JP3847269B2 - Optical fiber manufacturing method with excellent hydrogen resistance - Google Patents

Optical fiber manufacturing method with excellent hydrogen resistance Download PDF

Info

Publication number
JP3847269B2
JP3847269B2 JP2003110797A JP2003110797A JP3847269B2 JP 3847269 B2 JP3847269 B2 JP 3847269B2 JP 2003110797 A JP2003110797 A JP 2003110797A JP 2003110797 A JP2003110797 A JP 2003110797A JP 3847269 B2 JP3847269 B2 JP 3847269B2
Authority
JP
Japan
Prior art keywords
optical fiber
loss
deuterium
hydrogen
containing atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003110797A
Other languages
Japanese (ja)
Other versions
JP2004317750A (en
Inventor
大 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003110797A priority Critical patent/JP3847269B2/en
Publication of JP2004317750A publication Critical patent/JP2004317750A/en
Application granted granted Critical
Publication of JP3847269B2 publication Critical patent/JP3847269B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、通信分野で使用される低損失の光ファイバ、特には、耐水素特性に優れた光ファイバの製造方法に関する。
【0002】
【従来の技術】
光ファイバを使用した通信には、800〜900nm、又は1300〜1600nm波長域の赤外光が利用されている。しかしながら、光ファイバには、OH基に起因する吸収損失ピーク(以下、略してWPと称する)が存在するため、これまで1400nm付近の波長帯は、信号波長として使用されなかった。
【0003】
近年、CWDM(波長分割多重)と呼ばれる通信技術が研究され、これに使用される光ファイバとして、WPの極めて小さい光ファイバが注目され、開発されてきている。このWPは、光ファイバが水素含有雰囲気に曝された場合に増加することが知られている。従って、敷設された光ファイバが長期にわたって使用されることを考えると、敷設初期の段階のみならず、水素含有雰囲気に曝された後もWPが小さい状態を維持できる耐水素特性の高い光ファイバが必要とされる。
【0004】
これまでに、耐水素特性の高い光ファイバの製造方法として、光ファイバを重水素含有雰囲気に曝して、ガラス中の欠陥部位にSi‐OD結合を生じさせ、WPによる吸収を通信に使用しない波長域にシフトさせる方法が開発されている(例えば、特許文献1乃至3参照)。
【0005】
波長λでの光ファイバの損失痾は、一般的に次式で表される。
【数1】

Figure 0003847269
上式において、A: レーリー散乱係数、αIM: 構造不完全性損失、αIR: 赤外吸収損失、αother:その他の吸収損失であり、αotherにはWPなどの不純物などによる吸収損失ピークが含まれる。
【0006】
光ファイバには、構造上の欠陥が含まれていることが多く、その代表的なものとして、Si・(E'センター)、Si‐O・(非架橋酸素ホールセンター、NBOHC)、Si‐O‐O・(パーオキシラジカル)などがある。このうち、NBOHCが拡散してきた水素と結合してOH基を形成し、WPが増加するというのが、水素によるWP増のメカニズムと考えられている。
【0007】
一方、光ファイバの損失を測定すると、630nm付近に吸収ピークが生じることがある。一般的にはこのピークはNBOHCに起因すると考えられている。この630nm付近の吸収ピークは、水素含有雰囲気に光ファイバを曝すと無くなることがすでに報告されている(例えば、非特許文献1参照)。
【0008】
水素が光ファイバ中に拡散されるときの630nmの吸収とWPの関係については、すでに報告がなされている(特許文献4参照)。しかし、630nm付近の吸収ピークの決定方法については言及しておらず、数式1におけるレーリー散乱係数が光ファイバごとに異なる可能性を考慮すると、ルーチンで行うには吸収ピークの決定方法が定められていないと、レーリー散乱係数の違いによっては、630nm付近の吸収ピークの大きさを見誤る可能性がある。また、特許文献4は、重水素含有雰囲気に曝した場合の630nm付近の吸収ピークの挙動については、何ら言及していない。
【0009】
【特許文献1】
特開昭60‐90852号公報(第1頁)
【特許文献2】
GB2149392A(第1頁)
【特許文献3】
EP1182176A1(第1頁)
【特許文献4】
特開平9−132430号公報(第1乃至4頁、図1乃至6)
【非特許文献1】
OFC1999, PD22−1(第2頁)
【0010】
【発明が解決しようとする課題】
光ファイバの耐水素特性を調べるには、国際規格IEC 60793−2に規定された試験方法によればよい。この試験方法は、水素を1%含む室温・常圧の雰囲気中に光ファイバを、波長1240nmでの損失が0.03dB/km以上上昇するまで曝した後、14日間大気中に放置し、その後、WPを測定して試験前の測定値と比較する、という方法である。
しかしながらこの方法は、1240nmでの損失が0.03dB/km以上上昇するのに、一般的な光ファイバで3日から7日程度を要する。その結果、1本の光ファイバを試験するのに、3週間程度を要していた。
【0011】
しかもこの方法は、出荷する製品から1km以上をサンプリングして行う必要があり、試験に使用した光ファイバは、製品として出荷できず、試験後廃棄することになる。
以上の結果、製品の耐水素特性を確認する方法としてこの方法を使用すると、測定に長期間かかるだけでなく、廃棄物も大量に出てしまうという問題点があった。また、水素試験による確認を行わずに、重水素含有雰囲気中での曝露処理のみで済まそうとすると、重水素含有雰囲気に曝露する設備の不具合、あるいは操作ミスにより、重水素含有雰囲気への曝露が不十分なままで出荷されてしまうおそれがあった。
【0012】
本発明は、上記事情に鑑み、重水素含有雰囲気中での曝露処理が十分になされ、耐水素特性を測定するために長期間を必要とせず、かつ製品ロスの少ない、耐水素特性に優れた光ファイバの製造方法を提供することを目的としている。
【0013】
【課題を解決するための手段】
本発明は、耐水素特性を高めるために重水素含有雰囲気に光ファイバを曝すと、波長630nmでの吸収ピークが消失することを見出し、これを耐水素特性の確認方法としたものである。
【0014】
すなわち、耐水素特性に優れた光ファイバは、重水素含有雰囲気に曝した光ファイバであって、該光ファイバの実測した波長630nmにおける損失値と、損失が波長の4乗分の一に比例している波長領域900nm 1200nmの損失から推定して得た630nmにおける損失値との差が、1.5dB/km以下まで減少したことを確認し、選別して得られる。
【0015】
本発明の耐水素特性に優れた光ファイバの製造方法は、重水素含有雰囲気に光ファイバを曝した後、該光ファイバの損失が波長の4乗分の一に比例している波長領域900nm 1200n mの損失から該光ファイバの630nmにおける損失を推定し、この推定した損失値と実測した630nmにおける損失値との差が1.5dB/km以下まで減少したことを確認し、選別することを特徴としている。
【0016】
【発明の実施の態様】
図1は、光ファイバを重水素含有雰囲気に曝す重水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したものであり、重水素試験後においても損失の増加は認められない。
他方、図2に示すように、重水素含有雰囲気に曝露していない光ファイバを、水素含有雰囲気に曝す水素試験を行うと、1400nm付近において顕著な損失の増加が認められる。
【0017】
光ファイバの損失を構成する要素については、上記数式1で示したが、これらの要素のうち赤外吸収損失αIRは、波長1600nm以上で顕著になる。従って、1600nmよりも短い波長帯域での損失は、その他の吸収損失αotherが比較的大きな値となる吸収損失ピークを除けば、1/λ4でフィッティングさせることができる。
【0018】
一般に使用される石英系の光ファイバでは、波長900nmから1200nmの波長帯域には、目立った吸収損失ピークは存在しないため、この波長帯域での損失を1/λ4でフィッティングさせた曲線と、実際に測定された損失を比較すると、吸収損失ピークの大きさを求めることができる。
【0019】
例えば、図3に示すように、WPの小さい光ファイバの波長帯域900nm〜1200nmの損失から、光ファイバのレーリー散乱係数Aを考慮に入れて、波長900nmから600nmまでA/λ4でフィッティングさせて得た曲線(以下、フィッティング曲線と称する、破線で示す)と、実際に測定して得た損失曲線(実線)とを比較することで、NBOHCに起因すると考えられる630nmにおける吸収損失ピークの大きさを求めることができる。
【0020】
本発明においては、重水素含有雰囲気に曝露した光ファイバの630nmでのフィッティング曲線の損失と、実際に測定して得た630nmに温度ける損失値との差が、1.5dB/km以下まで減少し、耐水素特性に優れていることを確認するものである。
【0021】
図4は、WPの小さい光ファイバを、重水素含有雰囲気に一定期間曝露した後に、実際に測定した損失曲線とフィッティング曲線とを比較するグラフであり、フィッティング曲線と実際に測定して得た損失曲線とは、極めて一致しており、曝露前には大きかった630nm付近の吸収ピーク(図3参照)が、曝露後にはほぼ消滅していることがわかる。
【0022】
630nm付近の吸収ピークの消失は、重水素が水素と同様に光ファイバ中に拡散し、NBOHCと結合してSi−OD基を形成したためと考えられる。しかしながらSi−OD基は、Si−OH基と異なる位置に吸収ピークを生じ、光ファイバの伝送に使用される波長帯に目立った吸収ピークを生じない。Si−OD基は、Si−OH基と同様に、通常使用される環境では安定した結合であり、水素がさらに光ファイバ中に拡散してきても、Si−OH基となることはなく、効果的にWPの上昇を抑制することができる。
【0023】
【実施例】
(実施例1)
WPの小さい光ファイバを製造し、損失スペクトルを測定したところ、630nmに6dB/kmという大きな吸収損失ピークが見られた。この光ファイバを重水素1%、窒素99%の雰囲気に曝し、室温で4日間放置した後に、再度、損失スペクトルを測定したところ、630nmにおける損失は、900nmから1200nmの波長帯域の損失をフィッティングしたフィッティング曲線上の630nmの値と比較して、僅かに0〜1.50dB/km大きいだけであった。
さらにこの光ファイバを水素含有雰囲気に曝した後に、IEC 60793−2に規定された試験方法で試験したところ、1240nmでのWPの増加は皆無で、耐水素特性に優れていた。
【0024】
(比較例1)
実施例1と同じ630nmでの損失が6dB/kmの光ファイバを、重水素0.5%、窒素99.5%の雰囲気に曝し、室温で4日間放置した後に、損失スペクトルを測定したところ、630nmにおける損失は、フィッティング曲線上の630nmの損失値と比較して2.000dB/km大きく、重水素処理が不充分であった。
この光ファイバを水素含有雰囲気に曝した後に、IEC 60793−2に規定された試験方法で試験したところ、1240nmにおいてWPが0.08dB/km増加していた。
【0025】
なお、重水素処理後に、実測した630nmでの損失が、フィッティング曲線から得た損失と比較して、1.50dB/km以下であれば、水素含有雰囲気に曝した後の光ファイバのWPの増加は0.05dB/km以下となり、実質的に問題のないレベルであった。
【0026】
【発明の効果】
本発明により、水素含有雰囲気に光ファイバを曝すという、時間がかかり廃棄物が増加する試験方法によることなく、単に630nmでの損失スペクトルを測定するだけで、光ファイバの重水素雰囲気処理が十分に行われていることを、簡単な手段で確認し、選別することができる。
その結果、従来、複数のロットに1本の割合でしか行えなかった耐水素特性の確認試験を全数について実施することができ、信頼性が向上した。
【図面の簡単な説明】
【図1】 光ファイバを重水素含有雰囲気に曝す重水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したグラフである。
【図2】 重水素含有雰囲気に曝露していない光ファイバについて、水素含有雰囲気に曝す水素試験の前後において、1200nmから1600nmの波長帯域での損失を測定したグラフである。
【図3】 WPの小さい光ファイバを、重水素含有雰囲気への曝露前に、実際に測定した損失とフィッティング曲線とを比較するグラフである。
【図4】 WPの小さい光ファイバを、重水素含有雰囲気に一定期間曝露した後に、実際に測定した損失とフィッティング曲線とを比較するグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-loss optical fiber used in the communication field, and more particularly to a method for manufacturing an optical fiber excellent in hydrogen resistance.
[0002]
[Prior art]
For communication using optical fibers, infrared light having a wavelength range of 800 to 900 nm or 1300 to 1600 nm is used. However, since an optical fiber has an absorption loss peak (hereinafter referred to as WP for short) due to OH groups, the wavelength band near 1400 nm has not been used as a signal wavelength until now.
[0003]
In recent years, a communication technique called CWDM (wavelength division multiplexing) has been studied, and an optical fiber having an extremely small WP has been attracting attention and developed as an optical fiber used for this. This WP is known to increase when the optical fiber is exposed to a hydrogen-containing atmosphere. Therefore, considering that the installed optical fiber is used over a long period of time, not only the initial stage of installation but also an optical fiber with high hydrogen resistance that can maintain a small WP after being exposed to a hydrogen-containing atmosphere. Needed.
[0004]
So far, as a method of manufacturing optical fibers with high hydrogen resistance characteristics, the optical fiber is exposed to a deuterium-containing atmosphere, Si-OD bonds are generated at the defective sites in the glass, and absorption by WP is not used for communication. A method of shifting to a region has been developed (see, for example, Patent Documents 1 to 3).
[0005]
The loss 痾 of the optical fiber at the wavelength λ is generally expressed by the following equation.
[Expression 1]
Figure 0003847269
In the above formula, A: Rayleigh scattering coefficient, α IM : structural imperfection loss, α IR : infrared absorption loss, α other : other absorption loss, α other is absorption loss peak due to impurities such as WP Is included.
[0006]
Optical fibers often contain structural defects, and typical ones include Si. (E 'center), Si-O. (Non-bridging oxygen hole center, NBOHC), Si-O. -O. (Peroxy radical). Among them, NBOHC is combined with hydrogen that has diffused to form OH groups and WP increases, which is considered to be a mechanism for increasing WP by hydrogen.
[0007]
On the other hand, when the loss of the optical fiber is measured, an absorption peak may occur near 630 nm. Generally, this peak is considered to be due to NBOHC. It has already been reported that the absorption peak near 630 nm disappears when the optical fiber is exposed to a hydrogen-containing atmosphere (for example, see Non-Patent Document 1).
[0008]
The relationship between the absorption at 630 nm and the WP when hydrogen is diffused in an optical fiber has already been reported (see Patent Document 4). However, the method for determining the absorption peak near 630 nm is not mentioned, and considering the possibility that the Rayleigh scattering coefficient in Equation 1 differs for each optical fiber, the method for determining the absorption peak is defined for routine execution. Otherwise, depending on the difference in the Rayleigh scattering coefficient, there is a possibility that the size of the absorption peak near 630 nm may be mistaken. Patent Document 4 does not mention anything about the behavior of an absorption peak near 630 nm when exposed to a deuterium-containing atmosphere.
[0009]
[Patent Document 1]
JP 60-90852 A (first page)
[Patent Document 2]
GB2149392A (first page)
[Patent Document 3]
EP1182176A1 (first page)
[Patent Document 4]
JP-A-9-132430 (pages 1 to 4, FIGS. 1 to 6)
[Non-Patent Document 1]
OFC 1999, PD22-1 (2nd page)
[0010]
[Problems to be solved by the invention]
In order to investigate the hydrogen resistance characteristics of the optical fiber, a test method defined in the international standard IEC 60793-2 may be used. In this test method, after exposing an optical fiber in a room temperature / atmospheric pressure atmosphere containing 1% hydrogen until the loss at a wavelength of 1240 nm rises by 0.03 dB / km or more, the optical fiber is left in the atmosphere for 14 days. In this method, WP is measured and compared with the measured value before the test.
However, this method requires about 3 to 7 days for a general optical fiber to increase the loss at 1240 nm by 0.03 dB / km or more. As a result, it took about three weeks to test one optical fiber.
[0011]
Moreover, this method needs to be performed by sampling 1 km or more from the product to be shipped, and the optical fiber used for the test cannot be shipped as a product and is discarded after the test.
As a result, when this method is used as a method for confirming the hydrogen resistance characteristic of a product, there is a problem that not only measurement takes a long time but also a large amount of waste is generated. In addition, if it is attempted to perform only the exposure treatment in the deuterium-containing atmosphere without confirming it by the hydrogen test, the exposure to the deuterium-containing atmosphere may be caused by a malfunction of the facility exposed to the deuterium-containing atmosphere or an operation error. However, there was a risk of being shipped with insufficient.
[0012]
In view of the above circumstances, the present invention is sufficiently exposed in a deuterium-containing atmosphere, does not require a long period of time to measure hydrogen resistance, and has excellent product resistance with little product loss. It aims at providing the manufacturing method of an optical fiber.
[0013]
[Means for Solving the Problems]
The present invention finds that an absorption peak at a wavelength of 630 nm disappears when an optical fiber is exposed to a deuterium-containing atmosphere in order to enhance hydrogen resistance, and this is a method for confirming hydrogen resistance.
[0014]
In other words, an optical fiber with excellent hydrogen resistance is an optical fiber exposed to a deuterium-containing atmosphere, and the loss value at a wavelength of 630 nm measured for the optical fiber is proportional to the fourth power of the wavelength. The difference from the loss value at 630 nm obtained by estimating from the loss in the wavelength region of 900 nm to 1200 nm is confirmed to be reduced to 1.5 dB / km or less, and is obtained by selection .
[0015]
Method for producing a hydrogen resistance excellent optical fibers of the present invention, after exposing the optical fiber to deuterium-containing atmosphere, the wavelength region loss of the optical fiber is proportional to a fourth power portion of the wavelength 900 nm ~ The loss at 630 nm of the optical fiber is estimated from the loss of 1200 nm , and it is confirmed that the difference between the estimated loss value and the actually measured loss value at 630 nm has decreased to 1.5 dB / km or less, and is selected. It is said.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows the loss measured in the wavelength band from 1200 nm to 1600 nm before and after the deuterium test in which the optical fiber is exposed to a deuterium-containing atmosphere, and no increase in loss is observed even after the deuterium test.
On the other hand, as shown in FIG. 2, when an optical fiber not exposed to the deuterium-containing atmosphere is subjected to a hydrogen test in which the optical fiber is exposed to a hydrogen-containing atmosphere, a significant increase in loss is observed near 1400 nm.
[0017]
The elements constituting the loss of the optical fiber are shown in the above formula 1. Among these elements, the infrared absorption loss α IR becomes remarkable at a wavelength of 1600 nm or more. Therefore, loss in a wavelength band shorter than 1600 nm can be fitted at 1 / λ 4 except for an absorption loss peak at which other absorption loss α other has a relatively large value.
[0018]
In a silica-based optical fiber that is generally used, there is no conspicuous absorption loss peak in the wavelength band from 900 nm to 1200 nm, so a curve obtained by fitting the loss in this wavelength band by 1 / λ 4 and actually If the measured loss is compared, the magnitude of the absorption loss peak can be obtained.
[0019]
For example, as shown in FIG. 3, from the loss in the wavelength band of 900 nm to 1200 nm of an optical fiber with a small WP, fitting with A / λ 4 from a wavelength of 900 nm to 600 nm in consideration of the Rayleigh scattering coefficient A of the optical fiber. The magnitude of the absorption loss peak at 630 nm, which is considered to be caused by NBOHC, by comparing the obtained curve (hereinafter referred to as a fitting curve, indicated by a broken line) and the loss curve obtained by actual measurement (solid line) Can be requested.
[0020]
In the present invention, the difference between the loss of the fitting curve at 630 nm of the optical fiber exposed to the deuterium-containing atmosphere and the loss value at the temperature of 630 nm actually measured is reduced to 1.5 dB / km or less. It is confirmed that the hydrogen resistance is excellent.
[0021]
FIG. 4 is a graph comparing an actually measured loss curve with a fitting curve after an optical fiber having a small WP is exposed to a deuterium-containing atmosphere for a certain period, and the loss obtained by actually measuring the fitting curve. The curve is very consistent, and it can be seen that the absorption peak around 630 nm (see FIG. 3), which was large before the exposure, almost disappeared after the exposure.
[0022]
The disappearance of the absorption peak at around 630 nm is considered to be due to deuterium diffusing into the optical fiber in the same manner as hydrogen and combining with NBOHC to form Si-OD groups. However, the Si-OD group generates an absorption peak at a position different from that of the Si-OH group, and does not generate a conspicuous absorption peak in the wavelength band used for transmission of the optical fiber. The Si-OD group, like the Si-OH group, is a stable bond in a normally used environment, and even if hydrogen diffuses further into the optical fiber, it does not become a Si-OH group and is effective. In addition, an increase in WP can be suppressed.
[0023]
【Example】
Example 1
When an optical fiber having a small WP was manufactured and the loss spectrum was measured, a large absorption loss peak of 6 dB / km was observed at 630 nm. When this optical fiber was exposed to an atmosphere of 1% deuterium and 99% nitrogen and left at room temperature for 4 days, the loss spectrum was measured again, and the loss at 630 nm was fitted with a loss in the wavelength band from 900 nm to 1200 nm. It was only 0 to 1.50 dB / km higher than the value of 630 nm on the fitting curve.
Furthermore, when this optical fiber was exposed to a hydrogen-containing atmosphere and tested by the test method specified in IEC 60793-2, there was no increase in WP at 1240 nm and the hydrogen resistance was excellent.
[0024]
(Comparative Example 1)
The optical fiber with a loss of 6 dB / km at 630 nm as in Example 1 was exposed to an atmosphere of 0.5% deuterium and 99.5% nitrogen and left at room temperature for 4 days. The loss spectrum was measured. Compared with the loss value of 630 nm on the fitting curve, it was 2.000 dB / km larger and the deuterium treatment was insufficient.
When this optical fiber was exposed to a hydrogen-containing atmosphere and tested by the test method defined in IEC 60793-2, WP increased by 0.08 dB / km at 1240 nm.
[0025]
If the measured loss at 630 nm after deuterium treatment is 1.50 dB / km or less compared to the loss obtained from the fitting curve, the increase in WP of the optical fiber after exposure to a hydrogen-containing atmosphere is The level was 0.05 dB / km or less, and there was no problem.
[0026]
【The invention's effect】
According to the present invention, the optical fiber is sufficiently exposed to a deuterium atmosphere by simply measuring the loss spectrum at 630 nm without using a time-consuming waste-increasing test method that exposes the optical fiber to a hydrogen-containing atmosphere. It is possible to confirm and sort out what is being done by simple means.
As a result, it was possible to carry out the confirmation test of the hydrogen resistance characteristic, which was conventionally performed only at a ratio of one for a plurality of lots, and the reliability was improved.
[Brief description of the drawings]
FIG. 1 is a graph showing loss measured in a wavelength band of 1200 nm to 1600 nm before and after a deuterium test in which an optical fiber is exposed to a deuterium-containing atmosphere.
FIG. 2 is a graph of loss measured in a wavelength band from 1200 nm to 1600 nm before and after a hydrogen test exposed to a hydrogen-containing atmosphere for an optical fiber not exposed to a deuterium-containing atmosphere.
FIG. 3 is a graph comparing an actually measured loss and a fitting curve of an optical fiber having a small WP before exposure to a deuterium-containing atmosphere.
FIG. 4 is a graph comparing a loss actually measured and a fitting curve after an optical fiber having a small WP is exposed to a deuterium-containing atmosphere for a certain period of time.

Claims (1)

重水素含有雰囲気に光ファイバを曝した後、該光ファイバの損失が波長の4乗分の一に比例している波長領域900 1200nmの損失から該光ファイバの630nmにおける損失を推定し、この推定した損失値と実測した630nmにおける損失値との差が1.5dB/km以下まで減少したことを確認し、選別することを特徴とする耐水素特性に優れた光ファイバの製造方法。After exposing the optical fiber to a deuterium-containing atmosphere, the loss at 630 nm of the optical fiber is estimated from the loss in the wavelength region 900 to 1200 nm where the loss of the optical fiber is proportional to one fourth of the wavelength. A method for producing an optical fiber having excellent hydrogen resistance characteristics, characterized by confirming that the difference between the estimated loss value and the actually measured loss value at 630 nm has decreased to 1.5 dB / km or less.
JP2003110797A 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance Expired - Fee Related JP3847269B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003110797A JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003110797A JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Publications (2)

Publication Number Publication Date
JP2004317750A JP2004317750A (en) 2004-11-11
JP3847269B2 true JP3847269B2 (en) 2006-11-22

Family

ID=33471550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003110797A Expired - Fee Related JP3847269B2 (en) 2003-04-15 2003-04-15 Optical fiber manufacturing method with excellent hydrogen resistance

Country Status (1)

Country Link
JP (1) JP3847269B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6437747B2 (en) * 2014-07-07 2018-12-12 株式会社フジクラ Optical fiber processing method and estimation method in optical fiber processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090852A (en) * 1983-10-22 1985-05-22 Furukawa Electric Co Ltd:The Treatment of glass for optical fiber
GB2149392A (en) * 1983-11-11 1985-06-12 Central Electr Generat Board Surface treatment of glass
US5059229A (en) * 1990-09-24 1991-10-22 Corning Incorporated Method for producing optical fiber in a hydrogen atmosphere to prevent attenuation
JP3424711B2 (en) * 1995-11-09 2003-07-07 住友電気工業株式会社 Glass body for optical fiber and optical fiber
DE60039600D1 (en) * 2000-08-25 2008-09-04 Draka Comteq Bv Method for reducing the hydrogen sensitivity of glass fibers at 1380-1410 nm
JP2004109124A (en) * 2002-08-28 2004-04-08 Furukawa Electric Co Ltd:The Optical fiber and method of estimating optical fiber

Also Published As

Publication number Publication date
JP2004317750A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
AU716039B2 (en) Optical fiber grating and method of manufacturing the same
US8111961B2 (en) Accelerated aging of phosphorus-doped optical fibers
JP2003114347A (en) Single mode optical fiber, method and device for manufacturing the same
US8980369B2 (en) Accelerated aging of phosphorus-doped optical fibers
US6499318B1 (en) Glass optical waveguides passivated against hydrogen-induced loss increases
CA2541735C (en) Conditioning optical fibers for improved ionizing radiation response
JPH07277770A (en) Glass optical waveguide made insensitive to increase in hydrogen stimulated loss
JP3847269B2 (en) Optical fiber manufacturing method with excellent hydrogen resistance
EP1240537A1 (en) Fiber bragg grating with cladding mode suppression
CN107490819A (en) Single-mode fiber with ultralow attenuation large effective area
JPS63208003A (en) Optical fiber
Chang et al. New hydrogen aging loss mechanism in the 1400 nm window
Dong et al. Suppression of cladding mode coupling loss in fiber Bragg gratings
JP4460069B2 (en) Manufacturing method of single mode optical fiber
KR20080021000A (en) Method for treating optical fiber
Nagayama et al. Ultra low loss (0.151 dB/km) fiber and its impact on submarine transmission systems
EP1625433A1 (en) Method and apparatus for the photosensitization of optical fiber
JP3424711B2 (en) Glass body for optical fiber and optical fiber
JPH07244210A (en) Production of optical-waveguide type diffraction grating and optical waveguide used for the production
US20030010064A1 (en) Method of producing optical fiber
US20160002105A1 (en) Method of processing optical fiber and method of estimating therefor
JP4062404B2 (en) Optical fiber manufacturing method
JPWO2004005984A1 (en) Optical fiber, optical fiber coupler using the same, erbium-doped optical fiber amplifier, optical waveguide
US20030086648A1 (en) Optical fiber having high temperature insensitivity over a temperature range centered on a selected temperature and method of making same
US11914205B2 (en) Coated optical fiber, optical fiber cable, and coated optical fiber ribbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060822

R150 Certificate of patent or registration of utility model

Ref document number: 3847269

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120901

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150901

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees