JP3843589B2 - Melting method of high nitrogen stainless steel - Google Patents

Melting method of high nitrogen stainless steel Download PDF

Info

Publication number
JP3843589B2
JP3843589B2 JP07972598A JP7972598A JP3843589B2 JP 3843589 B2 JP3843589 B2 JP 3843589B2 JP 07972598 A JP07972598 A JP 07972598A JP 7972598 A JP7972598 A JP 7972598A JP 3843589 B2 JP3843589 B2 JP 3843589B2
Authority
JP
Japan
Prior art keywords
nitrogen
gas
molten steel
vacuum
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07972598A
Other languages
Japanese (ja)
Other versions
JPH11279624A (en
Inventor
悟郎 奥山
公治 山口
秀次 竹内
健一 反町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP07972598A priority Critical patent/JP3843589B2/en
Publication of JPH11279624A publication Critical patent/JPH11279624A/en
Application granted granted Critical
Publication of JP3843589B2 publication Critical patent/JP3843589B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高窒素ステンレス溶鋼の溶製方法に係わり、より詳しくは、溶鋼の減圧精錬処理(例えば、VOD法による)において、溶鋼の窒素濃度を低下させることなく、脱酸するというステンレス溶鋼の加窒及び脱酸を同時に行う技術である。
【0002】
【従来の技術】
近年、ステンレス鋼の分野においては、耐食性や強度等の向上、あるいは高価なNi源の低減の目的で、鋼中に積極的に窒素を含有させた鋼種が開発されている。
ところで、ステンレス鋼を溶製する精錬段階では、高価なCrの酸化損失を極力低減しつつ鋼中の炭素濃度を低減すること、及び非金属介在物を形成する鋼中の酸素濃度を低減することを目的として、減圧精錬を行うのが一般的である。
【0003】
この溶鋼中の酸素濃度に関しては、スラグの塩基度(CaO/SiO2 )を高くすると、スラグ−メタル反応によるSi−O平衡で決まる鋼中酸素濃度が、真空下(30〜100torr)でのC−O反応で決まる酸素濃度よりも低くなるので、溶鋼中の酸素濃度をより低下させることができる。しかしながら、スラグの塩基度が高くなると、スラグの滓化が悪化するために、CaF2 あるいはAl23 を添加しなければならず、取鍋耐火物の溶損量が増大したり、スラグ中のAl23 がSiで還元され、溶鋼中にAl23 介在物が生成し、Siキルド鋼であるにもかかわらず、後工程の連続鋳造時にAl23 介在物によるノズル詰まりや製品の欠陥を多発させる。そのため、高塩基度スラグを形成させるような脱酸処理は、難かしいものであった。
【0004】
ところで、減圧精錬法でも、特にVOD法は、ステンレス鋼の脱炭及び脱窒に関しては優れたものである。従って、それを前述したような高窒素ステンレス鋼の溶製に採用すると、窒素濃度が低下し過ぎてしまい、脱酸処理後に、窒素含有合金を添加して加窒を実施する必要があった。そのため、全体の精錬時間が延長してしまうという問題がある。また、この窒素濃度の低下を抑えるには、図3に示すVOD真空装置1内の真空度を下げ、窒素分圧を高くすることが考えられるが、真空度を低下するとCO分圧も上昇するので、Fe−Si合金の添加後に期待するCO反応による脱酸反応が停滞し、VOD処理後の溶鋼中の酸素濃度が増加してしまうという問題もあった。つまり、酸素濃度の低い高窒素ステンレス鋼を安定して溶製する適切な方法が存在しないのが現状である。
【0005】
【発明が解決しようとする課題】
本発明は、このような状況に鑑み、VOD法のような減圧精錬装置を用いても、高窒素濃度で、且つ低酸素濃度の溶鋼を従来より安定して製造できる高窒素ステンレス溶鋼の溶製方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
発明者は、上記目的を達成するため、VOD装置を用いた真空下での加窒及び脱酸について鋭意研究を重ね、その成果を本発明として完成させた。
すなわち、本発明は、減圧精錬装置内の精錬容器に収容したステンレス溶鋼を、減圧下で脱炭した後、Si又はSi含有合金を添加して脱酸するステンレス鋼の溶製方法において、Si又はSi含有合金を添加後に、前記減圧精錬装置内を、真空度が30〜100torrになるよう減圧すると共に、前記保持容器の上方及び底部から該溶鋼へ不活性ガスを供給し、該上方又は該底部の少なくとも一方から供給される不活性ガスは、窒素ガス又は窒素ガスと窒素以外の不活性ガスとの混合ガスとして供給し、溶鋼の加窒及び脱酸を同時に行うことを特徴とする高窒素ステンレス鋼の溶製方法である。
【0007】
また、本発明は、前記窒素以外の不活性ガスをアルゴン・ガスとすることを特徴とする高窒素ステンレス鋼の溶製方法でもある。
本発明によれば、溶鋼中へ窒素ガス又は窒素と他の不活性ガスの混合ガスを吹き込むことで窒素濃度をあるレベルに維持したまま、脱酸できるようになるので、高窒素で且つ低酸素のステンレス溶鋼が製造できるようになる。
【0008】
【発明の実施の形態】
以下、発明に至る経緯も含め、本発明の実施の形態を説明する。
本発明が対象とする高窒素ステンレス鋼は、窒素を400ppm以上含有するステンレス鋼であり、フェライト系、オーステナイト系のいずれでも良い。
転炉等の精錬炉で所定炭素濃度にて出鋼された含クロム溶鋼2を、精錬容器としての取鍋3に移し、これを図3に示したVOD真空処理装置1に設置する。そして、減圧下にて、さらに目標炭素濃度まで脱炭した後、加窒及び脱酸が行われる。この脱炭処理は、多くの場合、上吹きランスから酸素又は酸素含有ガスを吹き付けて行われるが、脱炭量が少なくて良い場合には、不活性ガスのみの吹き付けか、あるいは上吹ガスの吹き付けを行うことなく、専ら減圧による所謂「C−O脱炭」によって行われることもある。
【0009】
発明者は、この減圧精錬処理の終了後に、Fe−Si添加して脱酸する際に、窒素ガスを吹き込む場合、吹き込まない場合(従来法)、あるいは単に高真空下に保持する場合について、溶鋼中の窒素及び酸素の濃度を調査した。
まず、図1に、減圧精錬処理終了後の溶鋼中の窒素濃度と酸素濃度を、上記各場合につき比較して示す。図1より明らかなように、窒素ガスを上吹きした場合及び低真空下に維持して窒素ガスの上吹きがない場合では、30〜40torrの低真空度下で前記還元処理を行うため、該処理後の溶鋼中窒素濃度は高く、目標窒素濃度範囲内を維持することができた。一方、窒素ガスを吹き込まない従来法では、還元処理を2〜3torrの高真空度下で行い、溶鋼の平衡の窒素濃度が低いので、目標窒素濃度よりもかなり低下してしまう。
【0010】
次に、図2に、前記脱炭処理が終了し、Fe−Si合金添加後の酸素濃度を、前記同様に3つの場合で比較して示す。図2によれば、窒素ガスを上吹きした場合と上吹しなかった従来法の場合は、同じような脱酸挙動を示しており、前記還元処理終了後の酸素濃度は、目標の50ppm以下を達成していた。一方、低真空度下で上吹きガス吹き付けが無い場合では、脱酸速度が低下し、還元処理後の酸素濃度が他の2つの場合に比較して高く、目標の50ppmよりも高くなっていた。
【0011】
そこで、発明者は、以上の調査結果に基づき、低真空度下(30〜100torr)で、窒素ガスや不活性ガスを吹込むことにより、鋼中の窒素濃度を高位に維持したまま、鋼中の酸素濃度を所定の目標濃度まで低下させることができると考え、その具体的な実施方法を本発明としたのである。
その実現にあたっては、まず、前述のVODのような減圧精錬装置において、減圧下での脱炭処理後に、SiまたはSi含有物質(好ましくは、Fe−Si)を添加し、前記減圧精錬装置の溶鋼容器の上方及び底部から溶鋼に不活性ガスを供給する。この不活性ガスの供給は、溶鋼の脱酸促進と、溶鋼中への窒素の添加の2つの役割を果たす。
【0012】
この溶鋼の脱酸促進は、溶鋼を撹拌し、添加されたSiが溶鋼に速やかに溶解し、脱酸反応によって生成した非金属介在物が浮上するのを促進すること、またスラグをも撹拌して、スラグの脱酸をも促進し、処理後の溶鋼にスラグから酸素が供給されて非金属酸化物を生成するのを防止する。この溶鋼の撹拌には、容器底部から溶鋼中に吹き込まれた不活性ガスが主に寄与する。撹拌を十分に行わせる観点から、底部からの吹込みガス流量は、2ノルマル・リットル/分/トン以上とするのが好ましい。また、Siによる脱酸のみでは、溶鋼中の溶解酸素は、十分に低下し切らないので、減圧によるC−O脱酸も促進する必要がある。後述するように、溶鋼中に窒素を添加する観点から、減圧装置内真空度は、目標酸素レベルまで到達できる程度に高真空とすることができない。
【0013】
そこで、本発明においては、不活性ガスを上吹することで、溶鋼浴面上のCO分圧を低下させることで、高真空処理に匹敵する前記「C−O脱酸」を可能とした。この「C−O脱酸」促進の観点から、上吹き不活性ガス流量は、多いほど好ましいが、あまり多くなると、溶鋼のスプラッシュが激しくなって、操業を阻害する恐れがあるので、0.2Nm3 /分・トン以下にとどめるのが好ましい。なお、この上吹き不活性ガスのガス種は、CO分圧を低減できるものであれば、特にガス種を問うものではない。最も安価で取り扱いが容易なガスとして窒素が好ましく使用できる。
【0014】
上述したように、本発明では、まず脱酸の観点から、不活性ガスを容器底部からと容器上方からの両方から供給することが必須である。
次に、溶鋼中への窒素の添加の観点からは、上述した容器底部からと容器上方からの不活性ガスのうち少なくとも一方に、窒素ガス又は窒素以外の不活性ガスを使用することによって達成する。窒素以外の不活性ガスとしては、価格面や取り扱いの容易さからアルゴンが好適である。
【0015】
溶鋼中への窒素の添加効率の観点からは、底部から溶鋼中に供給するガスに窒素ガス又は窒素ガスと窒素以外の不活性ガスを使用すると、ガスと溶鋼の反応界面積が大きく、且つガスと溶鋼との接触時間を長くすることができるので、有利である。
溶鋼中への窒素の添加は、本発明が減圧精錬装置においてなされる以上、減圧による気相中への脱窒と、吹き込まれた窒素ガスから溶鋼中への加窒とが競合の上に成り立つ。所定の処理時間内に十分な加窒を可能とするためには、減圧精錬装置内の真空度30〜100torrとすることが必要である。これより高真空(すなわち、より低い圧力)では、脱窒速度が勝って所定時間内に加窒することが困難になるためである。一方、上記より低真空(すなわちより高い圧力)では、上述したC−C脱酸が不利になり、溶鋼中の酸素濃度の低減が困難となるからである。
【0016】
なお、上吹きガスは、上吹きランス、あるいはパイプなどを介して溶鋼の浴面上に吹き付けるが、ガスの底吹きには、溶鋼保持容器(例えば取鍋)の底部にポーラス・プラグや、鋼製細管あるいはスリットを多数設けたガス吹き込み用羽口が利用できる。
また、本発明では、上記窒素あるいは不活性ガスの吹込みを、溶鋼の酸素濃度が50ppm以下まで継続するのが良い。その理由は、例えば、本発明方法によって、溶鋼中の窒素濃度が製品目標窒素濃度に満たなくても、窒素含有合金の添加によって不足分の調整が可能であるのに対し、酸素濃度が50ppmより高い場合には非金属介在物が多くなり、製品の欠陥を引き起こす可能性が高くなるからである。
【0017】
【実施例】
(実施例1)
転炉で粗脱炭を行った溶鋼160トンを取鍋3に出鋼し、その取鍋3をVOD真空装置1内に装入し、真空度40torrの下で溶鋼2に酸素を上吹きして、C:0.055重量%及びCr:18.2重量%の含クロム溶鋼2とした。しかる後、Fe−Si合金を950kgを添加し、装置1内の真空度を40torrにすると共に、上吹き窒素ガスを30Nm3 /分の流量でランス6の高さ1800mmで溶鋼面に吹き付け、20分間還元処理を行った。また、その際、底吹きガス5としては、アルゴン・ガス500Nリットル/分、窒素ガス500Nリットル/分の混合ガスも同時に使用した。
【0018】
その結果、C:0.040重量%、Cr18.3重量%、Si:0.35重量%、O:45ppm、N:520ppmのステンレス溶鋼を得ることができた。
(実施例2)
転炉で粗脱炭を行った溶鋼160tonを取鍋3に出鋼し、その取鍋3をVOD真空装置に装入し、真空度60torrの下で酸素吹錬を行い、C:0.06重量%、Cr:18.1重量%の含クロム溶鋼2を得た。しかる後、Fe−Si合金を1000kgを添加し、装置1内の真空度を35torrにすると共に、上吹きガスとして窒素ガス及びアルゴン・ガスをそれぞれ10Nm3 /分混合したものを、ランス6の高さ1800mmで溶鋼2面に吹き付け、25分間還元処理を行った。また、その際、底吹きガス5としては、実施例1と同様に、アルゴン・ガスを500Nリットル/分、窒素ガスを500Nリットル/分の混合ガスとした。
【0019】
その結果、C:0.048重量%、Cr:18.2重量%、Si:0.38重量%、O:47ppm、N:500ppmのステンレス溶鋼を得ることができた。
【0020】
【発明の効果】
以上述べたように、本発明により、VOD真空装置を用いて、高窒素濃度で、且つ低酸素濃度の溶鋼を従来より安定して製造できるようになった。
【図面の簡単な説明】
【図1】VOD減圧精錬装置内で溶鋼をFe−Si合金で還元処理した後の鋼中酸素濃度と窒素濃度との関係を示す図である。
【図2】図1と同じ還元処理中の脱酸挙動を示す図である。
【図3】VOD減圧精錬装置を示す縦断面図である。
【符号の説明】
1 VOD減圧精錬装置
2 含クロム溶鋼(溶鋼)
3 取鍋
4 ランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting high-nitrogen stainless steel, and more specifically, in a stainless steel that is deoxidized without reducing the nitrogen concentration of the molten steel in a vacuum refining treatment of the molten steel (for example, by the VOD method). This is a technology that performs nitriding and deoxidation simultaneously.
[0002]
[Prior art]
In recent years, in the field of stainless steel, steel types in which nitrogen is positively incorporated in steel have been developed for the purpose of improving corrosion resistance, strength, etc., or reducing expensive Ni sources.
By the way, in the refining stage for melting stainless steel, reducing the carbon concentration in steel while reducing oxidation loss of expensive Cr as much as possible, and reducing the oxygen concentration in steel forming non-metallic inclusions For this purpose, vacuum refining is generally performed.
[0003]
Regarding the oxygen concentration in the molten steel, when the basicity of slag (CaO / SiO 2 ) is increased, the oxygen concentration in the steel determined by the Si—O equilibrium due to the slag-metal reaction becomes C in vacuum (30 to 100 torr). Since it becomes lower than the oxygen concentration determined by the -O reaction, the oxygen concentration in the molten steel can be further reduced. However, if the basicity of the slag increases, the hatching of the slag worsens, so CaF 2 or Al 2 O 3 must be added, increasing the amount of erosion of the ladle refractory, Al 2 O 3 is reduced with Si, and Al 2 O 3 inclusions are produced in the molten steel. Even though it is Si killed steel, nozzle clogging due to Al 2 O 3 inclusions during continuous casting in the subsequent process Frequent product defects. Therefore, deoxidation treatment that forms high basicity slag has been difficult.
[0004]
By the way, even in the vacuum refining method, the VOD method in particular is excellent in terms of decarburization and denitrification of stainless steel. Therefore, when it is employed for melting high nitrogen stainless steel as described above, the nitrogen concentration is too low, and it is necessary to add nitrogen-containing alloy and perform nitriding after deoxidation treatment. Therefore, there is a problem that the entire refining time is extended. In order to suppress this decrease in nitrogen concentration, it is conceivable to lower the degree of vacuum in the VOD vacuum apparatus 1 shown in FIG. 3 and increase the nitrogen partial pressure. However, if the degree of vacuum is lowered, the CO partial pressure also increases. As a result, the deoxidation reaction due to the CO reaction expected after the addition of the Fe—Si alloy is stagnant, and there is a problem that the oxygen concentration in the molten steel after the VOD treatment increases. That is, there is no appropriate method for stably melting high nitrogen stainless steel having a low oxygen concentration.
[0005]
[Problems to be solved by the invention]
In view of such circumstances, the present invention is a high nitrogen stainless steel melt that can stably produce molten steel having a high nitrogen concentration and a low oxygen concentration even when using a vacuum refining apparatus such as the VOD method. It aims to provide a method.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the inventor conducted intensive research on nitriding and deoxidation under vacuum using a VOD apparatus, and completed the results as the present invention.
That is, the present invention relates to a stainless steel melting method in which a molten stainless steel contained in a refining vessel in a reduced pressure refining apparatus is decarburized under reduced pressure, and then deoxidized by adding Si or a Si-containing alloy. After adding the Si-containing alloy, the inside of the vacuum refining apparatus is depressurized so that the degree of vacuum is 30 to 100 torr, and an inert gas is supplied to the molten steel from above and from the bottom of the holding container. The inert gas supplied from at least one of the above is supplied as nitrogen gas or a mixed gas of nitrogen gas and an inert gas other than nitrogen, and nitriding and deoxidizing molten steel are performed simultaneously. This is a method for melting steel.
[0007]
The present invention is also a method for melting high nitrogen stainless steel, wherein the inert gas other than nitrogen is argon gas.
According to the present invention, deoxidation can be performed while maintaining the nitrogen concentration at a certain level by blowing nitrogen gas or a mixed gas of nitrogen and other inert gas into the molten steel. Of stainless steel can be manufactured.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below including the background to the invention.
The high nitrogen stainless steel targeted by the present invention is a stainless steel containing 400 ppm or more of nitrogen, and may be either ferritic or austenitic.
The chrome-containing molten steel 2 produced at a predetermined carbon concentration in a refining furnace such as a converter is transferred to a ladle 3 as a refining container and installed in the VOD vacuum processing apparatus 1 shown in FIG. Then, after decarburization to a target carbon concentration under reduced pressure, nitriding and deoxidation are performed. In many cases, this decarburization treatment is performed by blowing oxygen or an oxygen-containing gas from an upper blowing lance. However, when the amount of decarburization may be small, only the inert gas is blown or It may be performed by so-called "CO decarburization" by decompression without spraying.
[0009]
The inventor, after the completion of this vacuum refining treatment, when adding Fe-Si and deoxidizing, when blowing nitrogen gas, not blowing (conventional method), or simply holding under high vacuum, molten steel The concentration of nitrogen and oxygen in it was investigated.
First, in FIG. 1, the nitrogen concentration and oxygen concentration in the molten steel after completion of the vacuum refining treatment are shown in comparison for each of the above cases. As apparent from FIG. 1, when the nitrogen gas is blown up and when the nitrogen gas is not blown up while maintaining a low vacuum, the reduction treatment is performed under a low vacuum of 30 to 40 torr. The nitrogen concentration in the molten steel after the treatment was high and could be maintained within the target nitrogen concentration range. On the other hand, in the conventional method in which nitrogen gas is not blown, the reduction treatment is performed under a high vacuum of 2 to 3 torr, and the equilibrium nitrogen concentration of the molten steel is low, so that it is considerably lower than the target nitrogen concentration.
[0010]
Next, FIG. 2 shows the oxygen concentration after addition of the Fe—Si alloy after the decarburization process is compared in the same three cases. According to FIG. 2, in the case of the conventional method in which nitrogen gas is blown up and in the case of not blowing up, the same deoxidation behavior is shown, and the oxygen concentration after the reduction treatment is a target of 50 ppm or less. Was achieved. On the other hand, when there was no top blowing gas under low vacuum, the deoxidation rate decreased, and the oxygen concentration after the reduction treatment was higher than the other two cases, and higher than the target of 50 ppm. .
[0011]
Therefore, based on the above investigation results, the inventor injected nitrogen gas and inert gas under a low vacuum (30 to 100 torr), while maintaining the nitrogen concentration in the steel at a high level. Therefore, it is considered that the oxygen concentration can be reduced to a predetermined target concentration, and a specific method for carrying out the same is defined as the present invention.
In realizing this, first, in a vacuum refining apparatus such as the above-mentioned VOD, after decarburization treatment under reduced pressure, Si or a Si-containing substance (preferably Fe-Si) is added, and the molten steel of the vacuum refining apparatus is added. An inert gas is supplied to the molten steel from above and from the bottom of the container. The supply of the inert gas plays two roles of promoting deoxidation of the molten steel and adding nitrogen to the molten steel.
[0012]
This deoxidation promotion of molten steel stirs the molten steel, accelerates the added Si to quickly dissolve in the molten steel, promotes the rise of nonmetallic inclusions generated by the deoxidation reaction, and also stirs the slag. Thus, the deoxidation of the slag is also promoted, and oxygen is supplied from the slag to the molten steel after the treatment to prevent generation of a non-metal oxide. The inert gas blown into the molten steel from the bottom of the container mainly contributes to the stirring of the molten steel. From the viewpoint of sufficient stirring, the flow rate of the blown gas from the bottom is preferably 2 normal liters / minute / ton or more. Moreover, since only the deoxidation by Si, the dissolved oxygen in the molten steel is not sufficiently lowered and it is necessary to promote the CO deoxidation by the reduced pressure. As will be described later, from the viewpoint of adding nitrogen to the molten steel, the degree of vacuum in the decompression device cannot be high enough to reach the target oxygen level.
[0013]
Therefore, in the present invention, the “CO deoxidation” comparable to the high vacuum treatment is made possible by reducing the CO partial pressure on the molten steel bath surface by blowing up an inert gas. From the viewpoint of promoting this “C—O deoxidation”, the flow rate of the top blown inert gas is preferably as large as possible. However, if the flow rate is too large, the splash of molten steel becomes violent and the operation may be hindered. It is preferable to keep it at 3 / min · ton or less. In addition, the gas type of this top blowing inert gas will not ask | require gas type in particular, if CO partial pressure can be reduced. Nitrogen is preferably used as the cheapest and easy-to-handle gas.
[0014]
As described above, in the present invention, from the viewpoint of deoxidation, it is essential to supply an inert gas from both the bottom of the container and from above the container.
Next, from the viewpoint of addition of nitrogen into the molten steel, it is achieved by using nitrogen gas or an inert gas other than nitrogen as at least one of the inert gas from the bottom of the container and from above the container. . As the inert gas other than nitrogen, argon is suitable because of its price and ease of handling.
[0015]
From the viewpoint of the efficiency of adding nitrogen into the molten steel, if nitrogen gas or an inert gas other than nitrogen gas and nitrogen is used as the gas supplied into the molten steel from the bottom, the reaction interface area between the gas and molten steel is large, and the gas This is advantageous because the contact time between the steel and the molten steel can be increased.
The addition of nitrogen into the molten steel is based on the competition between denitrification into the gas phase due to reduced pressure and nitriding from the blown nitrogen gas into the molten steel as long as the present invention is performed in a vacuum refining apparatus. . In order to allow sufficient nitriding within a predetermined processing time, it is necessary to set the degree of vacuum within a reduced pressure refining apparatus to 30 to 100 torr. This is because in a higher vacuum (that is, lower pressure), it is difficult to perform nitriding within a predetermined time because the denitrification rate wins. On the other hand, when the vacuum is lower than the above (that is, higher pressure), the above-described CC deoxidation is disadvantageous and it is difficult to reduce the oxygen concentration in the molten steel.
[0016]
The top blowing gas is blown onto the molten steel bath surface through a top blowing lance or pipe, etc., but for bottom blowing of the gas, a porous plug or steel is attached to the bottom of the molten steel holding vessel (eg ladle). A gas blowing tuyere provided with a large number of thin tubes or slits can be used.
In the present invention, the nitrogen or inert gas blowing may be continued until the oxygen concentration of the molten steel is 50 ppm or less. The reason is that, for example, even if the nitrogen concentration in the molten steel is less than the product target nitrogen concentration, the deficiency can be adjusted by adding the nitrogen-containing alloy, whereas the oxygen concentration is more than 50 ppm. If it is high, non-metallic inclusions increase, which increases the possibility of causing product defects.
[0017]
【Example】
Example 1
160 tons of molten steel that has been coarsely decarburized in a converter is put into a ladle 3 and the ladle 3 is placed in the VOD vacuum apparatus 1 and oxygen is blown up into the molten steel 2 under a degree of vacuum of 40 torr. Thus, a chromium-containing molten steel 2 having 0.05% by weight of C and 18.2% by weight of Cr was obtained. Thereafter, 950 kg of Fe—Si alloy is added, the degree of vacuum in the apparatus 1 is set to 40 torr, and the top blowing nitrogen gas is blown onto the molten steel surface at a height of 1800 mm of the lance 6 at a flow rate of 30 Nm 3 / min. Reduction treatment was performed for a minute. At that time, as the bottom blowing gas 5, a mixed gas of 500 N liter / min of argon gas and 500 N liter / min of nitrogen gas was used at the same time.
[0018]
As a result, a molten stainless steel having C: 0.040% by weight, Cr 18.3% by weight, Si: 0.35% by weight, O: 45 ppm, N: 520 ppm could be obtained.
(Example 2)
160 ton of molten steel that has undergone rough decarburization in a converter is put into a ladle 3, the ladle 3 is charged into a VOD vacuum apparatus, oxygen blown under a vacuum degree of 60 torr, C: 0.06 A chromium-containing molten steel 2 having a weight% of Cr: 18.1 wt% was obtained. Thereafter, 1000 kg of Fe—Si alloy was added, the degree of vacuum in the apparatus 1 was set to 35 torr, and nitrogen gas and argon gas were mixed at 10 Nm 3 / min as the top blowing gas, respectively. The molten steel was sprayed on the surface of the molten steel at 1800 mm and subjected to reduction treatment for 25 minutes. At that time, as the bottom blowing gas 5, as in Example 1, argon gas was a mixed gas of 500 Nl / min and nitrogen gas was a mixed gas of 500 Nl / min.
[0019]
As a result, a molten stainless steel having C: 0.048 wt%, Cr: 18.2 wt%, Si: 0.38 wt%, O: 47 ppm, N: 500 ppm could be obtained.
[0020]
【The invention's effect】
As described above, according to the present invention, a molten steel having a high nitrogen concentration and a low oxygen concentration can be produced more stably than before by using a VOD vacuum apparatus.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the oxygen concentration and the nitrogen concentration in steel after reducing the molten steel with an Fe—Si alloy in a VOD vacuum refining apparatus.
FIG. 2 is a diagram showing the deoxidation behavior during the same reduction treatment as in FIG.
FIG. 3 is a longitudinal sectional view showing a VOD vacuum refining apparatus.
[Explanation of symbols]
1 VOD vacuum refining equipment 2 Chromium-containing molten steel (molten steel)
3 Ladle 4 Lance

Claims (2)

減圧精錬装置内の精錬容器に収容したステンレス溶鋼を、減圧下で脱炭した後、Si又はSi含有合金を添加して脱酸するステンレス鋼の溶製方法において、
Si又はSi含有合金を添加後に、前記減圧精錬装置内を、真空度が30〜100torrになるよう減圧すると共に、前記保持容器の上方及び底部から該溶鋼へ不活性ガスを供給し、該上方又は該底部の少なくとも一方から供給される不活性ガスは、窒素ガス又は窒素ガスと窒素以外の不活性ガスとの混合ガスとして供給し、溶鋼の加窒及び脱酸を同時に行うことを特徴とする高窒素ステンレス鋼の溶製方法。
In the method for melting stainless steel, after decarburizing the molten stainless steel contained in the refining vessel in the vacuum refining apparatus, decarburizing under reduced pressure, and adding or deoxidizing Si or a Si-containing alloy,
After adding Si or a Si-containing alloy, the vacuum refining apparatus is depressurized so that the degree of vacuum is 30 to 100 torr, and an inert gas is supplied to the molten steel from above and from the bottom of the holding container. The inert gas supplied from at least one of the bottoms is supplied as nitrogen gas or a mixed gas of nitrogen gas and an inert gas other than nitrogen, and nitriding and deoxidizing molten steel are performed simultaneously. Nitrogen stainless steel melting method.
前記窒素以外の不活性ガスをアルゴン・ガスとすることを特徴とする請求項1記載の高窒素ステンレス鋼の溶製方法。The method for melting high nitrogen stainless steel according to claim 1, wherein the inert gas other than nitrogen is argon gas.
JP07972598A 1998-03-26 1998-03-26 Melting method of high nitrogen stainless steel Expired - Lifetime JP3843589B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07972598A JP3843589B2 (en) 1998-03-26 1998-03-26 Melting method of high nitrogen stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07972598A JP3843589B2 (en) 1998-03-26 1998-03-26 Melting method of high nitrogen stainless steel

Publications (2)

Publication Number Publication Date
JPH11279624A JPH11279624A (en) 1999-10-12
JP3843589B2 true JP3843589B2 (en) 2006-11-08

Family

ID=13698189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07972598A Expired - Lifetime JP3843589B2 (en) 1998-03-26 1998-03-26 Melting method of high nitrogen stainless steel

Country Status (1)

Country Link
JP (1) JP3843589B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100429158B1 (en) * 1999-10-20 2004-04-28 주식회사 포스코 Method for decarburizing austenite stainless steel
JP2007138206A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Method for highly purifying molten metal
CN105555975B (en) * 2013-03-13 2017-06-09 公开股票社会新利佩茨克冶金卡特尔 The method that dual alloying is mutually modified with nanometer is carried out to steel by Nitrogen Atom
RU2660797C1 (en) * 2017-04-10 2018-07-09 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Wire for out-of-furnace treatment of metallurgical melts
KR102482746B1 (en) * 2021-10-19 2022-12-29 (주)대창솔루션 Method for high nitrogen stainless steel

Also Published As

Publication number Publication date
JPH11279624A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
JPH0230711A (en) Manufacture of extremely low carbon steel having superior cleanness
JP3903580B2 (en) Method of melting high cleanliness steel
JP5428447B2 (en) Method for refining molten steel in RH vacuum degassing equipment
JP3843589B2 (en) Melting method of high nitrogen stainless steel
JPS6159376B2 (en)
JPH05239534A (en) Method for melting non-oriented electric steel sheet
JP2767674B2 (en) Refining method of high purity stainless steel
JPH0153329B2 (en)
JP3241910B2 (en) Manufacturing method of extremely low sulfur steel
JPH0346527B2 (en)
JPH11106823A (en) Method for refining extra-low carbon and extra-low nitrogen stainless steel
JP2728184B2 (en) Oxygen top-blowing vacuum decarburization of molten steel
JP2724035B2 (en) Vacuum decarburization of molten steel
JPH11140530A (en) Production of ultra-low nitrogen stainless steel
JPH0841530A (en) Production of low aluminum and low sulfur stainless steel
JPH05247522A (en) Refining method of highly clean stainless steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel
JP2724030B2 (en) Melting method of ultra low carbon steel
JPH08104914A (en) Highly efficient production of high purity molten stainless steel
JPH08302419A (en) Refining method of molten steel
JP3153983B2 (en) Melting method for high purity stainless steel
KR101015283B1 (en) tube submerged in melting steel
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JP2962163B2 (en) Melting method of high clean ultra low carbon steel
JP2000297317A (en) PRODUCTION OF LOW Al AND EXTRA-LOW SULFUR STEEL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060807

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090825

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100825

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110825

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120825

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130825

Year of fee payment: 7

EXPY Cancellation because of completion of term