-immersed state due to a water head difference between the water surface of the ocean outside the foundation and the water surface of the water storage section inside the foundation and the seepage flow in the foundation ground. A method of increasing the strength of the foundation ground of the vehicle, detecting the magnitude of an external force acting on the structure, and increasing the amount of drainage with a drainage facility opening to the water storage unit based on the detected value, In the method of increasing the strength of the foundation ground of the structure which increases the ground strength by reducing the water pressure of the foundation and decreasing the pore water pressure in the foundation ground, a cassette type strainer is inserted vertically into the foundation ground from the bottom of the foundation The gist is to increase the ground strength by reducing the pore water pressure so as to reach the deep part of the ground by absorbing the water by the strainer and disposing the upper end to the water storage part inside the foundation.
[0011]
Secondly, it is a method to increase the strength of the foundation ground of the submerged structure due to the water head difference between the ocean surface outside the foundation and the water surface of the reservoir inside the foundation and the seepage flow in the foundation ground. The amount of external force acting on the structure is detected, and based on the detected value, the amount of drainage is increased by the drainage facility that opens to the water reservoir, the water pressure inside the foundation is decreased, and the inside of the foundation ground In the method of increasing the strength of the foundation ground of a structure that increases the ground strength by reducing the pore water pressure, the strainer is horizontally disposed in the foundation ground, and the strainer is disposed in the reservoir inside the foundation or outside the foundation. The gist is to increase the ground strength by communicating with the equipment, absorbing water by the strainer, and decreasing the pore water pressure to reach the deep part of the ground .
[0012]
According to the first aspect of the present invention, when the external force acting on the structure is large, the water level outside the foundation can be reduced by draining the water in the reservoir inside the foundation and lowering the water level corresponding to the magnitude. As a result, the water pressure inside the foundation decreases, the flow velocity (flow rate) of the seepage flow in the foundation ground increases, the pore water pressure in the foundation ground decreases, and the ground strength increases.
[0013]
And by arranging a strainer in the foundation ground, the strength can be increased to the deep ground. In this case, the strainer can be easily installed by inserting it vertically from the bottom of the foundation into the foundation ground as a cassette type, and can be easily replaced even if clogging occurs due to sand during pumping. And by opening the upper end to the water storage part inside the foundation, water can be pumped from the strainer using the drainage equipment that opens to the water storage part, and it is not necessary to provide a separate facility for pumping water.
[0014]
According to the second aspect of the present invention, when the external force acting on the structure is large, the water level outside the foundation can be reduced by draining the water in the reservoir inside the foundation and lowering the water level corresponding to the magnitude. As a result, the water pressure inside the foundation decreases, the flow velocity (flow rate) of the seepage flow in the foundation ground increases, the pore water pressure in the foundation ground decreases, and the ground strength increases.
[0015]
And by arranging a strainer in the foundation ground, the strength can be increased to the deep ground. In this case, the strainer can be pumped from various depths of the foundation ground by arranging it horizontally in the foundation ground using a free boring machine, etc., and communicating with the drainage equipment installed inside the foundation or outside the foundation. The pore water pressure can be reduced over a wide range.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal front view showing a general example of a method for increasing the strength of a foundation ground of a structure according to the present invention. The same components as those in the conventional example shown in FIG. The foundation on which the method of the present invention is implemented is also a suction foundation 1 as an example. The bottom skirt portion 1a is opened, the inner hollow portion is formed in the water storage portion 2 communicating with the opening, and the water surface 3 and the foundation outside the foundation are formed. A water pressure difference that is a difference in water level with the internal water surface 4 provides a pressing effect due to water pressure, and an increase in the strength of the ground due to the seepage flow in the foundation ground 5.
[0017]
In the suction foundation 1, the present invention detects the fluctuation of the reaction force from the superstructure 8 due to fluctuations in external forces such as waves and tidal currents acting on the suction foundation 1, wind, and overload. On the water surface in the vicinity of the installation of the suction foundation 1, the tide meter 11 is installed on the side of the suction foundation 1, and the load meter 12 is installed on the lower surface of the upper work 8 above the suction foundation 1.
[0018]
The wave height meter 10 is, for example, a sensor that detects a repeated load due to waves, the tidal meter 11 is a sensor that detects the action of a tidal current due to tidal activity, etc., and the load meter 12 receives a load acting from the superstructure 8. This sensor senses the superstructure's own weight, wind load acting on the superstructure, and moving loads such as vehicles and trains.
[0019]
Further, a pore water pressure gauge 13 is disposed at the bottom of the suction foundation 1 for measuring the pore water pressure of the foundation ground 5. In the example shown in the figure, the porous permeable body 6 is disposed at the bottom of the skirt 1a and the opening on the bottom of the foundation.
[0020]
Next, a method of increasing the strength of the foundation ground of the suction foundation 1 by using a sensor for detecting external force and reaction force such as the wave height meter 10, the tide meter 11 and the load meter 12 and the pore water pressure meter 13 will be described with reference to the flowchart of FIG. Will be described. When a reaction force from the superstructure 8 due to an external force such as a wave or a tidal current, a wind, or an overload is applied to the suction foundation 1, this is detected by the wave height meter 10, the tidal force meter 11, and the load meter 12.
[0021]
When the detected value exceeds the design load, and a large fluctuation is recognized, the drain pump 15 is operated by the function of the control device using the computer, and the water in the reservoir 2 inside the foundation is discharged to the outside. Then, the water head difference H, which is the difference in water level between the water surface 3 outside the foundation and the water surface 4 inside the foundation, is increased by increasing the amount of drainage.
[0022]
If the hydraulic head difference H is increased, the flow velocity (flow rate) of the osmotic flow 16 artificially generated in the foundation ground 5 is increased, and the permeable porous material in which the groundwater in the foundation ground 5 is arranged at the opening of the foundation bottom. It passes through the body 6 and is pumped to the water storage part 2, thereby reducing the pore water pressure of the foundation ground 5. Therefore, the value of the pore water pressure is measured by the pore water pressure gauge 13 to ensure the strength necessary to obtain the foundation stability. The relationship between the change in the pore water pressure in the foundation ground 5 and the change in the ground strength is obtained by conducting a test on the target ground. The groundwater pumped to the water reservoir 2 is discharged to the outside by a drain pump 15.
[0023]
Thus, pumping from the foundation ground 5 is performed by osmotic flow, but in the first embodiment described above, the water permeable porous body 6 is disposed on the bottom surface of the foundation and the water in the foundation ground 5 is directly sucked. Therefore, it is possible to generate an osmotic flow only in the vicinity of the upper layer of the foundation ground 5, and an increase in strength of the foundation ground 5 at a deep position where no osmotic flow is generated cannot be expected.
[0024]
Therefore, in order to generate an osmotic flow to the ground at a deep position, in the present invention, a plurality of strainers 17 are arranged in the foundation ground 5 as shown in FIG. 3, and the ground water in the foundation ground 5 is sucked. Thus, the pore water pressure can be reduced to deeper ground, and the strength can be increased to deeper ground. The pumping system using the strainer 17 can be applied not only to the suction foundation 1 but also to an existing bridge foundation and caisson revetment.
[0025]
FIG. 3 shows the basic configuration, in which a strainer 17 is vertically inserted into the ground from the bottom of the foundation, and the upper end of the strainer 17 is opened through the water permeable porous body 6 at the bottom of the suction foundation 1 to the water storage section 2. It is. As a result, water can be absorbed from all sides of the strainer 17, water can be absorbed up to the ground depth by the length of the strainer 17, and the pumping range can be increased. Then, the water absorbed by the strainer 17 enters the water storage section 2 and is drained to the outside by the drain pump 15.
[0026]
When the strainer 17 is installed, clogging due to fine sand particles or the like occurs during water absorption, and the water absorption function is expected to be reduced. For this reason, as shown in the first embodiment of FIG. If the partition wall 18 is installed inside the suction foundation 1 and the bottom of the foundation is under pressure, and the strainer 17 is replaced in this state, clogging can be dealt with.
[0027]
In addition, the strainer 17 can be disposed before or after the suction foundation 1 is constructed. However, in consideration of the insertion of pipes and the workability, as shown in FIG. It is desirable to adopt a method in which the strainer 17 is inserted into the foundation ground 5 while the water at the construction site is drained. The ground hole for inserting the strainer 17 is exposed by a boring excavation machine after the ground surface is exposed by the impermeable wall 19 or the like, and the strainer 17 is inserted into the hole.
[0028]
FIG. 6 shows a second embodiment in which the strainer 17 is installed, and the strainer 17 is disposed horizontally. As an arrangement method, as shown also in FIG. 6, it is inserted horizontally over a plurality of stages so as to reach a deep portion in the foundation ground 5 from the ground by a free boring machine 20.
[0029]
As shown in FIG. 7, the drainage means of the strainer 17 disposed horizontally is connected to and communicated with a plurality of strainers 17 in a vertical direction by drainage pipes 21, and the upper end of the drainage pipe 21 is the bottom of the suction foundation 1. The water-permeable porous body 6 is penetrated to open to the water reservoir 2. Thereby, the water absorbed by the strainer 17 flows into the water storage section 2 through the drain pipe 21 and is discharged to the outside by the drain pump 15.
[0030]
8 shows another drainage means, and after the strainer 17 is installed by the free boring machine 20 as described above, the boring hole formed by the free boring machine 20 is used, and this boring hole is used as the drainage path 22 as it is. .
[0031]
【The invention's effect】
As described above, the method for increasing the strength of the foundation ground of the structure of the present invention detects and detects fluctuations in the external force and reaction force against the external force and reaction force applied to the foundation of the structure in a water-immersed state. It is possible to increase the ground strength by using the suction action according to the scale of the external force and reaction force, and to improve the strength by increasing the strength to the deep part of the foundation ground. Installation is also easy.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view showing a general example of a method for increasing the strength of a foundation ground of a structure according to the present invention.
FIG. 2 is a flowchart of ground reinforcement showing a general example of a method for increasing the strength of the foundation ground of the structure of the present invention.
FIG. 3 is a longitudinal front view showing a general example of a method for increasing the strength of the foundation ground of the structure of the present invention.
FIG. 4 is a longitudinal front view of the strainer replacement / installation state showing the first embodiment of the method for increasing the strength of the foundation ground of the structure of the present invention.
FIG. 5 is a longitudinal front view of the strainer installed state showing the first embodiment of the strength increasing method of the foundation ground of the structure of the present invention.
FIG. 6 is a longitudinal front view showing a second embodiment of a method for increasing the strength of the foundation ground of the structure of the present invention.
FIG. 7 is a longitudinal front view of a state in which a drainage facility showing a second embodiment of the method for increasing the strength of the foundation ground of the structure of the present invention is provided.
FIG. 8 is a longitudinal sectional front view of a state in which another drainage facility showing a second embodiment of the method for increasing the strength of the foundation ground of the structure of the present invention is provided.
FIG. 9 is a longitudinal front view of the suction foundation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Suction foundation 1a ... Skirt part 2 ... Water storage part 3 ... Water surface 4 ... Water surface 5 ... Foundation ground 6 ... Permeable porous body 7 ... Water-impervious material 8 ... Superstructure 10 ... Wave height meter 11 ... Tidal force meter 12 ... Load meter DESCRIPTION OF SYMBOLS 13 ... Pore water pressure gauge 14 ... Drain pipe 15 ... Drain pump 16 ... Osmotic flow 17 ... Strainer 18 ... Bulkhead 19 ... Impermeable wall 20 ... Swivel boring machine 21 ... Drain pipe 22 ... Drain path

Claims (2)

基礎外部の海洋などの水面と基礎内部の貯水部の水面との水頭差と、基礎地盤内の浸透流とにより水浸状態にある構造物の基礎地盤の強度を増加させる方法であって、前記構造物に作用する外力の大きさを検出し、その検出値に基づいて、前記貯水部に開口する排水設備で排水量を増加し、基礎内部の水圧を減少させるとともに基礎地盤内の間隙水圧を減少させて地盤強度を増加させる構造物の基礎地盤の強度増加方法において、基礎地盤内にカセットタイプのストレーナを基礎底面から基礎地盤内に鉛直に挿入し上端を基礎内部の貯水部に開口させて配設し、このストレーナにより吸水し、地盤の深部にまで達するように間隙水圧を減少させて地盤強度を増加させることを特徴とした構造物の基礎地盤の強度増加方法。A method of increasing the strength of a foundation ground of a structure in a water-immersed state due to a water head difference between a water surface such as the ocean outside the foundation and a water surface of a water reservoir inside the foundation and an infiltration flow in the foundation ground, The magnitude of external force acting on the structure is detected, and based on the detected value, the amount of drainage is increased by the drainage facility that opens to the reservoir, the water pressure inside the foundation is reduced, and the pore water pressure in the foundation ground is reduced. In the method of increasing the strength of the foundation ground of the structure, the cassette type strainer is vertically inserted into the foundation ground from the bottom of the foundation and the upper end is opened to the water storage section inside the foundation. And a method for increasing the strength of the foundation ground of the structure, wherein water is absorbed by the strainer and the pore water pressure is decreased to reach the deep part of the ground to increase the ground strength. 基礎外部の海洋などの水面と基礎内部の貯水部の水面との水頭差と、基礎地盤内の浸透流とにより水浸状態にある構造物の基礎地盤の強度を増加させる方法であって、前記構造物に作用する外力の大きさを検出し、その検出値に基づいて、前記貯水部に開口する排水設備で排水量を増加し、基礎内部の水圧を減少させるとともに基礎地盤内の間隙水圧を減少させて地盤強度を増加させる構造物の基礎地盤の強度増加方法において、ストレーナを基礎地盤内に水平に配設し、このストレーナを基礎内部の貯水部または基礎外部に配設した排水設備に連通し、ストレーナにより吸水し、地盤の深部にまで達するように間隙水圧を減少させて地盤強度を増加させることを特徴とした構造物の基礎地盤の強度増加方法。A method of increasing the strength of a foundation ground of a structure in a water-immersed state due to a water head difference between a water surface such as the ocean outside the foundation and a water surface of a water reservoir inside the foundation and an infiltration flow in the foundation ground, The magnitude of external force acting on the structure is detected, and based on the detected value, the amount of drainage is increased by the drainage facility that opens to the reservoir, the water pressure inside the foundation is reduced, and the pore water pressure in the foundation ground is reduced. In the method of increasing the strength of the foundation ground of the structure that increases the ground strength, the strainer is horizontally arranged in the foundation ground, and this strainer is communicated with the water storage section inside the foundation or the drainage facility arranged outside the foundation. A method for increasing the strength of the foundation ground of a structure, which absorbs water by a strainer and decreases the pore water pressure so as to reach the deep part of the ground to increase the ground strength .
JP2002279460A 2002-09-25 2002-09-25 Strengthening method of foundation foundation of structure Expired - Fee Related JP3848611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002279460A JP3848611B2 (en) 2002-09-25 2002-09-25 Strengthening method of foundation foundation of structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002279460A JP3848611B2 (en) 2002-09-25 2002-09-25 Strengthening method of foundation foundation of structure

Publications (2)

Publication Number Publication Date
JP2004116075A JP2004116075A (en) 2004-04-15
JP3848611B2 true JP3848611B2 (en) 2006-11-22

Family

ID=32274457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002279460A Expired - Fee Related JP3848611B2 (en) 2002-09-25 2002-09-25 Strengthening method of foundation foundation of structure

Country Status (1)

Country Link
JP (1) JP3848611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6264776B2 (en) * 2013-08-09 2018-01-24 株式会社大林組 Suction structure
CN104775446B (en) * 2014-01-15 2021-06-15 广东海上城建控股发展有限公司 Barrel pier for fixing water structure and installation and construction method thereof
JP6902190B2 (en) * 2017-05-22 2021-07-14 株式会社大林組 Intrusive foundation penetration method and penetration management device
CN112663419B (en) * 2020-12-22 2022-01-11 陕西铁路工程职业技术学院 Method for monitoring sedimentation deformation of unsaturated soil subgrade of high-speed railway
CN114441313B (en) * 2022-01-23 2023-05-23 中国地质大学(武汉) Underpinning experimental model and method for underpass bridge pile foundation under mining tunnel excavation

Also Published As

Publication number Publication date
JP2004116075A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
CN105421500B (en) It is a kind of based on low-level curtain and the basement anti-floating system of blood pressure lowering of drawing water
EP0722016A1 (en) Underwater construction of impermeable protective sheathings for hydraulic structures
JP3979466B2 (en) Temporary closing method
JP3848611B2 (en) Strengthening method of foundation foundation of structure
CN110409420B (en) Underground continuous wall with pit facing surface and precipitation function
CN106436717A (en) Impervious curtain river-near foundation pit adopting dewatering wells and design method
CN205999897U (en) A kind of seepage proof curtain using dewatering well borders on the river foundation ditch
JP4275437B2 (en) Structure for suppressing buoyancy of structures
CN213086883U (en) Buoyancy control structure of underground building
CN212772481U (en) Anti earthquake liquefaction system of sand foundation building
KR101572723B1 (en) Group type hybrid suction foundation having variable blade and skirt and method for constructing thereof
KR100710917B1 (en) Apparatus and Method for draining subsurface water and the connecting device for the same
CN109024711B (en) Underground structure anti-floating system and construction method thereof
CN112538860A (en) Construction method of high-water-level complex stratum bottom-seal-free concrete lock catch steel pipe pile cofferdam
CN211898431U (en) Deep foundation pit poured slope protection pile and anchor cable supporting system
JP3777085B2 (en) Construction method of underground storage structure and underground storage structure
CN206052749U (en) For the deep collection water-stop in water-rich sand layer foundation pit construction
CN208870637U (en) A kind of high water head rich water tunnel tunnel bottom construction
CN115506389B (en) Floating water pressure control system on basement bottom plate
KR100443640B1 (en) Vertical drainage system and filter unit for resisting uplift of sub-structure
CN220789815U (en) Foundation pit drainage structure
KR100665985B1 (en) The construction method of basement self drainage
KR200195274Y1 (en) Vertical drainage unit for resisting uplift of sub-structure
CN109137846A (en) Prevent silt from entering the external draining pump submerged floating sediment trapping bank of intake
CN220847613U (en) Precipitation structure of foundation pit for river-like construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090901

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees