JP3844569B2 - Operation method of dry exhaust gas treatment equipment - Google Patents

Operation method of dry exhaust gas treatment equipment Download PDF

Info

Publication number
JP3844569B2
JP3844569B2 JP26676997A JP26676997A JP3844569B2 JP 3844569 B2 JP3844569 B2 JP 3844569B2 JP 26676997 A JP26676997 A JP 26676997A JP 26676997 A JP26676997 A JP 26676997A JP 3844569 B2 JP3844569 B2 JP 3844569B2
Authority
JP
Japan
Prior art keywords
exhaust gas
reaction tower
air
adsorbent
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26676997A
Other languages
Japanese (ja)
Other versions
JPH11104452A (en
Inventor
邦則 古山
俊二 田中
享 茶碗谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Development Co Ltd
Original Assignee
Electric Power Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Development Co Ltd filed Critical Electric Power Development Co Ltd
Priority to JP26676997A priority Critical patent/JP3844569B2/en
Publication of JPH11104452A publication Critical patent/JPH11104452A/en
Application granted granted Critical
Publication of JP3844569B2 publication Critical patent/JP3844569B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
この発明は乾式排ガス処理装置の運転方法に関し、特に、炭素質吸着材を充填した反応塔を用いて有害物質を含む各種排ガスを処理する乾式排ガス処理装置の運転方法に関するものである。
【0002】
【従来技術およびその問題点】
ボイラー排ガス、石油精製排ガス、焼結機排ガス、都市ゴミ焼却排ガス、ディーゼルエンジン排ガス等の排ガス中には、硫黄酸化物、窒素酸化物、ダスト、重金属、ダイオキシン等の有害物質が含まれるが、これらの有害物質を除去する方法として、粒状の炭素質吸着材を充填した移動層式又は固定層式の反応塔に排ガスを導入して、排ガスを吸着材と接触させ、有害物質を除去する方法が行われている。
【0003】
そして、乾式の排ガス処理方法としては、炭素質吸着材を使用する方法は、金属触媒等を使用する方法等の他の方法と比較して処理温度が低く、前記各種の有害物質を同時に除去できるので優れた処理方法である。
処理すべき排ガスの性状は、発生源の種類によって当然異なるが、最近では発生源が多様化しているために、排ガスの性状も様々であり、処理装置においても新たな対応が要求されるようになった。
そして、特に、装置の運転停止時点においては問題がある。
【0004】
運転停止時点における問題点としては以下のようである。
排ガス中に硫黄酸化物やダストが多く含まれている場合には、移動層式の反応塔を用いて常時吸着材の更新を行っている。
【0005】
しかし、これらの成分が微量である場合には、固定層式の反応塔を用いて定期的に全部の吸着材を交換した方が設備費が安く経済的である。
【0006】
吸着材を交換するためには、処理装置の運転を停止すると共に、反応塔の内部を点検等の作業が可能な温度まで冷却しなければならない。
運転停止の直後は反応塔の内部の温度はその運転温度、すなわち100〜200℃であるが、これを常温近くまで自然冷却するには通常1週間以上の期間が必要である。
反応塔は運転中の放熱を防ぐために外部に保温材を具えており、又吸着材の充填層も熱伝導率が低いためである。
【0007】
更に、炭素質吸着材は高温で放置すると酸化反応を起こして発熱するので、この発熱は冷却を妨げると共に、場合によっては放熱量よりも蓄熱量が上回り、吸着材の一部が部分的に異常な高温となって、所謂、ホットスポットを起こす危険さえある。
【0008】
この発明の目的は、運転停止時においてホットスポットが発生する恐れを確実に防止することができる乾式排ガス処理装置の運転方法を提供することにある。この発明の他の目的は、運転停止時において反応塔を冷却することで短時間で停止させることができる乾式排ガス処理装置の運転方法を提供することにある。
【0009】
【問題点を解決するための手段】
上記の目的を達成するために、
請求項1にかかる発明は、炭素質吸着材を充填した反応塔と、この反応塔の上流側の排ガス流通路に設けられた開閉可能な空気供給口を備えた乾式排ガス処理装置を用い、この乾式排ガス処理装置の運転停止に際し、上記空気供給口から空気を反応塔内に導入し、この空気によって反応塔内に充填された炭素質吸着材を冷却することを特徴とする乾式排ガス処理装置の運転方法である。
【0010】
【作用】
この発明は上記の手段を採用したことにより、空気供給口からの空気(外気)が反応塔の内部に導入されるので、反応塔の内部の吸着材は空気と充分に接触することができ、これによって、運転の停止時にホットスポットの発生を防止することができる。また、運転停止時においては反応塔を冷却することで短時間で停止させることもできる。
【0011】
【発明の実施の形態】
本発明の発明者等は、運転停止時点について検討した。
【0012】
まず、運転の停止時点においては、反応塔の内部を急速に冷却するためには、温度の低いガスを反応塔に導入すれば良く、先ず、第一に容易に考えられるのは大気を導入して冷却することである。
しかしながら、通常の空気は排ガスと比較して酸素濃度が高いために炭素質吸着材の酸化反応を促進し、前記ホットスポットを発生させる可能性が高く、特に、100〜200℃という高温の状態にある吸着材に空気を導入することは一般的には危険であると思われており、このことに関しては、特開平6−15135号公報にも詳細に示されている。
【0013】
したがって、反応塔の内部をガスで冷却するためには、運転の停止時点において、酸素濃度の低いガス、例えば処理排ガスを乾式処理装置の系内に留めて、これを冷却しながら反応塔に循環導入するシステムを構成するのが最良の手段と考えられている。
【0014】
この発明の発明者等は、吸着材の酸化反応およびホットスポットの発生について研究を重ねた結果、新たな事実を見つけて、本発明を完成させた。
【0015】
この新たな事実とは、吸着材の酸化反応はガス中の酸素濃度が高いほど、又温度が高いほど促進されるということであり、このことは吸着材をガスと接触させた後、ガス中の炭酸ガス及び一酸化炭素の濃度を測定することにより確認された。
【0016】
ところが同時に、通常のガス量で連続的に吸着材とガスとの接触を続けている限りは、発生した熱量は流れているガスによって持ち去られるので、吸着材又はガスの温度はほとんど上昇しないことが確認された。
ここで通常のガス量とは、一定質量の吸着材に接触させる単位当たりのガス量(質量又はモル数)が、実装置での値に近いことを意味する。更に、研究の結果、少なくとも通常のガス量の1/5以上であれば充分であることが確認できた。 逆に、100℃以上に保持された吸着材に微量な空気を流通させると吸着材の温度が次第に上昇することが確認できた。
【0017】
また、ホットスポットは、乾式排ガス処理装置のパイロットプラント及び実装置において現実に発生するので、上記の研究の結果を踏まえて発生状況を整理すると、以下の場合に限られることが判った。
1)反応塔の内部構造に欠陥があって吸着材の一部に排ガスと接触しない部分が生じた場合、その部分で発生する。
【0018】
即ち、吸着材とガスとの接触が異常に悪い部分でホットスポットが発生するということである。
2)運転停止の状態にあるとき、反応塔の内部に100℃以上の温度の吸着材があり、且つ、反応塔に僅かな空気の洩れ込みがあったと考えられる場合にホットスポットが発生する。
これらの結論は、上記の研究結果が正しいことを裏付けるものである。
【0019】
以上の結果、炭素質吸着材を使用した乾式排ガス処理装置において、高温の吸着材に空気を接触させることは、空気の流量さえ充分であれば問題なく運転の停止時点に空気を導入することが可能であることが確認できた。
したがって、上記の運転停止時の問題は、反応塔上流側の排ガス流通路に弁を具えた空気供給口を設け、ここから空気を導入することで解決できる。
【0020】
以下、図面に示すこの発明の乾式排ガス処理装置の運転方法の実施例について説明する
〈実施例1〉
図1は反応塔3の上流に送風機12を、更に、その上流に空気供給口13を設けてある。送風機12は通常の運転時に排ガスを発生源から反応塔3に導入するために設けられているものであり、反応塔3の冷却運転においてもこれが使用できる場合には、この送風機12を空気の導入に使用することができる。
すなわち、発生源の運転を停止した後も、引き続いてこの送風機12の運転を継続し、空気供給口13の弁11を開放すれば、反応塔3に外気14が導入されることになる。
【0021】
なお、図中符号1、9は煙道であり、排ガス2は煙道1および送風機12を介して反応塔3に導入される。
符号5は、反応塔3への吸着材4の供給管、6は反応塔3からの吸着材4の排出管であって、反応塔3の内部には炭素質吸着材4が充填され、この炭素質吸着材4よりも上流側の反応塔3の内部にはルーバー7が、また、下流側には多孔板又はルーバー8が設けられている。
符号10は、反応塔3の下流側の煙道9に設けられた煙突である。
符号11は、送風機12よりも上流側の煙道1に設けられた弁であって、この弁11は空気供給口13を介して煙道1の内部に外気14を導入するようになっている。
【0022】
また、図2に示すように反応塔3の冷却運転には、必ずしも送風機12を必要としない。
通常、反応塔3の後流には煙突10が設けられているので、反応塔3の内部の熱と煙突10のドラフト作用によって空気を導入することができる。この時の通力は次式で示される。
【0023】
h=355×H(1/T1 −1/T2 )
ここで、h :煙突による理論通風力〔mmHO〕
H :煙突の高さ〔m〕
T1 :大気温度〔K〕
T2 :煙突内ガス平均温度〔K〕
【0024】
この時流れる空気の量は、空気供給口13から煙突10出口までの圧力損失が上式で求まる通風力に等しくなる流量であり、計算によって求めることができる。反応塔3の内部が冷却されて、温度が低下するに従って通風力は弱くなり、流れる空気の量は次第に少なくなる。
【0025】
次に上記の実施例を用いた実験例について説明する。
〈実施例1の実験例〉
発電所のボイラ排ガスを処理する乾式排ガス処理装置の運転停止時点において、煙突の通風力による反応塔の冷却を行った。
排ガス量 :1,163,00Nm/h
運転温度 :140℃
大気温度 :21℃
煙突高さ :200m
排ガス量が非常に大きいので、実際の反応塔は20室からなるが、図3はそのうちの1室を示している。
運転停止後、直ちに空気供給口13の弁11を開いて冷却を開始し、反応塔3の内部の温度を測定した。この測定結果を図4に示す。
【0026】
図4において、1、2、3は1個の反応室において、排ガスの上流側、中央部、下流側の順に測定した温度である。
4は20個の反応室において、中央部を上から下に4点測定し、合計80点の測定結果を平均した値である。5は反応塔3の出口の温度である。
1、2、3から排ガスの上流側から次第に冷却されていることが判る。
又、4から冷却開始後10時間で全体の平均温度が60℃まで冷却されていることが判る。これはホットスポットが発生する危険性が全くない温度である。
【0027】
また、上記の計算式から、冷却開始時点における通風力を計算すると、約70mmHOとなる。
このとき流れる空気の量を計算すると、処理排ガス量の約40%に相当する空気が流れている計算となる。
更に、空気の温度が80℃になった時点では処理排ガス量の約30%に相当する空気が流れる結果となる。
【0028】
以上の通り、従来行っていた自然冷却では1週間以上を要していた反応塔の冷却が、煙突の通風力を利用するだけで僅か10時間程度で、しかも従来より安全に終了することが確認された。更に、冷却の終了時点では、反応塔の内部は完全に空気で置換されているので、直ちに内部の作業を開始することができる。なお、送風機を用いた場合には更に有効であることは勿論である。
【0029】
【発明の効果】
この発明は上記のように、反応塔上流側の排ガスの流通通路に開閉可能な空気供給口を設け、運転の停止時においては反応塔内に空気を送り込むものであるので、反応塔内部の吸着材が充分に空気と接触し、冷却されることにより、ホットスポットが発生するのを確実に防止することができ
【図面の簡単な説明】
【図1】この発明の乾式排ガス処理装置の運転方法の一例を説明する説明図である。
【図2】この発明の乾式排ガス処理装置の運転方法の他の例を説明する説明図である。
【図3】反応塔の内部に測定点を示す図である。
【図4】図3に示す測定点での時間と温度との関係を示す図である。
【符号の説明】
1、9……煙道 2……排ガス 3……反応塔 4……吸着材 5……吸着材の供給管 6……吸着材の排出管 7……ルーバー 8……多孔板又はルーバー 10……煙突 11……弁 12……送風機 13……空気供給口 14……空気(外気)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a dry exhaust gas treatment apparatus, and more particularly, to a method for operating a dry exhaust gas treatment apparatus that treats various exhaust gases containing harmful substances using a reaction tower filled with a carbonaceous adsorbent.
[0002]
[Prior art and its problems]
Exhaust gases such as boiler exhaust gas, petroleum refining exhaust gas, sintering machine exhaust gas, municipal waste incineration exhaust gas, and diesel engine exhaust gas contain harmful substances such as sulfur oxides, nitrogen oxides, dust, heavy metals, and dioxins. As a method of removing harmful substances, there is a method of removing harmful substances by introducing exhaust gas into a moving bed type or fixed bed type reaction tower packed with a granular carbonaceous adsorbent and bringing the exhaust gas into contact with the adsorbent. Has been done.
[0003]
As a dry exhaust gas treatment method, the method using a carbonaceous adsorbent has a lower treatment temperature than other methods such as a method using a metal catalyst, and can simultaneously remove the various harmful substances. So it is an excellent treatment method.
Naturally, the nature of the exhaust gas to be treated differs depending on the type of the source, but since the source has diversified recently, the nature of the exhaust gas also varies, and new treatment is required in the treatment equipment. became.
In particular, there is a problem when the operation of the apparatus is stopped.
[0004]
The problems at the time of shutdown are as follows.
When the exhaust gas contains a large amount of sulfur oxide and dust, the adsorbent is constantly renewed using a moving bed type reaction tower.
[0005]
However, when these components are in a very small amount, it is more economical and cheaper to replace all adsorbents periodically using a fixed bed type reaction tower.
[0006]
In order to replace the adsorbent, the operation of the processing apparatus must be stopped and the inside of the reaction tower must be cooled to a temperature at which work such as inspection can be performed.
Immediately after the operation is stopped, the temperature inside the reaction tower is the operation temperature, that is, 100 to 200 ° C., but it usually takes a period of one week or longer to naturally cool it to near room temperature.
This is because the reaction tower has a heat insulating material outside to prevent heat dissipation during operation, and the packed bed of the adsorbent also has a low thermal conductivity.
[0007]
In addition, if the carbonaceous adsorbent is left at a high temperature, it generates an oxidation reaction and generates heat.This heat generation hinders cooling, and in some cases, the amount of stored heat exceeds the amount of heat released, and part of the adsorbent is partially abnormal. There is even the danger of causing so-called hot spots at high temperatures.
[0008]
An object of the present invention is to provide a method for operating a dry exhaust gas treatment apparatus that can surely prevent the occurrence of hot spots when operation is stopped. Another object of the present invention is to provide a method for operating a dry flue gas treatment apparatus can be stopped in a short time by cooling the Oite reactor during shutdown.
[0009]
[Means for solving problems]
To achieve the above objective,
The invention according to claim 1 uses a dry exhaust gas treatment apparatus provided with a reaction tower filled with a carbonaceous adsorbent and an openable and closable air supply port provided in an exhaust gas flow path upstream of the reaction tower. When the dry exhaust gas treatment apparatus is shut down, air is introduced into the reaction tower from the air supply port, and the carbonaceous adsorbent filled in the reaction tower is cooled by the air. It is a driving method.
[0010]
[Action]
Since the present invention employs the above-mentioned means, air (outside air) from the air supply port is introduced into the reaction tower, so that the adsorbent inside the reaction tower can sufficiently come into contact with air, As a result, hot spots can be prevented from occurring when operation is stopped. Further, when the operation is stopped, it can be stopped in a short time by cooling the reaction tower.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention examined the time point when the operation was stopped .
[0012]
First, when the operation is stopped, in order to cool the inside of the reaction tower rapidly, a low temperature gas may be introduced into the reaction tower. It is to cool.
However, since normal air has a higher oxygen concentration than exhaust gas, it promotes the oxidation reaction of the carbonaceous adsorbent and has a high possibility of generating the hot spot, particularly at a high temperature of 100 to 200 ° C. It is generally considered dangerous to introduce air into a certain adsorbent, and this is also described in detail in JP-A-6-15135.
[0013]
Therefore, in order to cool the inside of the reaction tower with gas, when the operation is stopped, a gas having a low oxygen concentration, for example, treatment exhaust gas, is kept in the dry treatment system and circulated to the reaction tower while cooling. It is considered the best way to configure the system to be introduced.
[0014]
The inventors of the present invention conducted research on the oxidation reaction of the adsorbent and the generation of hot spots, and as a result, found new facts and completed the present invention.
[0015]
This new fact is that the oxidation reaction of the adsorbent is promoted as the oxygen concentration in the gas increases and the temperature increases, which means that after the adsorbent is brought into contact with the gas, This was confirmed by measuring the concentration of carbon dioxide and carbon monoxide.
[0016]
At the same time, however, the temperature of the adsorbent or gas may hardly increase because the generated heat is carried away by the flowing gas so long as the adsorbent and gas are continuously in contact with each other with a normal amount of gas. confirmed.
Here, the normal gas amount means that the gas amount (mass or number of moles) per unit brought into contact with the adsorbent having a constant mass is close to the value in an actual apparatus. Furthermore, as a result of research, it has been confirmed that at least 1/5 of the normal gas amount is sufficient. Conversely, it was confirmed that the temperature of the adsorbent gradually increased when a small amount of air was passed through the adsorbent held at 100 ° C. or higher.
[0017]
Moreover, since hot spots actually occur in the pilot plant and the actual apparatus of the dry exhaust gas treatment apparatus, it has been found that the occurrence situation is limited to the following cases based on the results of the above research.
1) If there is a defect in the internal structure of the reaction tower and a part of the adsorbent that does not come into contact with the exhaust gas is generated, it will be generated in that part.
[0018]
That is, a hot spot is generated at a portion where the contact between the adsorbent and the gas is abnormally bad.
2) When the operation is stopped, a hot spot is generated when there is an adsorbent at a temperature of 100 ° C. or more inside the reaction tower and it is considered that there is a slight air leak in the reaction tower.
These conclusions confirm that the above research results are correct.
[0019]
As a result of the above, in a dry exhaust gas treatment apparatus using a carbonaceous adsorbent, bringing air into contact with a high-temperature adsorbent can introduce air when the operation is stopped as long as the air flow rate is sufficient. It was confirmed that it was possible.
Therefore, the problem at the time of stopping the operation can be solved by providing an air supply port provided with a valve in the exhaust gas flow passage on the upstream side of the reaction tower and introducing air therefrom .
[0020]
Embodiments of the method for operating the dry exhaust gas treatment apparatus of the present invention shown in the drawings will be described below .
<Example 1>
In FIG. 1, a blower 12 is provided upstream of the reaction tower 3, and an air supply port 13 is further provided upstream thereof. The blower 12 is provided to introduce exhaust gas from the generation source into the reaction tower 3 during normal operation. When this can be used in the cooling operation of the reaction tower 3, the blower 12 is introduced with air. Can be used for
That is, even after the operation of the generation source is stopped, if the operation of the blower 12 is continued and the valve 11 of the air supply port 13 is opened, the outside air 14 is introduced into the reaction tower 3.
[0021]
In the figure, reference numerals 1 and 9 denote flue, and the exhaust gas 2 is introduced into the reaction tower 3 through the flue 1 and the blower 12.
Reference numeral 5 is a supply pipe for the adsorbent 4 to the reaction tower 3, and 6 is a discharge pipe for the adsorbent 4 from the reaction tower 3, and the inside of the reaction tower 3 is filled with the carbonaceous adsorbent 4. A louver 7 is provided inside the reaction tower 3 upstream of the carbonaceous adsorbent 4, and a perforated plate or louver 8 is provided downstream.
Reference numeral 10 denotes a chimney provided in the flue 9 on the downstream side of the reaction tower 3.
Reference numeral 11 is a valve provided in the flue 1 upstream of the blower 12, and this valve 11 introduces outside air 14 into the flue 1 through the air supply port 13. .
[0022]
Further, as shown in FIG. 2, the fan 12 is not necessarily required for the cooling operation of the reaction tower 3.
Usually, since the chimney 10 is provided in the downstream of the reaction tower 3, air can be introduced by the heat inside the reaction tower 3 and the draft action of the chimney 10. The force at this time is expressed by the following equation.
[0023]
h = 355 × H (1 / T1−1 / T2)
Here, h: theoretical wind force by the chimney [mmH 2 O]
H: Height of chimney [m]
T1: Atmospheric temperature [K]
T2: Average gas temperature in the chimney [K]
[0024]
The amount of air flowing at this time is a flow rate at which the pressure loss from the air supply port 13 to the chimney 10 outlet is equal to the wind power obtained by the above equation, and can be obtained by calculation. As the inside of the reaction tower 3 is cooled and the temperature is lowered, the wind flow becomes weaker and the amount of flowing air gradually decreases.
[0025]
Next, experimental examples using the above embodiment will be described.
<Experimental Example of Example 1>
At the time of stopping the operation of the dry exhaust gas treatment device for treating boiler exhaust gas at the power plant, the reaction tower was cooled by the chimney through the wind power.
Exhaust gas amount: 1,163,000 Nm 3 / h
Operating temperature: 140 ° C
Atmospheric temperature: 21 ° C
Chimney height: 200m
Since the amount of exhaust gas is very large, the actual reaction tower comprises 20 chambers, and FIG. 3 shows one of them.
Immediately after the operation was stopped, the valve 11 of the air supply port 13 was opened to start cooling, and the temperature inside the reaction tower 3 was measured. The measurement results are shown in FIG.
[0026]
In FIG. 4, 1, 2, and 3 are the temperatures measured in the order of the upstream side, the central part, and the downstream side of the exhaust gas in one reaction chamber.
4 is a value obtained by measuring four points from the top to the bottom in 20 reaction chambers and averaging the measurement results of a total of 80 points. 5 is the temperature at the outlet of the reaction tower 3.
It can be seen from 1, 2, and 3 that cooling is gradually performed from the upstream side of the exhaust gas.
Moreover, it turns out that the whole average temperature is cooled to 60 degreeC in 10 hours after the cooling start from 4. This is a temperature at which there is no danger of hot spots.
[0027]
Moreover, when the wind power at the cooling start time is calculated from the above calculation formula, it becomes about 70 mmH 2 O.
When the amount of air flowing at this time is calculated, it is calculated that air corresponding to about 40% of the treated exhaust gas amount flows.
Furthermore, when the temperature of the air reaches 80 ° C., air corresponding to about 30% of the treated exhaust gas amount flows.
[0028]
As described above, it has been confirmed that the cooling of the reaction tower, which has conventionally required one week or more in natural cooling, can be completed safely in about 10 hours using only the chimney's wind power. It was done. Furthermore, since the inside of the reaction tower is completely replaced with air at the end of cooling, the internal work can be started immediately. Of course, it is more effective when a blower is used.
[0029]
【The invention's effect】
In the present invention, as described above, an air supply port that can be opened and closed is provided in the exhaust gas flow passage upstream of the reaction tower, and air is sent into the reaction tower when the operation is stopped. wood is sufficiently in contact with the air, by being cooled, the hot spots Ru can be reliably prevented from occurring.
[Brief description of the drawings]
FIG. 1 is an explanatory view illustrating an example of an operation method of a dry exhaust gas treatment apparatus of the present invention.
FIG. 2 is an explanatory view for explaining another example of the operation method of the dry exhaust gas treatment apparatus of the present invention .
FIG. 3 is a diagram showing measurement points inside a reaction tower.
4 is a diagram showing the relationship between time and temperature at the measurement point shown in FIG. 3. FIG.
[Explanation of symbols]
1. 9 ... Flue 2 ... Exhaust gas 3 ... Reaction tower 4 ... Adsorbent 5 ... Adsorbent supply pipe 6 ... Adsorbent discharge pipe 7 ... Louver 8 ... Perforated plate or louver 10 ... ... Chimney 11 ... Valve 12 ... Blower 13 ... Air supply port 14 ... Air (outside air)

Claims (1)

炭素質吸着材を充填した反応塔と、この反応塔の上流側の排ガス流通路に設けられた開閉可能な空気供給口を備えた乾式排ガス処理装置を用い、 この乾式排ガス処理装置の運転停止に際し、上記空気供給口から空気を反応塔内に導入し、この空気によって反応塔内に充填された炭素質吸着材を冷却することを特徴とする乾式排ガス処理装置の運転方法。When a dry exhaust gas treatment apparatus equipped with a reaction tower filled with a carbonaceous adsorbent and an openable and closable air supply port provided in an exhaust gas flow passage upstream of the reaction tower is used, the dry exhaust gas treatment apparatus is shut down. A method for operating a dry exhaust gas treatment apparatus, wherein air is introduced into the reaction tower from the air supply port, and the carbonaceous adsorbent filled in the reaction tower is cooled by the air.
JP26676997A 1997-09-30 1997-09-30 Operation method of dry exhaust gas treatment equipment Expired - Fee Related JP3844569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26676997A JP3844569B2 (en) 1997-09-30 1997-09-30 Operation method of dry exhaust gas treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26676997A JP3844569B2 (en) 1997-09-30 1997-09-30 Operation method of dry exhaust gas treatment equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006197378A Division JP4180623B2 (en) 2006-07-19 2006-07-19 Operation method of dry exhaust gas treatment equipment

Publications (2)

Publication Number Publication Date
JPH11104452A JPH11104452A (en) 1999-04-20
JP3844569B2 true JP3844569B2 (en) 2006-11-15

Family

ID=17435452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26676997A Expired - Fee Related JP3844569B2 (en) 1997-09-30 1997-09-30 Operation method of dry exhaust gas treatment equipment

Country Status (1)

Country Link
JP (1) JP3844569B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069072A (en) * 2005-09-05 2007-03-22 Jfe Steel Kk Equipment and method for processing exhaust gas
JP2010029832A (en) * 2008-07-31 2010-02-12 System Kikou Co Ltd Treatment method of volatile component-containing air, and treatment apparatus of volatile component-containing air

Also Published As

Publication number Publication date
JPH11104452A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
US4083701A (en) Process and apparatus for removing undesirable gases from flue gases
JP3280173B2 (en) Exhaust gas treatment equipment
JP5039651B2 (en) Carbon dioxide recovery system in exhaust gas
JP3924150B2 (en) Gas combustion treatment method and apparatus
JP5445027B2 (en) Gas treatment method and apparatus for circulating fluidized bed gasification facility
JP4667192B2 (en) Tar decomposition system and tar decomposition method
JP5761932B2 (en) Filter device regeneration method and filter device regeneration system
JP3844569B2 (en) Operation method of dry exhaust gas treatment equipment
JP4920388B2 (en) Heat treatment system equipped with a dryer and its operating method
JP5047056B2 (en) Method for falling tar decomposition system and tar decomposition system
JP4180623B2 (en) Operation method of dry exhaust gas treatment equipment
JP6071687B2 (en) Pressurized flow furnace equipment
JP3636589B2 (en) Exhaust gas denitration method and apparatus in gasification incineration facility
JP6275666B2 (en) Thermal storage type combustion deodorization apparatus and its operation method
JP2001311588A (en) Exhaust gas treatment method and apparatus
JP5073893B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
CN208287803U (en) Flue gas carrier gas device after a kind of desulphurization denitration for regenerating active carbon
JPH05115750A (en) Method for controlling oxidation of carbon monoxide in exhaust gas of sintering furnace
JPH11248142A (en) Method and device for treating waste gas of combustion furnace
JP7222718B2 (en) Impurity removal device and combined coal gasification combined cycle facility
JP3820027B2 (en) Removal equipment for hydrogen chloride and sulfur dioxide
JP2002048325A (en) Control method for volatile organic compound processing apparatus
JP3537365B2 (en) Operating method of exhaust gas treatment equipment
JP2004108636A (en) Operating method of exhaust emission control device, and exhaust emission control device
CN111151110A (en) System and method for treating flue gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040809

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050722

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees