JP3843825B2 - Power converter with shunt resistor - Google Patents

Power converter with shunt resistor Download PDF

Info

Publication number
JP3843825B2
JP3843825B2 JP2001370817A JP2001370817A JP3843825B2 JP 3843825 B2 JP3843825 B2 JP 3843825B2 JP 2001370817 A JP2001370817 A JP 2001370817A JP 2001370817 A JP2001370817 A JP 2001370817A JP 3843825 B2 JP3843825 B2 JP 3843825B2
Authority
JP
Japan
Prior art keywords
shunt resistor
power
resin
insulating layer
main electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001370817A
Other languages
Japanese (ja)
Other versions
JP2003173905A (en
Inventor
欣也 中津
隆一 斉藤
敏夫 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001370817A priority Critical patent/JP3843825B2/en
Publication of JP2003173905A publication Critical patent/JP2003173905A/en
Application granted granted Critical
Publication of JP3843825B2 publication Critical patent/JP3843825B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Voltage And Current In General (AREA)
  • Power Conversion In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シャント抵抗を備えた電力変換装置に関する。
【0002】
【従来の技術】
インバータ装置は、誘導電動機など交流電動機の運転に広く用いられ、近年では乗物の動力源のコントローラとしても用いられるようになり、インバータ装置による可変速運転の利点が充分に享受できるようになっている。インバータ装置の制御には、負荷電流の検出を要する場合があり、この負荷電流の検出にホール素子型電流センサや、シャント抵抗器及び検出回路が採用されている。
【0003】
シャント抵抗器に関連する技術として、特開平8−115802号公報に打ち抜き加工にて所定の形状を整え両端に主電極を設ける方式,特開平11−97203号公報に絶縁層に固着した後エッチング加工施し所定の形状を整える方式が記載されている。
【0004】
【発明が解決しようとする課題】
今回発明者らは、インバータ装置に関する問題点を種々検討した。まず、図8を用いて説明する。ここで、ホール素子型電流センサ28とは、環状の磁性体の一部にホール素子を設け、この磁性体に負荷電流が流れる電線を巻付けたり貫通させたりすることにより、負荷電流が作り出す磁束をホール素子で電圧に変換する電流センサのことであり、この場合、検出対象となる電路から電気的に隔離された検出信号が得られるというメリットがある。
【0005】
同じく、ここでシャント抵抗器13及び検出回路18とは、負荷電流が流れる電路に直列に挿入した抵抗器を用い、その両端子間に、負荷電流により現われる電圧降下を取り出し、検出信号とする回路のことである。従って、かなり低コストで済む。
【0006】
ここで、図8は、PWM(パルス・ワイド・モジュレーション:パルス幅変調)制御方式の電力変換装置を対象として、これにホール素子型電流センサ28と、シャント抵抗器13及び検出回路18の双方を適用した場合について示したものである。ここで、ホール素子型電流センサ28と、シャント抵抗器13及び検出回路18の双方が示されているのは説明のためであり、実際には何れか一方を設ける。
【0007】
図8は、ダイオード整流器からなるコンバータ部(順変換部)14と、このコンバータ部14から出力される直流電力が入力されるPWM制御方式のインバータ部(逆変換部)15、それにコンバータ部14とインバータ部15の間の直流部に接続された平滑用のコンデンサ(キャパシタ)16で構成された主回路を備えている。
【0008】
そして、コンバータ部14に、電力源となる商用電源29から交流電力が入力されると、コンデンサ16で平滑化された直流電力がインバータ部15に供給され、ここで、インバータ部15のIGBT(インシュレーテッド・ゲート・バイポーラ・トランジスタ)に代表される半導体スイッチング素子5がPWM制御されることにより、直流電力が所定の電圧と所定の周波数の交流電力に変換され、この結果、誘導電動機などの負荷に可変電圧可変周波数の電力が供給される。
【0009】
当然、図9に示すようにバッテリー等の蓄電装置30が出力する直流電力をインバータ部15に供給して成る電力変換装置でも、前記と同様インバータ部15の半導体スイッチング素子5がPWM制御されることにより、直流電力が所定の電圧と所定の周波数の交流電力に変換され、この結果、乗物の動力源,冷却装置の冷却ファン,冷却水の循環用ポンプ駆動電動機,油圧機具向け油圧ポンプ駆動電動機,エアコン用コンプレッサ駆動電動機などの負荷である電動機17に可変電圧可変周波数の電力が供給される。
【0010】
このとき、インバータ部15にある半導体スイッチング素子5のPWM信号によるオン(導通),オフ(遮断)制御は、図7に示すように、ドライバ回路を介して、計算機(コンピュータ)19により実行されるが、このとき、計算機19による制御には、負荷である電動機17に流れる電流の値、つまり負荷電流値が必要になる。
【0011】
ここで、この検出には、上記したように、ホール素子型電流センサ28を用いる方法と、シャント抵抗器13及び検出回路18を用いる方法が考えられる。
【0012】
そして、まず、ホール素子型電流センサ28を用いたときは、この電流センサをインバータ部15と負荷である電動機17の間に直列に接続し、これによる検出結果をA/D変換して計算機19に入力する。
【0013】
一方、シャント抵抗器13及び検出回路18を用いたときは、シャント抵抗器13をコンデンサ16とインバータ部15の間に直列に接続する。そして、このシャント抵抗器13に負荷電流が流れることにより現われる電圧降下を、フィルタと増幅器等を介してA/D変換し、計算機19に入力するようになっている。ここで、シャント抵抗器13の接続位置だが、インバータ部15と電動機17の間に直列に接続してもよい。
【0014】
ここで、シャント抵抗器13の構造は、一般に温度特性に優れたマンガニン材(銅とマンガンの合金)から成る板状抵抗体6であり、特開平8−115802号記載の打ち抜き加工にて所定の形状を整え両端に主電極部7を設ける方式や、特開平11−97203号記載の絶縁層4に固着した後エッチング加工施し所定の形状を整える方式が有り、シャント抵抗部8とシャント抵抗部8に負荷電流を流し込む主電極部7とシャント抵抗部8で発生した電圧を検出する検出電極部
31を同一抵抗材で構成している場合や、板状抵抗体6の両端に銅等の低抵抗金属体で構成した主電極部7を固着し、固着した前記主電極部7を金属箔3にはんだ2等で固着し構成されており、図10−1及び図10−2に示すようにインバータ部15の半導体スイッチング素子5が実装される放熱特性に優れたパワーモジュールの放熱ベース板1上に絶縁層4を介して実装される。
【0015】
シャント抵抗器13の発熱は、シャント抵抗部8と主電極部7に負荷電流が流れる為、シャント抵抗部8と主電極部7両方で発生し、発生した発熱は放熱ベース板1へと流れ温度の上昇が押さえられるようになっている。
【0016】
上記技術は、ホール素子型電流センサ28やシャント抵抗器13及び検出回路18を用いて電力変換装置のPWM制御を行っていたが、ホール素子型電流センサ28の場合、比較的高価なホール素子や大きな磁性体を必要とするため、低価格化と小形化に問題があった。
【0017】
一方、シャント抵抗器13及び検出回路18は、小形で安価な電子部品で構成できるが、電力線に直列に接続され、数アンペアから数千アンペアの負荷電流を検出する為発熱が生じ、抵抗温度変化率の小さいマンガニン材等を用いて精度の向上を図るが、マンガニン材固有の電気抵抗率が銅材に比べ数十倍と大きく、検出電流による発熱が通常配線に用いる銅材に比べ大幅に増加する。これに対し、発熱を押さえる為に抵抗値を極小(約0.5〜0.6mΩ程度)とし、発熱量を低減したり、高熱伝導な絶縁層4に板状抵抗体6を固着し主電極部7とシャント抵抗部8をエッチング処理等で成形しシャント抵抗器13の全体を放熱できる構成となっているが、500μmを超える厚い板状抵抗体6を片面よりエッチングすると時間がかかり製造コストが嵩むといった問題があったり、同一材料でシャント抵抗器13を構成している為、負荷電流が主電極部7に流れ発熱の増加を招く等の問題もあり、さらに主電極部7に銅材等を用い発熱量を低減したシャント抵抗器13では主電極部7とシャント抵抗部8を検出電流に対して並列に接続する必要があり、一般にはんだ材2による接続や溶接による接続が行われ、主電極部7とシャント抵抗部8が一体化されたシャント抵抗器13を高熱伝導の放熱基板12上に用意された検出電流の金属箔3にはんだ等2により直列に挿入されるが、シャント抵抗部8が金属箔3やはんだ層2の厚さにより放熱基板12から離れたり均一に密着できない為、シャント抵抗部8の温度が上昇すると言った問題があった。
【0018】
本発明の目的は、シャント抵抗器及び検出回路による負荷電流の検出方式を大容量の電力変換装置へ適用できる電力変換装置を提供することである。
【0019】
【課題を解決するための手段】
本発明は、入力電力を所定の電力に変換して出力する主回路を有するものであって、主回路に電気的に接続されたシャント抵抗器に流れる電流を検出して主回路の動作を制御する電力変換装置において、シャント抵抗器の発熱を放熱するための熱拡散板と、接着機能を有し、熱拡散板の片面に固着された樹脂絶縁層と、この樹脂絶縁層の表面に設けられ、少なくとも樹脂絶縁層よりも粘度が低く、シャント抵抗器を樹脂絶縁層に接着する樹脂接着層とを有し、シャント抵抗器が、板状抵抗体により構成されたシャント抵抗部と、このシャント抵抗部の両端部に固着され、シャント抵抗部の電流の入出力端子を構成する主電極部とを有しており、シャント抵抗部及び主電極部が樹脂接着層によって樹脂絶縁層に固着されており、樹脂接着層が、樹脂絶縁層よりも電気抵抗率が小さく、シャント抵抗部よりも電気抵抗率が大きい電気伝導性接着層であることを特徴とする。かかる構成により、2つの電極部での発熱を大幅に低減でき、発熱部であるシャント抵抗部の熱抵抗を大幅に低減でき、さらに樹脂接着層を柔らかくしたことで接着時に発生する空気の巻き込みによるボイドを低減でき局所的な熱抵抗の増加を避けられると共に、シャント抵抗器の接着時に生じる空気の巻き込みによるボイドが生じても、コロナ放電現象等の発生を抑制できることから高信頼な大容量の電力変換機を提供できる。また、電気伝導性接着層は、シャント抵抗部よりも厚さが薄い。
【0022】
【発明の実施の形態】
以下、電力変換装置について、図示の実施形態により詳細に説明する。
【0023】
図1は、第1の実施形態に係るシャント抵抗器13の一例であり、図2は実施形態に係るシャント抵抗器13を用いた電力変換装置の構成の一例である。一般的な電力変換装置の構成は、図8でも示したようにダイオード整流器からなるコンバータ部14と、このコンバータ部14から出力される直流電力が入力されるPWM制御方式のインバータ部15、それにコンバータ部14とインバータ部15の間の直流部に接続された平滑用のコンデンサ16で構成された主回路を備えている。
【0024】
シャント抵抗器13は、インバータ15から負荷である交流電動機17へ電力を供給する配線に挿入される場合とコンデンサ16とインバータ15間を電気的に接続する配線に挿入する場合が一般的であり、負荷電流とシャント抵抗器13の抵抗値で決まる電圧を検出回路18を介して計算機19に伝え、計算機19で所定の計算を行い半導体スイッチング素子5をON,OFF制御して負荷電流を指定の値に制御する。
【0025】
当然、バッテリー等の蓄電装置30が出力する直流電力をインバータ部15に供給して成る電力変換装置でも前記と同様にコンバータ部14の代わりにバッテリー等の蓄電装置30を接続することで構成できる。
【0026】
ここで、シャント抵抗器13はインバータ部15の構成部品である半導体スイッチング素子5が実装されるパワーモジュール内に配置され、図10−1で示すように絶縁層4の片面に板状抵抗体6が固着され、板状抵抗体6でシャント抵抗部8とシャント抵抗部8に負荷電流を流し込む主電極部7、さらにシャント抵抗部8で発生する電圧を取り出す検出電極31を作りシャント抵抗器13を構成し、絶縁層4の反対側に金属箔3がさらに固着され、モジュールの放熱ベース1上に前記金属箔3をはんだ2等により固着し実装され、前記シャント抵抗器13に設けた主電極部7にメッキを掛けアルミワイヤー10などの配線を固着させ電気的にインバータの主回路を構成する配線に接続される。また、図10−2で示すように板状抵抗体6の両端に銅等の電気抵抗率の小さい金属体で構成した主電極部7を溶接などにより固着し、固着した前記主電極部7を絶縁層4上の金属箔3にはんだ2等で固着し、電気的にインバータの主回路を構成する配線に接続される。シャント抵抗器13に用いる板状抵抗体6は、抵抗温度係数が小さなマンガニン材(銅とマンガンの合金)やニクロム材等が用いられているが、図10−1及び図10−2で示した技術と同じである。
【0027】
従って、この図1及び図2に示した実施形態が、図8,図9,図10−1,図10−2の技術と異なる点は、前記板状抵抗体6で構成したシャント抵抗部8と銅等の電気抵抗率の小さい金属体で構成した主電極部7をシャント抵抗部8の両端に溶接などにより固着したシャント抵抗器13において、熱伝導率の良い銅等で構成され表面にニッケル等のメッキを施した熱拡散板11の片面にエポキシ等の接着機能を有する厚さ数十μmから数百μmの樹脂絶縁層9を設け、前記樹脂絶縁層9に前記シャント抵抗部8と前記主電極部7を接着しシャント抵抗器13を構成し、前記熱拡散板11をパワーモジュール内の放熱ベース板1にはんだ2により固着する。
【0028】
さらに、樹脂絶縁層9に高熱伝導性粒子であるシリカやアルミナ等のフィラーを混ぜ合わせ、シャント抵抗器13の放熱抵抗を改善すると共に主電極部7とシャント抵抗部8の片面で樹脂絶縁層9と接する各接続面を同一平面になるように主電極部7とシャント抵抗部8を接続した点である。
【0029】
このようにすると、シャント抵抗器13全体が熱伝導に優れた熱拡散板11に密着できシャント抵抗部8の熱抵抗の低減が可能になり、樹脂絶縁層9に熱伝導粒子を加えることによりさらにシャント抵抗器13の熱抵抗が低減でき、主電極部7とシャント抵抗部8の樹脂絶縁層9との接続面を同一平面になるように構成したことでシャント抵抗器13下の樹脂絶縁層9の厚さを均等化できることから局所的な熱抵抗の違いを無くすことができ、シャント抵抗器13の温度分布を均一化できることから高精度で大電流を流せるシャント抵抗器13を構成でき高性能な電力変換装置が提供できる。
【0030】
図3は、第2の実施形態に係るシャント抵抗器の一例で、この実施形態が、図1で説明した実施形態と異なる点は、図1のエポキシ等の樹脂を含んだ樹脂絶縁層9を熱拡散板11の片面に固着させ、前記樹脂絶縁層9の表面に少なくとも前記樹脂絶縁層9より接着時に粘度が低く流動性のある樹脂接着層20を設け、前記シャント抵抗部8と前記主電極部7を樹脂接着層20に固着した点である。
【0031】
このようにすると、樹脂接着層20を柔らかくしたことで接着時に発生する空気の巻き込みによるボイド21を低減できることから、シャント抵抗器13の局所的な熱抵抗の増加を緩和できることから、シャント抵抗部8の局所的な温度上昇を低減し高精度で大電流を流せるシャント抵抗器13を構成でき高性能な電力変換装置が提供できる。
【0032】
図4は、第3の実施形態に係るシャント抵抗器の一例で、この実施形態が、前記実施例で説明した実施形態と異なる点は、図1のエポキシ等の樹脂を含んだ樹脂絶縁層9を熱拡散板11の片面に固着させ、前記樹脂絶縁層9の所定の表面にのみ少なくとも前記樹脂絶縁層9より接着時に粘度が低く流動性があり、前記樹脂絶縁層9より少なくとも電気抵抗率が小さく、前記シャント抵抗部8より電気抵抗率が大きく、前記シャント抵抗部8より厚さが薄い電気伝導性接着層22を設け、前記シャント抵抗部8と前記主電極部7を前記電気伝導性接着層22に固着した点である。
【0033】
このようにすると、シャント抵抗部8より前記電気伝導性接着層22を薄くし電気抵抗率を大きくしたことで前記電気伝導性接着層22を十分に高抵抗化でき検出電流の流れ込みを十分に抑制できるのでシャント抵抗器13の精度を悪化させる事無く電気伝導性接着層22を用い、シャント抵抗器13の接着時にシャント抵抗器13と前記電気伝導性接着層22の界面に空気の巻き込みによってボイド21が生じるが、接着層が電気伝導性の為にボイド21周辺での電界の集中が生じないのでコロナ放電現象等への悪影響を抑制でき高信頼の大容量の電力変換機を提供できる。
【0034】
図5は、第4の実施形態に係るシャント抵抗器の一例で、この実施形態が、図1で説明した実施形態と異なる点は、前記主電極部7及び前記主電極部の一部に設けた検出端子31の一部と前記熱拡散板11の一部を除き、前記シャント抵抗器13をシリカ等に代表される熱伝導性の優れた粒子を含んだコーティング樹脂23にて覆った点である。
【0035】
このようにすると、前記シャント抵抗器13で発生した熱がコーティング樹脂23を伝熱して前記熱拡散板11に広がり、前記シャント抵抗部8の熱抵抗を低減で、シャント抵抗部8の局所的な温度上昇を低減し高精度で大電流を流せるシャント抵抗器13を構成でき高性能な電力変換装置が提供できる。
【0036】
図6に示す様な太陽電池32と電力変換装置で構成される太陽光発電システムの電源系統連係用電力変換装置や、図7で示す内燃機関と電動機17もしくは電動機17のみを動力源とし、バッテリー等の蓄電装置30から供給される電力をシャント抵抗器13で検出し電動機17を制御する動力システムを用いミッションを通して内燃機関と電動機の力をタイヤに伝えて移動する乗物及び乗物に搭載されるエアコン,油圧ポンプ,ブレーキ駆動用電動機17等の全てのインバータ装置や、さらに家庭用及び業務用のエアコンに用いるコンプレッサやファン用電動機駆動のインバータ装置や洗濯機の洗濯層を回す電動機や掃除機の吸い込みファンの電動機や電気調理機の磁界生成用インダクタンス駆動用電力変換装置等にも前記した実施例の電力変換装置が適用できる。
【0037】
以上述べた各実施例によれば、熱拡散板11の表面に用意した樹脂絶縁層9にシャント抵抗器13を接着したことで熱抵抗の低減をすると共に、樹脂絶縁層9の表面に低粘度の樹脂接着層20をさらに設け接着時のボイド21の発生を抑制したり、樹脂接着層20の電気抵抗率を樹脂絶縁層9よりも小さく、シャント抵抗部8より大きくし、ボイド21に起因したコロナ放電現象を低減でき高信頼で高精度な大容量向けシャント抵抗器13を構成でき制御特性に優れた電力変換装置を提供することができる。
【0038】
【発明の効果】
本発明によれば、シャント抵抗器及び検出回路による負荷電流の検出方式を大容量の電力変換装置へ適用できる電力変換装置を提供することができる。
【図面の簡単な説明】
【図1】シャント抵抗器の第1の実施形態を示す構成図。
【図2】第1の実施形態のシャント抵抗器を用いた電力変換装置を説明するための構成図。
【図3】シャント抵抗器の第2の実施形態を示す構成図。
【図4】シャント抵抗器の第3の実施形態を示す構成図。
【図5】シャント抵抗器の第4の実施形態を示す構成図。
【図6】シャント抵抗器の第5の実施形態を示す構成図。
【図7】シャント抵抗器の第6の実施形態を示す構成図。
【図8】シャント抵抗器とそれを用いた電力変換装置の構成図。
【図9】シャント抵抗器とそれを用いた電力変換装置の構成図。
【図10−1】シャント抵抗器の構成図。
【図10−2】シャント抵抗器の構成図。
【符号の説明】
1…モジュールの放熱ベース、2…はんだ層、3…金属箔、4…絶縁層、5…半導体スイッチング素子、6…板状抵抗体、7…主電極部、8…シャント抵抗部、9…樹脂絶縁層、10…アルミワイヤー、11…熱拡散板、12…放熱基板、13…シャント抵抗器、14…コンバータ、15…インバータ、16…コンデンサ、17…電動機、18…検出回路、19…計算機、20…樹脂接着層、21…ボイド、22…電気伝導性接着層、23…コーティング樹脂、28…ホール素子型電流センサ、29…商用電源、30…バッテリー等の蓄電装置、31…検出電極、32…太陽電池。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device including a shunt resistor.
[0002]
[Prior art]
Inverter devices are widely used in the operation of AC motors such as induction motors, and in recent years, they have also been used as controllers for vehicle power sources, so that the advantages of variable speed operation by inverter devices can be fully enjoyed. . Control of the inverter device may require detection of a load current, and a Hall element type current sensor, a shunt resistor, and a detection circuit are employed for detection of the load current.
[0003]
As a technique related to a shunt resistor, a method in which a predetermined shape is prepared by punching in Japanese Patent Laid-Open No. 8-115802 and a main electrode is provided at both ends, and an etching process after fixing to an insulating layer in Japanese Patent Laid-Open No. 11-97203 A method of applying and adjusting a predetermined shape is described.
[0004]
[Problems to be solved by the invention]
This time, the inventors examined various problems related to the inverter device. First, it demonstrates using FIG. Here, the Hall element type current sensor 28 is a magnetic flux generated by a load current by providing a Hall element in a part of an annular magnetic body and winding or penetrating an electric wire through which the load current flows. Is a current sensor that converts voltage into voltage with a Hall element. In this case, there is a merit that a detection signal electrically isolated from the electric circuit to be detected can be obtained.
[0005]
Similarly, here, the shunt resistor 13 and the detection circuit 18 use a resistor inserted in series in an electric circuit through which a load current flows, and a voltage drop caused by the load current is extracted between both terminals to be a detection signal. That is. Therefore, the cost can be considerably reduced.
[0006]
Here, FIG. 8 shows a PWM (pulse wide modulation) power conversion device as a target, and includes a Hall element type current sensor 28, a shunt resistor 13, and a detection circuit 18. This is the case where it is applied. Here, the Hall element type current sensor 28 and both the shunt resistor 13 and the detection circuit 18 are shown for explanation, and one of them is actually provided.
[0007]
FIG. 8 shows a converter unit (forward conversion unit) 14 including a diode rectifier, a PWM control type inverter unit (inverse conversion unit) 15 to which DC power output from the converter unit 14 is input, and a converter unit 14. A main circuit composed of a smoothing capacitor (capacitor) 16 connected to a DC portion between the inverter portions 15 is provided.
[0008]
Then, when AC power is input to the converter unit 14 from the commercial power source 29 serving as a power source, the DC power smoothed by the capacitor 16 is supplied to the inverter unit 15, where the IGBT (IN) of the inverter unit 15 is supplied. The semiconductor switching element 5 typified by a shredded gate bipolar transistor) is PWM-controlled, so that DC power is converted into AC power having a predetermined voltage and a predetermined frequency. As a result, a load such as an induction motor is loaded. Is supplied with power of variable voltage and variable frequency.
[0009]
Naturally, as shown in FIG. 9, even in the power conversion device configured to supply the inverter unit 15 with the DC power output from the power storage device 30 such as a battery, the semiconductor switching element 5 of the inverter unit 15 is PWM-controlled as described above. DC power is converted into AC power of a predetermined voltage and a predetermined frequency, and as a result, a vehicle power source, a cooling fan for a cooling device, a pump driving motor for circulating cooling water, a hydraulic pump driving motor for hydraulic equipment, Electric power of variable voltage and variable frequency is supplied to an electric motor 17 which is a load such as a compressor driving electric motor for an air conditioner.
[0010]
At this time, on (conduction) and off (cutoff) control by the PWM signal of the semiconductor switching element 5 in the inverter unit 15 is executed by a computer (computer) 19 via a driver circuit as shown in FIG. However, at this time, the control by the computer 19 requires the value of the current flowing through the electric motor 17 as the load, that is, the load current value.
[0011]
Here, for this detection, as described above, a method using the Hall element type current sensor 28 and a method using the shunt resistor 13 and the detection circuit 18 are conceivable.
[0012]
First, when the Hall element type current sensor 28 is used, the current sensor is connected in series between the inverter unit 15 and the electric motor 17 as a load, and the detection result thereby is A / D converted to the computer 19. To enter.
[0013]
On the other hand, when the shunt resistor 13 and the detection circuit 18 are used, the shunt resistor 13 is connected in series between the capacitor 16 and the inverter unit 15. The voltage drop that appears when the load current flows through the shunt resistor 13 is A / D converted through a filter and an amplifier and the like, and is input to the computer 19. Here, the connection position of the shunt resistor 13 may be connected in series between the inverter unit 15 and the electric motor 17.
[0014]
Here, the structure of the shunt resistor 13 is generally a plate-like resistor 6 made of a manganin material (copper and manganese alloy) excellent in temperature characteristics, and is predetermined by punching described in JP-A-8-115802. There are a method of adjusting the shape and providing the main electrode portion 7 at both ends, and a method of adjusting the predetermined shape by performing an etching process after being fixed to the insulating layer 4 described in JP-A-11-97203, and the shunt resistor portion 8 and the shunt resistor portion 8. When the detection electrode part 31 for detecting the voltage generated in the main electrode part 7 and the shunt resistance part 8 for supplying the load current to the same is made of the same resistance material, the resistance of the copper or the like is low at both ends of the plate resistor 6 The main electrode portion 7 made of a metal body is fixed, and the fixed main electrode portion 7 is fixed to the metal foil 3 with solder 2 or the like. As shown in FIGS. 10-1 and 10-2, the inverter Part 15 semiconductor switch Quenching element 5 is mounted through an insulating layer 4 on the heat dissipation base plate 1 of superior power module to the heat radiation characteristics to be implemented.
[0015]
The heat generated by the shunt resistor 13 is generated in both the shunt resistor 8 and the main electrode 7 because the load current flows through the shunt resistor 8 and the main electrode 7. The generated heat flows to the heat radiating base plate 1 and the temperature. The rise of can be suppressed.
[0016]
In the above technology, the Hall effect current sensor 28, the shunt resistor 13 and the detection circuit 18 are used to perform PWM control of the power converter. However, in the case of the Hall effect current sensor 28, a relatively expensive Hall element or Since a large magnetic material is required, there was a problem in cost reduction and miniaturization.
[0017]
On the other hand, the shunt resistor 13 and the detection circuit 18 can be configured with small and inexpensive electronic components, but are connected in series to the power line and generate heat because a load current of several amperes to several thousand amperes is detected. The accuracy is improved by using manganin materials with a low rate, but the electrical resistivity inherent to manganin materials is several tens of times greater than that of copper materials, and the heat generated by the detected current is significantly increased compared to copper materials used for normal wiring. To do. On the other hand, in order to suppress heat generation, the resistance value is minimized (about 0.5 to 0.6 mΩ), the amount of heat generation is reduced, or the plate resistor 6 is fixed to the insulating layer 4 having high thermal conductivity to fix the main electrode. The portion 7 and the shunt resistor portion 8 are formed by etching or the like so that the entire shunt resistor 13 can be dissipated. However, if the thick plate resistor 6 exceeding 500 μm is etched from one side, it takes time and the manufacturing cost is increased. Since the shunt resistor 13 is composed of the same material, there is a problem that the load current flows to the main electrode portion 7 and increases heat generation, and the main electrode portion 7 has a copper material or the like. In the shunt resistor 13 that reduces the amount of heat generated by using the resistor, it is necessary to connect the main electrode portion 7 and the shunt resistor portion 8 in parallel to the detected current. Generally, the connection using the solder material 2 or the welding is performed. Electrode 7 and sha The shunt resistor 13 in which the resistor section 8 is integrated is inserted in series with the detection current metal foil 3 prepared on the heat-radiating substrate 12 having high thermal conductivity by solder or the like 2. 3 and the thickness of the solder layer 2 cause a problem that the temperature of the shunt resistor portion 8 rises because it cannot be separated from the heat radiating substrate 12 or uniformly adhered.
[0018]
The objective of this invention is providing the power converter device which can apply the detection method of the load current by a shunt resistor and a detection circuit to a high capacity | capacitance power converter device.
[0019]
[Means for Solving the Problems]
The present invention has a main circuit that converts input power into predetermined power and outputs it, and controls the operation of the main circuit by detecting a current flowing through a shunt resistor electrically connected to the main circuit. In the power conversion device, the heat diffusion plate for dissipating heat generated by the shunt resistor, the resin insulating layer having an adhesive function and fixed to one surface of the heat diffusion plate, and the surface of the resin insulating layer are provided. A shunt resistor having a viscosity lower than that of at least the resin insulation layer and adhering the shunt resistor to the resin insulation layer, the shunt resistor comprising a plate resistor, and the shunt resistor is secured to both ends of the section has a main electrode portion constituting the output terminal of the current of the shunt resistor portion, is fixed to the resin insulating layer by the shunt resistor portion and the main electrode portion resin adhesive layer , The resin adhesive layer Small electrical resistivity than fat insulating layer, characterized in that an electrically conductive adhesive layer electrical resistivity greater than the shunt resistor portion. With this configuration, the heat generation at the two electrode portions can be greatly reduced, the thermal resistance of the shunt resistance portion, which is the heat generation portion, can be greatly reduced, and the resin adhesive layer has been softened, resulting in entrainment of air generated during bonding It is possible to reduce voids and avoid an increase in local thermal resistance, and even if voids occur due to air entrainment that occurs when the shunt resistor is bonded, the occurrence of corona discharge phenomenon, etc. can be suppressed, so highly reliable large capacity A power converter can be provided. The electrically conductive adhesive layer is thinner than the shunt resistor.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the power converter will be described in detail with reference to the illustrated embodiment.
[0023]
FIG. 1 is an example of a shunt resistor 13 according to the first embodiment, and FIG. 2 is an example of a configuration of a power converter using the shunt resistor 13 according to the embodiment. As shown in FIG. 8, the general power converter includes a converter unit 14 formed of a diode rectifier, a PWM control type inverter unit 15 to which DC power output from the converter unit 14 is input, and a converter. The main circuit comprised by the capacitor | condenser 16 for smoothing connected to the direct current | flow part between the part 14 and the inverter part 15 is provided.
[0024]
The shunt resistor 13 is generally inserted into a wiring that supplies power from the inverter 15 to the AC motor 17 that is a load, and is inserted into a wiring that electrically connects the capacitor 16 and the inverter 15. A voltage determined by the load current and the resistance value of the shunt resistor 13 is transmitted to the computer 19 via the detection circuit 18, and a predetermined calculation is performed by the computer 19, and the semiconductor switching element 5 is controlled to be turned on and off to control the load current to a specified value. To control.
[0025]
Naturally, a power converter configured by supplying the inverter unit 15 with DC power output from the power storage device 30 such as a battery can be configured by connecting the power storage device 30 such as a battery instead of the converter unit 14 as described above.
[0026]
Here, the shunt resistor 13 is arranged in a power module on which the semiconductor switching element 5 which is a component of the inverter unit 15 is mounted, and the plate-like resistor 6 is provided on one surface of the insulating layer 4 as shown in FIG. Is attached to the shunt resistor 8 and the shunt resistor 8, the main electrode portion 7 for supplying a load current to the shunt resistor 8, and the detection electrode 31 for extracting the voltage generated at the shunt resistor 8, thereby forming the shunt resistor 13. The main electrode portion provided on the shunt resistor 13 is configured such that the metal foil 3 is further fixed to the opposite side of the insulating layer 4 and the metal foil 3 is fixedly mounted on the heat dissipation base 1 of the module with solder 2 or the like. 7 is plated, and a wire such as an aluminum wire 10 is fixed to be electrically connected to a wire constituting the main circuit of the inverter. Further, as shown in FIG. 10-2, the main electrode portion 7 made of a metal body having a small electrical resistivity such as copper is fixed to both ends of the plate-like resistor 6 by welding or the like, and the fixed main electrode portion 7 is fixed. The metal foil 3 on the insulating layer 4 is fixed to the metal foil 3 with solder 2 or the like and is electrically connected to the wiring constituting the main circuit of the inverter. The plate resistor 6 used for the shunt resistor 13 is made of a manganin material (an alloy of copper and manganese) or a nichrome material having a small resistance temperature coefficient, and is shown in FIGS. 10-1 and 10-2. Same as technology.
[0027]
Therefore, the embodiment shown in FIGS. 1 and 2 is different from the techniques shown in FIGS. 8, 9, 10-1, and 10-2 in that the shunt resistor portion 8 constituted by the plate resistor 6 is used. In the shunt resistor 13 in which the main electrode portion 7 made of a metal body having a low electrical resistivity such as copper is fixed to both ends of the shunt resistor portion 8 by welding or the like, the surface is made of copper or the like having a high thermal conductivity and nickel on the surface. A resin insulating layer 9 having a thickness of several tens to several hundreds of μm having an adhesive function such as epoxy is provided on one surface of the heat diffusion plate 11 plated with the above, and the shunt resistor 8 and the resin insulating layer 9 are provided on the resin insulating layer 9. The main electrode portion 7 is bonded to constitute the shunt resistor 13, and the heat diffusion plate 11 is fixed to the heat radiating base plate 1 in the power module with the solder 2.
[0028]
Further, the resin insulating layer 9 is mixed with a filler such as silica or alumina, which is a highly thermally conductive particle, to improve the heat dissipation resistance of the shunt resistor 13 and at the same time, the resin insulating layer 9 on one side of the main electrode portion 7 and the shunt resistor portion 8. The main electrode portion 7 and the shunt resistor portion 8 are connected so that the connection surfaces in contact with each other are in the same plane.
[0029]
In this way, the entire shunt resistor 13 can be in close contact with the heat diffusion plate 11 excellent in heat conduction, and the heat resistance of the shunt resistor portion 8 can be reduced. Further, by adding heat conduction particles to the resin insulating layer 9, The heat resistance of the shunt resistor 13 can be reduced, and the connecting surface between the main electrode portion 7 and the resin insulating layer 9 of the shunt resistor portion 8 is configured to be on the same plane, whereby the resin insulating layer 9 below the shunt resistor 13 is configured. Since the thickness of the shunt resistor 13 can be equalized, the difference in local thermal resistance can be eliminated, and the temperature distribution of the shunt resistor 13 can be made uniform, so that the shunt resistor 13 that can flow a large current with high accuracy can be configured. A power converter can be provided.
[0030]
FIG. 3 shows an example of a shunt resistor according to the second embodiment. This embodiment is different from the embodiment described in FIG. 1 in that a resin insulating layer 9 containing a resin such as epoxy in FIG. A heat-adhesive plate 11 is fixed to one surface, and a resin adhesive layer 20 having a low viscosity and fluidity when bonded to the resin insulating layer 9 is provided on the surface of the resin insulating layer 9, and the shunt resistor 8 and the main electrode This is the point where the portion 7 is fixed to the resin adhesive layer 20.
[0031]
In this way, since the void 21 caused by the entrainment of air generated at the time of bonding can be reduced by softening the resin adhesive layer 20, the increase in local thermal resistance of the shunt resistor 13 can be alleviated, so that the shunt resistor 8 Therefore, the shunt resistor 13 that can flow a large current with high accuracy can be configured, and a high-performance power converter can be provided.
[0032]
FIG. 4 shows an example of a shunt resistor according to the third embodiment. This embodiment is different from the embodiment described in the above example in that a resin insulating layer 9 containing a resin such as epoxy in FIG. Is fixed to one surface of the thermal diffusion plate 11, and has a low viscosity and fluidity at least when bonded to the resin insulating layer 9 only on a predetermined surface of the resin insulating layer 9, and at least an electrical resistivity higher than that of the resin insulating layer 9. An electrically conductive adhesive layer 22 that is small and has a higher electrical resistivity than the shunt resistor 8 and is thinner than the shunt resistor 8 is provided, and the shunt resistor 8 and the main electrode 7 are connected to each other by the electrically conductive adhesive. This is a point fixed to the layer 22.
[0033]
By doing so, the electric conductive adhesive layer 22 is made thinner than the shunt resistor 8 and the electric resistivity is increased, so that the electric conductive adhesive layer 22 can be sufficiently increased in resistance and the flow of detection current can be sufficiently suppressed. Therefore, the electrically conductive adhesive layer 22 is used without degrading the accuracy of the shunt resistor 13, and when the shunt resistor 13 is adhered, the void 21 is generated by the air entrainment at the interface between the shunt resistor 13 and the electrically conductive adhesive layer 22. However, since the adhesive layer is electrically conductive, the electric field does not concentrate around the void 21, so that adverse effects on the corona discharge phenomenon and the like can be suppressed, and a highly reliable large capacity power converter can be provided.
[0034]
FIG. 5 shows an example of a shunt resistor according to the fourth embodiment. This embodiment differs from the embodiment described in FIG. 1 in that the main electrode portion 7 and a part of the main electrode portion are provided. The shunt resistor 13 is covered with a coating resin 23 containing particles having excellent thermal conductivity typified by silica or the like except for a part of the detection terminal 31 and a part of the heat diffusion plate 11. is there.
[0035]
In this way, the heat generated in the shunt resistor 13 is transferred to the coating resin 23 and spreads to the heat diffusion plate 11, reducing the thermal resistance of the shunt resistor portion 8, and reducing the local resistance of the shunt resistor portion 8. A shunt resistor 13 capable of reducing a temperature rise and flowing a large current with high accuracy can be configured, and a high-performance power converter can be provided.
[0036]
A power conversion device for linking a power system of a photovoltaic power generation system configured by a solar cell 32 and a power conversion device as shown in FIG. 6, or a battery using only the internal combustion engine and the electric motor 17 or the electric motor 17 as shown in FIG. A vehicle that moves power by transmitting the power of the internal combustion engine and the motor to the tires through a mission using a power system that detects the power supplied from the power storage device 30 such as the shunt resistor 13 and controls the motor 17, and an air conditioner mounted on the vehicle. , Suction pumps for all inverter devices such as hydraulic pumps, brake drive motors 17 and the like, and inverters driven by motors for compressors and fans used in home and commercial air conditioners and washing machines in washing machines The electric power of the above-described embodiment is also applied to an electric power converter for an inductance drive for generating a magnetic field of a fan electric motor or an electric cooking machine. Converter can be applied.
[0037]
According to each embodiment described above, the thermal resistance is reduced by adhering the shunt resistor 13 to the resin insulating layer 9 prepared on the surface of the thermal diffusion plate 11 and the surface of the resin insulating layer 9 has a low viscosity. The resin adhesive layer 20 is further provided to suppress the generation of voids 21 at the time of adhesion, or the electrical resistivity of the resin adhesive layer 20 is smaller than that of the resin insulating layer 9 and larger than that of the shunt resistance portion 8, which is caused by the voids 21. It is possible to provide a high-capacity shunt resistor 13 that can reduce the corona discharge phenomenon and is highly reliable and accurate, and can provide a power conversion device that has excellent control characteristics.
[0038]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the power converter device which can apply the detection system of the load current by a shunt resistor and a detection circuit to a high capacity | capacitance power converter device can be provided.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating a first embodiment of a shunt resistor.
FIG. 2 is a configuration diagram for explaining a power converter using the shunt resistor of the first embodiment.
FIG. 3 is a configuration diagram showing a second embodiment of a shunt resistor.
FIG. 4 is a configuration diagram illustrating a third embodiment of a shunt resistor.
FIG. 5 is a configuration diagram illustrating a fourth embodiment of a shunt resistor.
FIG. 6 is a configuration diagram illustrating a fifth embodiment of a shunt resistor.
FIG. 7 is a configuration diagram illustrating a sixth embodiment of a shunt resistor.
FIG. 8 is a configuration diagram of a shunt resistor and a power conversion device using the shunt resistor.
FIG. 9 is a configuration diagram of a shunt resistor and a power conversion device using the shunt resistor.
FIG. 10A is a configuration diagram of a shunt resistor.
FIG. 10-2 is a configuration diagram of a shunt resistor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Radiation base of module, 2 ... Solder layer, 3 ... Metal foil, 4 ... Insulating layer, 5 ... Semiconductor switching element, 6 ... Plate resistor, 7 ... Main electrode part, 8 ... Shunt resistance part, 9 ... Resin Insulating layer, 10 ... Aluminum wire, 11 ... Heat diffusion plate, 12 ... Heat dissipation board, 13 ... Shunt resistor, 14 ... Converter, 15 ... Inverter, 16 ... Condenser, 17 ... Electric motor, 18 ... Detection circuit, 19 ... Calculator, DESCRIPTION OF SYMBOLS 20 ... Resin adhesive layer, 21 ... Void, 22 ... Electrically conductive adhesive layer, 23 ... Coating resin, 28 ... Hall element type current sensor, 29 ... Commercial power supply, 30 ... Power storage device such as battery, 31 ... Detection electrode, 32 ... solar cells.

Claims (4)

入力電力を所定の電力に変換して出力する主回路を有するものであって、前記主回路に電気的に接続されたシャント抵抗器に流れる電流を検出して前記主回路の動作を制御する電力変換装置において、
前記シャント抵抗器の発熱を放熱するための熱拡散板と、
接着機能を有し、前記熱拡散板の片面に固着された樹脂絶縁層と、
該樹脂絶縁層の表面に設けられ、少なくとも前記樹脂絶縁層よりも粘度が低く、前記シャント抵抗器を前記樹脂絶縁層に接着する樹脂接着層とを有し、
前記シャント抵抗器は、
板状抵抗体により構成されたシャント抵抗部と、
該シャント抵抗部の両端部に固着され、前記シャント抵抗部の電流の入出力端子を構成する主電極部とを有しており、
前記シャント抵抗部及び前記主電極部は前記樹脂接着層によって前記樹脂絶縁層に固着されており、
前記樹脂接着層は、少なくとも前記樹脂絶縁層よりも電気抵抗率が小さく、前記シャント抵抗部よりも電気抵抗率が大きい電気伝導性接着層であることを特徴とする電力変換装置。
Power having a main circuit that converts input power into predetermined power and outputs the detected power, and detects the current flowing through a shunt resistor electrically connected to the main circuit to control the operation of the main circuit In the conversion device,
A heat diffusion plate for radiating heat generated by the shunt resistor;
A resin insulating layer having an adhesive function and fixed to one side of the heat diffusion plate;
A resin adhesive layer that is provided on the surface of the resin insulation layer, has a viscosity lower than at least the resin insulation layer, and adheres the shunt resistor to the resin insulation layer;
The shunt resistor is
A shunt resistor portion configured by a plate resistor;
A main electrode portion fixed to both ends of the shunt resistor portion and constituting an input / output terminal of a current of the shunt resistor portion;
The shunt resistor portion and the main electrode portion are fixed to the resin insulating layer by the resin adhesive layer,
The power converter according to claim 1, wherein the resin adhesive layer is an electrically conductive adhesive layer having an electrical resistivity lower than that of at least the resin insulating layer and higher than that of the shunt resistor.
請求項1に記載の電力変換装置において、
前記シャント抵抗部及び前記主電極部は、前記樹脂絶縁層に対する各接着面が同一平面と成るように、前記樹脂接着層によって前記樹脂絶縁層に固着されていることを特徴とする電力変換装置。
The power conversion device according to claim 1 ,
The power converter according to claim 1, wherein the shunt resistor portion and the main electrode portion are fixed to the resin insulating layer by the resin adhesive layer so that respective adhesive surfaces to the resin insulating layer are on the same plane.
請求項1又は2に記載の電力変換装置において、
前記樹脂絶縁層には高熱伝導性粒子が混合されていることを特徴とする電力変換装置。
The power conversion device according to claim 1 or 2 ,
A power conversion device, wherein the resin insulating layer is mixed with high thermal conductivity particles.
請求項1乃至のいずれかに記載の電力変換装置において、
前記シャント抵抗器は、少なくとも前記主電極部,前記主電極部の一部に設けられた検出端子の一部及び前記熱拡散板の一部を除き、コーティング樹脂によって覆われていることを特徴とする電力変換装置。
In the power converter device in any one of Claims 1 thru | or 3 ,
The shunt resistor is covered with a coating resin except for at least the main electrode part, a part of a detection terminal provided on a part of the main electrode part, and a part of the heat diffusion plate. Power converter.
JP2001370817A 2001-12-05 2001-12-05 Power converter with shunt resistor Expired - Fee Related JP3843825B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370817A JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370817A JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Publications (2)

Publication Number Publication Date
JP2003173905A JP2003173905A (en) 2003-06-20
JP3843825B2 true JP3843825B2 (en) 2006-11-08

Family

ID=19179980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370817A Expired - Fee Related JP3843825B2 (en) 2001-12-05 2001-12-05 Power converter with shunt resistor

Country Status (1)

Country Link
JP (1) JP3843825B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5029170B2 (en) * 2007-06-27 2012-09-19 ダイキン工業株式会社 Electronic circuit equipment
JP5137653B2 (en) * 2008-03-26 2013-02-06 古河電気工業株式会社 Current sensor device
JP6370602B2 (en) * 2014-05-09 2018-08-08 Koa株式会社 Current detection resistor
CN107785135A (en) * 2016-08-24 2018-03-09 成都昊天宏达电子有限公司 Six-terminal network type multikilowatt radio frequency power resistor device
WO2020045258A1 (en) * 2018-08-29 2020-03-05 パナソニックIpマネジメント株式会社 Chip resistor and method for producing same

Also Published As

Publication number Publication date
JP2003173905A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
JP3826749B2 (en) Power converter with shunt resistor
US7046535B2 (en) Architecture for power modules such as power inverters
US8952525B2 (en) Semiconductor module and method for manufacturing semiconductor module
US7292451B2 (en) Architecture for power modules such as power inverters
US6943445B2 (en) Semiconductor device having bridge-connected wiring structure
JP3723869B2 (en) Semiconductor device
WO2012035933A1 (en) Inverter device
JP5486990B2 (en) Power module and power conversion device using the same
US20160150662A1 (en) Electrical Circuit and Method for Producing an Electrical Circuit for Activating a Load
US20090160044A1 (en) Semiconductor module mounting structure
WO2005119896A1 (en) Inverter device
JP5378293B2 (en) Power module and power conversion device using the same
JP3843825B2 (en) Power converter with shunt resistor
JP2018121406A (en) Power converter
CN117479415A (en) Power electronics assembly with electrically insulating layer
WO2019216161A1 (en) Power semiconductor module, method for producing same and electric power converter
JPH11252885A (en) Motor driving equipment and manufacture thereof
Gottwald et al. Embedding of power electronic components: The smart p2 pack technology
US6411536B1 (en) Rectifier device, having a cooling body, for a three-phase dynamo of a motor vehicle
Gottwald et al. Minimizing Form Factor and Parasitic Inductances of Power Electronic Modules: The p 2 Pack Technology
US20230395457A1 (en) Power Semiconductor Device, Power Conversion Device, and Electric System
JP2014113051A (en) Power conversion apparatus
US11497112B2 (en) Driver board assemblies and methods of forming a driver board assembly
US11889666B2 (en) Power device assemblies having embedded PCBs and methods of fabricating the same
CN220456402U (en) Power module and power equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060517

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees