JP3842760B2 - Dry high voltage resistance device and arc discharge prevention method for the same - Google Patents

Dry high voltage resistance device and arc discharge prevention method for the same Download PDF

Info

Publication number
JP3842760B2
JP3842760B2 JP2003174490A JP2003174490A JP3842760B2 JP 3842760 B2 JP3842760 B2 JP 3842760B2 JP 2003174490 A JP2003174490 A JP 2003174490A JP 2003174490 A JP2003174490 A JP 2003174490A JP 3842760 B2 JP3842760 B2 JP 3842760B2
Authority
JP
Japan
Prior art keywords
voltage
resistor
phase
dry
resistance device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003174490A
Other languages
Japanese (ja)
Other versions
JP2005011988A (en
Inventor
袈裟文 松本
Original Assignee
株式会社興研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社興研 filed Critical 株式会社興研
Priority to JP2003174490A priority Critical patent/JP3842760B2/en
Publication of JP2005011988A publication Critical patent/JP2005011988A/en
Application granted granted Critical
Publication of JP3842760B2 publication Critical patent/JP3842760B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Resistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に高圧発電装置の負荷特性試験に用いられる乾式高圧抵抗装置及び同装置アーク放電防止方法に関する。
【0002】
【従来の技術】
従来3相交流の発電機巻線や負荷の結線は、高圧回路ではY結線を、低圧回路ではΔ結線を慣習的に用い、高調波処理回路にY−ΔやΔ−Yの組み合せを用いているのが一般的である。
【0003】
所で、この種の乾式高圧抵抗装置の高圧抵抗回路としては、使用電圧6600vに応じるために、定格電圧400vの絶縁耐力2000v/1分間のような高圧抵抗体素子を約10本前後直列に接続した抵抗体列相をY結線する3相抵抗体回路の複数を並列に接続して消費電力を加減し、電気的な1相の高圧抵抗体素子を1縦型方形筒ボックスに約150本、3相合せて約450本を収め、送風機で高圧抵抗体素子群を冷却し放熱する方法が用いられており、次にその代表例を提示する。
【0004】
【特許文献】
特願平4−194032号公報
特願平5−186127号公報
特願平7−165519号公報
特願平7−165520号公報
特願平7−166052号公報
特願平10−190520号公報
【0005】
即ち、従来、高圧発電装置の負荷特性試験に用いられる乾式高圧抵抗装置として図6に示すような張り出し片9を有する高圧抵抗体素子1´を用いたものが利用されていた。同図に付き説明すると、2´は円筒形の外筒であり、約1mの長さを持って形成されている。
【0006】
そして、3は抵抗発熱線、4は電極棒であり、5´は抵抗発熱線3及び電極棒4と外筒2´の内壁の間に充填され封端部材6で密封された絶縁物である。この絶縁物5´は粉末状に構成されており、外筒2´と抵抗発熱線3及び電極棒4とを絶縁する役目を持つものである。
【0007】
7は接続用端子であり、電極棒4の外端螺子部4aに螺合挿通したナット8、8にて両側を挟付け固定されている。そして、この端子7を介して隣り合う他の高圧抵抗体素子1´と接続される。9は前記したような張り出し片であり、抵抗発熱線3へ通電した際に発せられる熱を放出する放熱板の機能を果たすものである。張り出し片9は外筒2の外周上長手方向に約7mmの間隔でスパイラル状に一体成形又は取り付けられている。
【0008】
この高圧抵抗体素子1´は、使用電圧6600vに応ずるため、定格電圧400v、絶縁耐力2000v/1分間の規格とされている。
【0009】
図7に当該高圧抵抗体素子1´を直列に接続した一相の高圧抵抗体列相10´を示す。11は接続部材であり、隣り合う高圧抵抗体素子1´を接続用端子7に代って接続する。12´は四角状の方形筒ボックスであり、当該方形筒ボックス12´の配列板12a´には10個の高圧抵抗体素子1´が両端を貫通渡架して取り付けられ、高圧抵抗体列相10´が形成されている。
【0010】
図8に乾式高圧抵抗装置13の概略構成を示す。当該乾式高圧抵抗装置13には、前述した高圧抵抗体列相10´が15列多段に渡架収容されている。このとき、高圧抵抗体素子1´の張り出し片9が互いに重なり合わないように、互い違いに齟齬配置されている。これは、各高圧抵抗体素子1´が通電状態になると、かなりの高熱が発せられるため、冷却ファン14により下から風冷却が万遍に行われなければならないためである。
【0011】
同図中、15は第1端子板であって、試験すべき高圧発電装置からの入力線16が接続されるとともに、複数段配架した各Y結線3相抵抗体回路17の一端3相と接続線18で接続され、19は第2端子板であって、各Y結線3相抵抗体回路17他端3相がゼロ相となるよう中性線20で総べての3相抵抗体回路17を連結して共通中性点としてある。
【0012】
当該乾式高圧抵抗装置13に冷却ファン14を設けた従来例を図9に示す。同図において、21は防振ゴムであり、22は方形筒ボックス12´を設置基台G´から絶縁する絶縁碍子を示す。この絶縁碍子22をさらに設けることによって、方形筒ボックス12´全体の絶縁性の確保をさらに高める作用を有するものである。図中23はフード、24は送風機である。
【0013】
ここで、従来の技術として参考資料を挙げておく。
【特許文献】
特開平9−15307号公報
特開平9−15308号公報
特開2000−19231号公報
【0014】
【発明が解決しようとする課題】
以上のような従来の乾式の高圧抵抗装置13を用いて高圧発電装置の負荷特性試験を行った結果、風冷却高圧抵抗装置13は140℃の高温となり、高圧抵抗体素子1´単体では、350℃乃至700℃の温度を有することが分かった。
【0015】
これは、高圧抵抗体列相10´に配列されている高圧抵抗体素子1´の張り出し片9を重ならないように互い違いに位置するように配置しても、この張り出し片9の形状が送風機24による通風の抵抗となり、方形筒ボックス12´内に熱が篭って冷却ファン14の冷却作用の効果が十分に得られないためである。この高圧抵抗体素子1´では常備が常識とされている張り出し片9は、低圧抵抗体素子では極めて有効ではあるが、次に述べる種々の弊害をもたらすことが解明されていなかった。
【0016】
即ち、張り出し片9が通風の抵抗となるため、当該乾式高圧抵抗装置13の方形筒ボックス12´内で乱気流や撹乱気流が起生し、その結果振動を起こすという現象も回避出来ず、従来例では、これを防振ゴム21により方形筒ボックス12´の設置基台23に対する振動伝達を回避しているが、方形筒ボックス12´自体の振動は止まず試験の際の危険性は相変わらずぬぐえるものではなかった。
【0017】
しかも、高圧抵抗体素子1´の外筒2内に封入された絶縁物5´は粉末状であるため、この外力振動により移動片寄せられて均一厚被覆が不可能となり、部分的に絶縁が不充分となって絶縁破壊の引き金となる弊害を有するばかりか絶縁粉末のため稼動中の灼熱の抵抗発熱線3も容易に振動を起生し、断線し易くなり耐熱性に欠ける欠点を有する。それにも拘らず、絶縁破壊に伴うアーク放電や連鎖断線事故を従来は運転操作者の操作ミスで片付けられることが多かったこの故障原因の解明が充分なされていなかった。
【0018】
さらには、当該張り出し片9の形状は、放熱作用のためのものであるが、先が尖っているため高圧になると先尖端縁9aからコロナ放電を初期発生し、終には方形筒ボックス12´との間や並列する3相抵抗体回路17相互の高圧抵抗体素子1´同志の張り出し片9間でアーク放電を発生し、絶縁破壊を起こすことが永年の実験の結果ようやく分かり、危険性を伴わずに負荷特性試験を実施することは従来の高圧抵抗体素子1´ではできないものであった。
【0019】
アーク放電により方形筒ボックス12´との絶縁破壊を起したときの安全策として絶縁碍子22を設けているが、高圧過電流の逃げ場がないため乾式高圧抵抗装置13全体が焼損破壊してしまう危険があり、運転操作員も稼動中は危なくて近づけなかった。
【0020】
その上、上下隣接各段齟齬配架された張り出し片9に塞がれる為、方形筒ボックス12´上方から内部の見通しが悪く保守、点検、整備上の支障となり、加えて、焼損又は断線した高圧抵抗体素子1´のみを方形筒ボックス12´から方形筒ボックス12´を分解しない限り横合いに抜き出すことは張り出し片9に邪魔されて出来ない為、稼動現場での部分的な高圧抵抗体素子1´交換は不可能であり、いちいち工場に持ち帰り、他の高圧抵抗体素子1´をも分解、取り外した上で部品交換を余儀なくされていた為、負荷特性試験を中断、延期しなければならなかった。
【0021】
このアーク放電は試験運用を断念する(特開2000−19231,P(3)0013〜14)。乾式高圧抵抗装置13のアーク放電による重故障は、複数の高圧抵抗体素子1´と電線16,18,20類および金属製の端子板15,19や方形筒ボックス12´が無残な姿に溶断と溶着し、絶縁碍子22は焼け爛れ破壊する。
【0022】
故障の初期現象を観察するにも、高電圧で使用する方形筒ボックス12´に高圧抵抗体素子1´を約150本収納し側面を囲うため覗き込むことも出来ず、ファイバースコープで奥深くのものまで観察するにも高電圧が寄せ付けず、燃えた乾式高圧抵抗装置13の現物からでは冷却不足によるものか、初期故障からわずかな時間でアーク放電に至るかの原因の解明は極めて難しい課題であった。
【0023】
ここで、乾式高圧抵抗装置13において、各一段の抵抗体列相10´をY結線とするため、3相接続線20で共通中性点Nを第2端子板19で共通連接して使用した時に、1本の高圧抵抗体素子1´の断線が及ぼす連鎖断線の影響について説明する。この連鎖断線は、中性点Nにおいて不平衡電位を発生し、乾式高圧抵抗装置13の能力を下げる。
【0024】
ここで、3相6600v,750kwの3相抵抗体回路17は、約1.67kw容量の高圧抵抗体素子1´を用い、1相では高圧抵抗体素子1´を10本直列に接続した抵抗体列相10´を15段並列し、隣接各3相をY結線にし計450本のように構成している。これを図10の3相抵抗体回路17の等価回路で示すと図11のR相の等電位配列と図12の高圧抵抗回路25のY直列等価回路のようになる。
【0025】
列相R−N間を各種の故障相に想定し、健全列相のS−NとT−Nの変化を吟味する。図13に示すよう、高圧抵抗体素子1´は、電源側の3相の電圧と負荷の3相並列抵抗値が平衡した状態でも、調速機試験のような断続と定格負荷運転のような長時間加熱により、抵抗値の高いものや冷却条件との組み合わせの悪いものから早く劣化し断線する。
【0026】
一本の高圧抵抗体素子1´が断線した抵抗体列相10´は、その1列が機能しなくなる(断線列相)。断線列相をもつR列相の並列抵抗値は健全なSとT列相より大きくなる。このためR−N間の電圧はS−NとT−Nより一定の原則に従い高くなる。等価回路を図13中R列相1列断線、図14の断線と電位上昇、図15の異電位配列にそれぞれ示す。
6600/√3=3810vが6600/√3/2=5715vになる。
【0027】
この電圧上昇は残された健全列相S,T(健全残列相)の高圧抵抗体素子1´の発熱を増し、2本目の共通Y結線点N(19)を通し高圧抵抗体素子1´の断線を誘発する。2本目からは電圧上昇が断線を加速し(連鎖断線)、全列が機能しなくなるころのR−N間の電圧は5715vに上昇する。この連鎖断線は小容量の高圧抵抗回路25ほど早く、R列相を欠相高圧抵抗回路25にする。
【0028】
R欠相の3相750kw高圧抵抗回路25はS−T間の単相375kwとなる。不平衡負荷の発生と乾式高圧抵抗装置13総体の能力低下(容量不足)を招く。一方では目標値に応じた3相抵抗体回路17の組み合わせ数が難しくなる。
【0029】
電位上昇はR−N間の短絡でも発生し、短絡時のR−N間の電圧は0vに近くなる。このため健全列相のS−NとT−Nの電圧は6600v近くまで上昇する。この電圧上昇で健全列相S−NとT−Nの高圧抵抗体素子1´にも連鎖断線を誘発する。交流耐電圧2000v/1分間の高圧抵抗体素子1´は1分間を超えたらいつ絶縁破壊するかは保障できない物である。
【0030】
乾式高圧抵抗装置13は、絶縁碍子22で絶縁されているため、高圧抵抗体素子1´や接続端子7と方形筒ボックス12´間でアーク放電が発生しても地絡継電器や過電流継電器は動作せず、被害をいっそう大きくする。
【0031】
図8に示される接続線として、他の3相抵抗体回路17の中性線20を第2端子板19で共通連接すると欠相3相抵抗体回路17の電位上昇が他の並列する健全3相抵抗体回路17へ波及する。休止抵抗体列相10´を有する3相抵抗体回路17と並列する健全な3相抵抗体回路17とも異電位配列となり、ここでも張り出し片9が放電環境を形成する。
【0032】
張り出し片9の一枚一枚の形状は、軸方向から見ると略円形ではあるが、側面からでは薄い平板の外周縁は鋭利な先尖端縁9aになる。高電圧では鋭利な先端ほど放電しやすい性質をもち、張り出し片9の周端両縁は放電しやすい領域を形成する。高圧抵抗回路25では放電開始電圧を下げる役割を果たし、下記の異電位配列のときに放電する。
【0033】
1抵抗体列相10´を方形筒ボックス12´の各段一列とした乾式高圧抵抗装置13は、高圧発電機装置のR列相を第1端子板15に接続し中性点Nに第2端子板19を用いる。各段一列の高圧抵抗体素子1´を左から右へ1〜10番を直列に接続した抵抗体列相10´を、上から下へ1〜15段列を3段列毎にY結線し並列に接続する。直列する高圧抵抗体素子1´間の電位差は健全なときで約381v差、並列する高圧抵抗体素子1´の電位差は0vの等電位配列となり安定している(図11参照)。
【0034】
抵抗体列相10´の高圧抵抗体素子1´が1本断線(仮に1段列10番)し、R側を3810vにNを0vにして電位分布を比較すると、R側の3810vが1段列1〜9の全部に及ぶ。1段列9番と隣接する高圧抵抗体素子1´の間には3810vに近い電位差を生ずる異電位配列となる(図15参照)。なお、高圧抵抗体素子1´の断線は5〜6の間で断線するとは限らない。
【0035】
アーク放電で溶融した痕跡から放電開始点を探索するのは難しいが、放電の初期はコロナから始まることに着目し、暗室で電圧を序々に上昇するとコロナ放電が観察できる。初期のコロナ放電では溶解も無く放電端の確認が容易にできる。高圧抵抗体素子1´側では張り出し片9の周端両縁の切り口の形状やバリや付着した埃が放電開始端となる。相手方は近くの平板より遠くても突起物に好んで放電する傾向がある。
【0036】
鋭利な先端をもつ張り出し片9は1本の高圧抵抗体素子1´の断線が起因して、張り出し片9の相互間でも放電する。これに連鎖して高圧抵抗体素子1´両端の接続用端子7と金属製外筒2´の間でも放電する。方形筒ボックス12´に絶縁素材を用いても異電位配列による張り出し片9からの放電は防げない。
【0037】
従来型の乾式高圧抵抗装置13では、軟弱な絶縁と抵抗体列相10´をY結線した3相抵抗体回路17同志の中性点Nを共通連接したときの連鎖断線及び張り出し片9の放電特性が、高圧抵抗体素子1´の1本が断線したときに次々に波及する弊害を解明できなかった。これらの弊害による事故も運転操作の操作ミスで片付けられる傾向にあった。
又、共通中性点NのないΔ結線を乾式高圧抵抗装置13に採用した場合、共通中性点Nに起因する連鎖断線はないが、並列する高圧抵抗体素子1´同志のアーク放電による連鎖断線や高圧抵抗体素子1´と配列板12a´間のアーク放電は防止出来なかった。
【0038】
ここにおいて、本発明の解決すべき主要な目的は次に記載の通りである。
即ち、本発明の第1の目的は、前記乾式高圧抵抗装置1の高圧抵抗回路における前記Y結線の種々なる欠点に鑑み、高圧に不向とされた低圧慣用のΔ結線を採用し得る乾式高圧抵抗装置及び同装置アーク放電防止方法を提供せんとするものである。
【0039】
本発明の第2の目的は、Δ結線に耐え得る特殊絶縁構造の高圧抵抗体素子を採用した乾式高圧抵抗装置及び同装置アーク放電防止方法を提供せんとするものである。
【0040】
本発明の第3の目的は、耐振性、耐アーク性、耐連鎖断線を有する高圧抵抗回路を具備する乾式高圧抵抗装置及び同装置アーク放電防止方法を提供せんとするものである。
【0041】
本発明の他の目的は、明細書、図面、特に特許請求の範囲の各請求項の記載から自ずと明らかとなろう。
【0042】
【課題を解決するための手段】
本発明方法は、当該課題の解決に当り、高圧抵抗体素子を直列に接続する抵抗体列相をΔに結線した3相抵抗体回路の複数を並列に接続する際、アーク放電に係る外周面長手方向スパイラル状に延在する放熱用張り出し片のない金属製円筒状の外筒の各種支持物より支持される両端寄り部位に抜き出し自在に嵌挿止着した高耐圧絶縁スリーブを具備する前記高圧抵抗耐素子を用いてアーク放電を可及的に抑止した特徴的構成手法を講じる。
【0043】
本発明装置は、当該課題の解決に当り、アーク放電に係る外周面長手方向スパイラル上に延在する放熱用張り出し片のない金属製円筒状の外筒の各種支持物より支持される両端寄り部位に抜き出し自在に嵌挿止着した高耐圧絶縁スリーブを具備する高圧抵抗耐素子を設け、当該高圧抵抗耐素子を複数直列に接続する抵抗耐列相をΔに結線した3相抵抗体回路の複数を並列に接続して構成する高圧抵抗回路を有する特徴的構成手段を講じる。
【0044】
さらに具体的詳細に述べると、当該課題の解決では、本発明が次に列挙するそれぞれの新規な特徴的構成手段を採用することにより、前記目的を達成する。
【0045】
即ち、本発明装置の第1の特徴は、表面を滑らかにし、全保護覆い素材として外装シースを用いた金属製円筒状の外筒と、当該外筒の両端からそれぞれ内挿された電極棒の内端相互間に亙り張設した螺施状抵抗発熱線と、当該電極捧及び当該抵抗発熱部と前記外筒の内壁面との間に充填された粉末状絶縁物を焼き付け固形化して当該螺旋状抵抗発熱線を埋蔵固定した絶縁物と、両端支持される前記外筒の両端寄り部位に抜き出し自在に嵌挿止着した円筒状にして、使用電圧に応じて長さと厚味を調整自在に形成される高耐圧絶縁スリーブとを具備する高圧抵抗体素子を形成し、下端に冷却送風口をかつ上端に放熱排風口をそれぞれ開口したシャーシーアース型方形筒ボックスの両側配列板に貫設した各対応支持口に前記高耐圧絶縁スリーブを介して、当該高圧抵抗体素子両端を1本ずつ外部に抜き出し可能にかつ高圧アーク放電抑止可能に貫通支持するとともに、当該高圧抵抗体素子を直列に複数接続する抵抗体列相をΔに結線した当該3相抵抗体回路の複数を並列に接続する高圧抵抗回路を有してなる、乾式高圧抵抗装置の構成採用にある。
【0046】
本発明装置の第2の特徴は、上記本発明装置の第1の特徴における前記高圧抵抗体素子が、約412.5v前後間、約1.74kw前後間容量を有する、乾式高圧抵抗装置の構成採用にある。
【0047】
本発明装置の第3の特徴は、上記本発明装置の第2の特徴における前記抵抗体列相が、使用電圧6600vに対し、前記高圧抵抗体素子を約16本前後直列接続してなる、乾式高圧抵抗装置の構成採用にある。
【0048】
本発明装置の第4の特徴は、上記本発明装置の第2又は第3の特徴における前記3相抵抗体回路が、約83.52kw前後間の容量を有する、乾式高圧抵抗装置の構成採用にある。
【0049】
本発明装置の第5の特徴は、上記本発明装置の第1、第2、第3又は第4の特徴における前記高耐圧絶縁スリーブが、交流耐電圧約12000v/mm1分間の素材を用いて厚さ約3mmとすると約36000v/1分間に近い絶縁耐力を有する焼結セラミックである、乾式高圧抵抗装置の構成採用にある。
【0050】
本発明装置の第6の特徴は、上記本発明装置の第5の特徴における前記高耐圧絶縁スリーブが、約3mm前後間厚である、乾式高圧抵抗装置の構成採用にある。
【0051】
本発明装置の第7の特徴は、上記本発明装置の第1、第2、第3、第4、第5又は第6の特徴における前記配列板が、前記高耐圧絶縁スリーブが抜出自在に貫嵌する大きさの円形支持口を、上下各段配列位置を半部ずつ間隔をずらせた相互齟齬状に複数多段列に貫設してなる、乾式高圧抵抗装置の構成採用にある。
【0054】
本発明方法の第1の特徴は、高圧抵抗体素子を直列に複数接続する抵抗体列相をΔに結線した3相抵抗体回路の複数を並列に接続して高圧抵抗回路を形成するに当り、表面を滑らかにし、全保護覆い素材として外装シースを用いた金属製円筒状の外筒と、当該外筒の両端からそれぞれ内挿された電極捧の内端相互間に亙り張設した螺施状抵抗発熱線と、当該電極捧及び当該抵抗発熱線と前記外筒の内壁面との間に充填された粉末状絶縁物を焼き付け固形化して当該螺旋状抵抗発熱線を埋蔵固定した絶縁物と、両端支持される前記外筒の両端寄り部位に抜き出し自在に嵌挿止着した円筒状にして、使用電圧に応じて長さと厚味を調整自在に形成される高耐圧絶縁スリーブを具備する前記高圧抵抗体素子を用いて、下端に冷却送風口をかつ上端に放熱排風口をそれぞれ開口したシャーシーアース型方形筒ボックスの両側配列板に貫設した各対応支持口に前記高耐圧絶縁スリーブを介して当該高圧抵抗体素子両端を1本ずつ外部に抜き出し可能に貫通支持することにより、当該各高圧抵抗体素子の断線時の交換を容易とするとともに、当該高圧抵抗体素子と前記両側配列板間や並列する当該高圧抵抗体素子相互間の高圧アーク放電を抑止してなる、乾式高圧抵抗装置アーク放電防止方法の構成採用にある。
【0055】
【発明の実施の形態】
以下、添付図面を参照して本発明の実施の形態を、その装置例及び方法に基づいて説明する。
なお、本実施形態例の説明に先立って装置例に使用する抵抗体素子例を説明する。
【0056】
(抵抗体素子例)
図1は、高耐圧絶縁スリーブを分解取り外した高圧抵抗体素子を示す一部省略破断側面図、図2は配列板に両端を貫通渡架した高圧抵抗体素子の取付状態を示す一部省略破断側面図である。
なお、抵抗体素子例では、同一部品は同一符号を付し、ダッシュ(´)のない同一符号は従来例の対応部品を表す。以下の装置例及び方法例も同様である。
【0057】
図中、1は高圧抵抗体素子、2は金属製の外筒であり、表面を滑らかにすることにより放電を発生しにくくする形状と、スパイラル張り出し片がなくとも放熱特性に優れる要件を満たし絶縁物5の全保護覆い素材として、外装シースを用いている。3は外筒2の両端からそれぞれ内挿した電極棒4、4の内端相互間に亙り張設したコイル状抵抗発熱線である。
【0058】
また、5は従来例の5´と同様絶縁物であるが、粉末状のものを熱することにより焼付け固形化し、外筒2の内壁と導電性金属の電極棒4、4及び抵抗発熱線3との間に充填されている。これにより、絶縁物5は外筒2を電極棒4、4及び抵抗発熱線3から均等に絶縁する役割を果たすとともに、外部からの振動エネルギーを吸収して自己保持力の弱い抵抗発熱線3をしっかり固定する作用効果も奏することとなる。
【0059】
また、従来の物と違い固形化されているので、外力振動によっても絶縁物5が偏らず、確実な絶縁が期待できる。7は電極棒4、4外端部の螺子部4aに挿通し、ナット8、8にて両側を挟着固定した接続用端子である。
【0060】
19は高耐圧絶縁スリーブである。高耐圧絶縁スリーブ19は電気的な耐圧特性、耐熱性、耐水性(屋外で試験が行われる際に、雨水等の急冷による破壊が生じることがある。)、耐荷重性及び耐衝撃性に優れた焼結セラミックを用いる。電気的特性として交流耐電圧12000v/mm1分間の素材を用い、例えば、厚さを3mmとすると36000v/1分間に近い絶縁耐力を有するものを製作することができる。
【0061】
また、高耐圧絶縁スリーブ19の形状は円筒状であり、高圧抵抗体素子1の外筒2外径を例えば、12mmとすると、内径は12.5mm程であり、外径を、厚さ3mmとした場合、18.5mm程度となる。使用電圧に応じて長さと厚味は調整自在に形成される。
また、図2に示すよう表面の汚れや湿気による絶縁値の低下を考慮した配列板12aの支持口12bの貫通両側の長さをそれぞれ50mm程度とする。
【0062】
なお、これら数値はあくまで一例であり、これら数値に限定されるものではないことは言うまでもない。同図中26、27はスプリング溝付止め輪で、前者は抜き出し自在な高耐圧絶縁スリーブ19を配列板12aの支持口12bに止着し、後者は抜き出し自在な外筒2を高耐圧絶縁スリーブ19に止着する。
【0063】
12aは配列板であり、従来例の抵抗体列相10を示す図7における方形筒ボックス12´の配列板12a´に対応するものであり、両端を貫通渡架した高圧抵抗体素子1群を接続してより張り出し片9分大幅に小さくなった3相抵抗体回路17を形成する際の支持物となり得るものである。又、方形筒ボックス12自体も分解不能に構成することが出来る。
従って、軽量コンパクト化された高圧抵抗耐素子1群を渡架収納する方形筒ボックス12自体が少なくとも1/3に小型化される。
【0064】
(装置例)
前記高圧抵抗体素子を使用した本発明の実施の形態を示す装置例を図面について説明する。
図3は方形筒ボックスの両側配列板に高圧抵抗体素子群の両端を貫通渡架した本装置例の一部破断正面図、図4は配列板に両端を貫通渡架した高圧抵抗体素子の直列接続による抵抗体列相の中央縦断面図、図5は3相の抵抗体列相をΔ結線した3相抵抗体回路の縦並列状態説明図である。図中26は高圧発電装置と接続するR,S,T3相の配電線である。
【0065】
上図3及び4に示すよう、高圧抵抗体素子1を図9同様に、下端に冷却送風口12cをかつ上端に放熱排風口12dをそれぞれ開口して両側配列板12aに上下各段配列位置を半部ずつ間隔をずらせた相互齟齬状に円形支持口12bを複数多段列に貫設したシャーシーアース型方形筒ボックス12の平行する配列板12aの各支持口12bに抜き出し自在に貫嵌した高耐圧絶縁スリーブ19を介して両端を貫通渡架し、各段列相互の高圧抵抗体素子1群列は交互半部齟齬状に配列する。
【0066】
各々の高圧抵抗体素子1間は使用電圧に応じた絶縁性能が維持出来る間隔とし、各段列内で隣接する高圧抵抗体素子1の一つ置きに一端側接続端子7に亙りかつ当該一端側とは互い違いに一つ置きに他端側接続端子7に亙りそれぞれ接続部材11で直列接続してR,S,Tの各相の抵抗体列相10を列成する。
【0067】
R,S,Tの抵抗体列相10番の1番の開放接続端子7と対応するR,S,Tの各配電本線28´と接続線29で結線するとともに、16番の開放接続端子は接続されたもう一方の各配電分岐線28´´のS,T,Rに接続線30で結線することにより3相抵抗体回路αを形成する。
当該3相抵抗体回路α群を3相配電本線28´と3相配電分岐線28´´間に亙り並列渡結接続して高圧抵抗回路βを組結装備した本乾式高圧抵抗装置γを得る。
【0068】
【実施例】
本実施例では、使用電圧6600vに対し、例えば412.5v,1.74kwの高圧抵抗体素子1を16本直列接続した抵抗体列相10を3段列単位でΔに結線して、例えば容量83.52kwの3相抵抗体回路αとし、当該3相抵抗体回路αを3組並列して、例えば250kw,6組並列して例えば500kwに組成する。
【0069】
(方法例)
前記乾式高圧抵抗装置γに適用する本発明の実施の形態を示す方法例を説明する。
本方法例は、前記特殊構造を有する高圧抵抗体素子1群とΔ結線した3相抵抗体回路α群を有する高圧抵抗回路βにおいて、高圧抵抗体素子1の一つが断線してもその電気的悪影響は所属する3相抵抗体回路α内におさまり、他の隣接する3相抵抗体回路αに及ぶ連鎖断線を防止し得る。
【0070】
又、ある3相抵抗体回路αの高圧抵抗体素子1が万一、アーク放電や自然劣化により断線しても、放電耐性を有する構造も相俟って3相抵抗体回路α内の抵抗体列相10間の高圧抵抗体素子1同志のアーク放電も抑止され、しかも並列する他の3相抵抗体回路αの高圧抵抗体素子1とのアーク放電も抑止され、他の3相抵抗体回路αに連鎖断線が及ぶこともなく、安全で安定した運転制御が確保され信頼性の高い負荷試験が保証される。
【0071】
さらに、各段列相互の高圧抵抗体素子1の交互齟齬配列は、配列間隔の広がりがアーク放電の防止効果を伴っている。
【0072】
以上、本実施形態例の代表的な装置例、方法例について説明したが、本発明は必ずしも当該装置例の手段及び当該方法例の手法だけに限定されるものではない。本発明の目的を達成し、後述する効果を有する範囲内において適宜変更して実施することができるものである。
【0073】
【発明の効果】
以上説明したように本発明は、耐絶縁性、耐アーク放電性に優れた高圧抵抗体素子の採用により、同一3相抵抗体回路内の並列抵抗体列相相互の高圧抵抗体素子同志のアーク放電や並列する3相抵抗体回路相互の高圧抵抗体素子同志のアーク放電による連鎖断線の要因も解消して安定した信頼性、忠実性の高い運転操作と稼動を確保し得る。
【0074】
しかも、断線した高圧抵抗体素子は、乾式高圧抵抗装置の配列板からスプリング溝付止め輪を外せば一本一本抜き出し新規の高圧抵抗体素子と交換補修可能なので、現場に於ても簡易に行え、高圧抵抗回路のあらゆる断線事故にも対処し得る。
【図面の簡単な説明】
【図1】本発明で使用する高耐圧絶縁スリーブを分解取り外した高圧抵抗体素子の一部省略垂直破断側面図である。
【図2】同上高圧抵抗体素子の配列板への両端を貫通渡架した高圧抵抗体素子の取付状態を示す一部省略垂直破断側面図である。
【図3】本発明の実施の形態を示し、シャーシーアース型方形筒ボックスの両側配列板に高圧抵抗体素子群の両端を貫通渡架した乾式高圧抵抗装置の一部破断正面図である。
【図4】同上乾式高圧抵抗装置における配列板に両端を貫通渡架した高圧抵抗体素子の直列接続による抵抗体列相の中央縦断面図である。
【図5】同上3相の抵抗体列相をΔ結線した3相抵抗体回路の縦並列状態説明図である。
【図6】従来例の高圧抵抗体素子の一部省略破断側面図である。
【図7】同上破断した方形筒ボックス両側の配列板への両端貫通渡架した高圧抵抗体素子の直列接続する抵抗体列相の平面図である。
【図8】同上乾式高圧抵抗装置の概略構成斜面図である。
【図9】同上乾式高圧抵抗装置に冷却ファンを設けた一部破断省略図である。
【図10】同上Y結線の3相抵抗体回路の等価回路図である。
【図11】同上高圧抵抗回路におけるR−N相の等電位配列図である。
【図12】同上乾式高圧抵抗装置のY直列等価回路である。
【図13】同上R列相1列断線した場合の乾式高圧抵抗装置のY直列等価回路である。
【図14】同上断線と電位上昇説明図である。
【図15】同上R列相1列断線した場合の高圧抵抗回路におけるR−N相の異電位配列図である。
【符号の説明】
α,17…3相抵抗体回路
β,25…高圧抵抗回路
γ,13…乾式高圧抵抗装置
1,1´…高圧抵抗体素子
2,2´…外筒
3…抵抗発熱線
4…電極棒
5,5´…絶縁物
6…封端部材
7…接続用端子
8…ナット
9…張り出し片
9a…先尖端縁
10,10´…抵抗体列相
11…接続部材
12,12´…方形筒ボックス
12a,12a´…配列板
12b…支持口
12c…冷却送風口
12d…放熱排風口
14…冷却ファン
15…第1端子板
16…入力線
18,29,30…接続線
19…第2端子板
20…中性線
21…防振ゴム
22…絶縁碍子
23…フード
24…送風機
26,27…スプリング溝付止め輪
28…3相配電線
28´…3相配電本線
28´´…3相配電分岐線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry type high voltage resistance device and a method for preventing arc discharge of the device, which are mainly used for a load characteristic test of a high voltage power generation device.
[0002]
[Prior art]
Conventional three-phase AC generator windings and load connections are conventionally made using Y connections for high-voltage circuits, Δ connections for low-voltage circuits, and combinations of Y-Δ and Δ-Y for harmonic processing circuits. It is common.
[0003]
As a high-voltage resistance circuit of this type of dry-type high-voltage resistance device, about 10 high-voltage resistor elements having a dielectric strength of 2000 v / 1 minute with a rated voltage of 400 v are connected in series in order to meet the operating voltage of 6600 v. A plurality of three-phase resistor circuits Y-connecting the resistor array phases are connected in parallel to reduce power consumption, and about 150 electric one-phase high-voltage resistor elements are arranged in one vertical rectangular cylinder box. A method is used in which about 450 are housed together and the high-pressure resistor element group is cooled and dissipated by a blower, and a typical example is presented next.
[0004]
[Patent Literature]
Japanese Patent Application No.4-194032
Japanese Patent Application No. 5-186127
Japanese Patent Application No. 7-165519
Japanese Patent Application No. 7-165520
Japanese Patent Application No. 7-166052
Japanese Patent Application No. 10-190520
[0005]
That is, conventionally, as a dry type high voltage resistance device used for a load characteristic test of a high voltage power generation device, a device using a high voltage resistor element 1 ′ having a protruding piece 9 as shown in FIG. 6 has been used. Referring to the figure, 2 'is a cylindrical outer cylinder having a length of about 1 m.
[0006]
Reference numeral 3 is a resistance heating wire, 4 is an electrode rod, and 5 'is an insulating material filled between the resistance heating wire 3 and the electrode rod 4 and the inner wall of the outer cylinder 2' and sealed by a sealing member 6. . The insulator 5 ′ is configured in a powder form and has a role of insulating the outer tube 2 ′ from the resistance heating wire 3 and the electrode rod 4.
[0007]
Reference numeral 7 denotes a connection terminal, which is clamped and fixed on both sides by nuts 8 and 8 threadedly inserted into the outer end screw portion 4a of the electrode rod 4. And it connects with other high voltage resistor elements 1 'adjacent via this terminal 7. Reference numeral 9 denotes an overhang piece as described above, which functions as a heat radiating plate that releases heat generated when the resistance heating wire 3 is energized. The overhanging pieces 9 are integrally formed or attached in a spiral shape at intervals of about 7 mm in the longitudinal direction on the outer periphery of the outer cylinder 2.
[0008]
Since this high-voltage resistor element 1 ′ conforms to a working voltage of 6600 v, it is standardized with a rated voltage of 400 v and a dielectric strength of 2000 v / 1 minute.
[0009]
FIG. 7 shows a one-phase high-voltage resistor array phase 10 ′ in which the high-voltage resistor elements 1 ′ are connected in series. Reference numeral 11 denotes a connection member, which connects adjacent high-voltage resistor elements 1 ′ instead of the connection terminals 7. Reference numeral 12 'denotes a square-shaped rectangular cylinder box, and ten high-voltage resistor elements 1' are attached to the array plate 12a 'of the rectangular cylinder box 12' so as to penetrate both ends. 10 'is formed.
[0010]
FIG. 8 shows a schematic configuration of the dry high-voltage resistance device 13. The dry type high-voltage resistance device 13 accommodates the above-described high-voltage resistor row phase 10 ′ in 15 rows and multiple stages. At this time, the protruding pieces 9 of the high-voltage resistor element 1 ′ are alternately arranged so as not to overlap each other. This is because a considerable amount of heat is generated when each high-voltage resistor element 1 ′ is energized, so that the cooling fan 14 must uniformly cool the wind from below.
[0011]
In the figure, reference numeral 15 denotes a first terminal board, to which an input line 16 from a high voltage power generator to be tested is connected, and connected to one end three phases of each Y-connected three-phase resistor circuit 17 arranged in a plurality of stages. Connected by lines 18, 19 is a second terminal board, and each Y-connected three-phase resistor circuit 17 connects all three-phase resistor circuits 17 by a neutral line 20 so that the other three phases become zero phases. As a common neutral point.
[0012]
FIG. 9 shows a conventional example in which a cooling fan 14 is provided in the dry high-voltage resistance device 13. In the figure, reference numeral 21 denotes an anti-vibration rubber, and 22 denotes an insulator that insulates the rectangular cylinder box 12 'from the installation base G'. By further providing this insulator 22, the insulation of the entire rectangular cylinder box 12 'is further enhanced. In the figure, 23 is a hood, and 24 is a blower.
[0013]
Here, reference materials are listed as conventional techniques.
[Patent Literature]
JP-A-9-15307
Japanese Patent Laid-Open No. 9-15308
JP 2000-19231 A
[0014]
[Problems to be solved by the invention]
As a result of the load characteristic test of the high-voltage power generator using the conventional dry-type high-voltage resistance device 13 as described above, the wind-cooled high-voltage resistance device 13 has a high temperature of 140 ° C., and the high-voltage resistor element 1 ′ alone has 350 It has been found to have a temperature of from 0C to 700C.
[0015]
This is because even if the protruding pieces 9 of the high-voltage resistor elements 1 ′ arranged in the high-voltage resistor array phase 10 ′ are arranged so as not to overlap with each other, the shape of the protruding pieces 9 is the blower 24. This is because of the resistance of the air flow due to the heat, and heat is trapped in the rectangular cylinder box 12 ', so that the cooling effect of the cooling fan 14 cannot be sufficiently obtained. The overhanging piece 9, which is commonly used in the high-voltage resistor element 1 ′, is extremely effective in the low-voltage resistor element, but has not been elucidated to cause various problems described below.
[0016]
That is, since the overhanging piece 9 becomes resistance to ventilation, the phenomenon that turbulence or turbulence is generated in the rectangular cylinder box 12 ′ of the dry type high voltage resistance device 13, resulting in vibration cannot be avoided. In this case, vibration transmission to the installation base 23 of the rectangular cylinder box 12 'is avoided by the anti-vibration rubber 21, but the vibration of the rectangular cylinder box 12' itself does not stop and the risk during the test is still wiped off. It was not a thing.
[0017]
In addition, since the insulator 5 'enclosed in the outer cylinder 2 of the high-voltage resistor element 1' is in a powder form, it is moved away by this external force vibration, making it impossible to coat uniformly and partially insulating. Not only has the problem of insufficiently triggering dielectric breakdown, but also the insulative resistance heating wire 3 that is in operation due to the insulating powder easily causes vibrations and is easily broken and lacks heat resistance. Nevertheless, the cause of this failure, which has often been dealt with by an operator error in the past due to arc discharge and chain disconnection accidents due to dielectric breakdown, has not been sufficiently clarified.
[0018]
Further, the shape of the projecting piece 9 is for heat dissipation, but since the tip is pointed, the corona discharge is initially generated from the tip end edge 9a when the pressure becomes high, and finally the rectangular cylinder box 12 ′. As a result of many years of experiments, arc discharge was caused between the high-voltage resistor elements 1 'between the three-phase resistor circuits 17 in parallel with each other and the overhanging pieces 9 of each other, and as a result of many years of experiments, there was a danger. It was impossible to perform the load characteristic test without using the conventional high-voltage resistor element 1 ′.
[0019]
Although the insulator 22 is provided as a safety measure when the dielectric breakdown with the rectangular cylinder box 12 'is caused by the arc discharge, there is no escape place for the high-voltage overcurrent, so that the entire dry high-voltage resistance device 13 may be destroyed by burning. The operator was in danger during operation and was not accessible.
[0020]
In addition, since the overhanging pieces 9 arranged on the upper and lower adjacent steps are blocked, the inside view from the upper side of the rectangular cylinder box 12 'is poor, which hinders maintenance, inspection, and maintenance, and in addition, is burned out or disconnected. Since only the high-voltage resistor element 1 ′ cannot be pulled out side by side unless the rectangular cylinder box 12 ′ is disassembled from the rectangular cylinder box 12 ′, it cannot be obstructed by the overhanging piece 9. Since 1 'replacement is impossible, each load must be taken back to the factory, and other high-voltage resistor elements 1' must be disassembled and removed, and the parts must be replaced. There wasn't.
[0021]
This arc discharge gives up the test operation (Japanese Patent Laid-Open No. 2000-19231, P (3) 0013-14). A serious failure due to arc discharge of the dry type high-voltage resistance device 13 is caused by melting a plurality of high-voltage resistor elements 1 ′, electric wires 16, 18, 20, metal terminal plates 15, 19, and a rectangular cylinder box 12 ′. And the insulator 22 burns and breaks.
[0022]
In order to observe the initial phenomenon of failure, it is impossible to look into the rectangular cylinder box 12 'used at high voltage for about 150 high-voltage resistor elements 1' and to enclose the sides. It is extremely difficult to elucidate the cause of arc discharge in a short time from the initial failure because the high voltage does not come close to the observation and the actual dry high-voltage resistance device 13 burned is due to insufficient cooling. It was.
[0023]
Here, in the dry type high-voltage resistance device 13, the common neutral point N is commonly connected to the second terminal plate 19 in the three-phase connection line 20 in order to make each one-stage resistor row phase 10 ′ a Y connection. The influence of the chain breakage caused by the breakage of one high-voltage resistor element 1 ′ will be described. This chain breakage generates an unbalanced potential at the neutral point N, which lowers the capacity of the dry high-voltage resistance device 13.
[0024]
Here, the three-phase 6600v, 750 kW three-phase resistor circuit 17 uses a high-voltage resistor element 1 ′ having a capacity of about 1.67 kw, and in one phase, a resistor array in which ten high-voltage resistor elements 1 ′ are connected in series. The phase 10 'is arranged in 15 stages in parallel, and each adjacent three phase is Y-connected, for a total of 450 lines. When this is represented by an equivalent circuit of the three-phase resistor circuit 17 in FIG. 10, the equipotential arrangement of the R phase in FIG. 11 and the Y series equivalent circuit of the high-voltage resistor circuit 25 in FIG.
[0025]
Assuming various failure phases between the row phases RN, the changes of SN and TN in the healthy row phases are examined. As shown in FIG. 13, the high-voltage resistor element 1 ′ is similar to intermittent operation and rated load operation as in the governor test even in a state where the three-phase voltage on the power source side and the three-phase parallel resistance value of the load are balanced. By heating for a long time, it quickly deteriorates and breaks from the one with a high resistance value and the one with a poor combination with cooling conditions.
[0026]
One row of the resistor row phase 10 'in which one high-voltage resistor element 1' is disconnected does not function (disconnected row phase). The parallel resistance value of the R row phase having the disconnected row phase is larger than that of the healthy S and T row phases. For this reason, the voltage between RN becomes higher than SN and TN according to a certain principle. Equivalent circuits are shown in the R row phase 1 row disconnection in FIG. 13, the disconnection and potential rise in FIG. 14, and the different potential arrangement in FIG.
6600 / √3 = 3810v becomes 6600 / √3 / 2 = 5715v.
[0027]
This voltage increase increases the heat generation of the remaining high-voltage resistor elements 1 ′ of the healthy row phases S and T (healthy residual phase), and passes through the second common Y connection point N (19). Induces disconnection. From the second line, the voltage increase accelerates the disconnection (chain disconnection), and the voltage between R and N rises to 5715v when all the columns stop functioning. This chain disconnection is faster as the small-capacity high-voltage resistor circuit 25 makes the R-row phase the open-phase high-voltage resistor circuit 25.
[0028]
The three-phase 750 kW high-voltage resistor circuit 25 having an R phase is a single phase 375 kW between ST. The unbalanced load is generated and the capacity of the dry high-voltage resistance device 13 is reduced (capacity is insufficient). On the other hand, the number of combinations of the three-phase resistor circuits 17 corresponding to the target value becomes difficult.
[0029]
The potential rise occurs even in a short circuit between RN and the voltage between RN at the time of the short circuit is close to 0V. For this reason, the voltages of SN and TN in the healthy row phase rise to nearly 6600v. This voltage rise also induces a chain disconnection in the healthy column phase SN and TN high-voltage resistor elements 1 '. The high-voltage resistor element 1 ′ having an AC withstand voltage of 2000 v / 1 minute cannot guarantee the dielectric breakdown when exceeding 1 minute.
[0030]
Since the dry high-voltage resistance device 13 is insulated by the insulator 22, even if an arc discharge occurs between the high-voltage resistor element 1 'or the connection terminal 7 and the rectangular cylinder box 12', the ground fault relay or overcurrent relay is not used. It doesn't work and causes more damage.
[0031]
As a connection line shown in FIG. 8, when the neutral wire 20 of the other three-phase resistor circuit 17 is connected in common by the second terminal plate 19, the potential increase of the open-phase three-phase resistor circuit 17 is another healthy three-phase resistor in parallel. Ripple to the circuit 17. The healthy three-phase resistor circuit 17 in parallel with the three-phase resistor circuit 17 having the resting resistor array phase 10 'also has a different potential arrangement, and the protruding piece 9 also forms a discharge environment here.
[0032]
The shape of each of the protruding pieces 9 is substantially circular when viewed from the axial direction, but from the side, the outer peripheral edge of the thin flat plate becomes a sharp pointed edge 9a. At a high voltage, the sharper tip has the property of being easily discharged, and both edges of the peripheral edge of the protruding piece 9 form a region that is easily discharged. The high voltage resistance circuit 25 serves to lower the discharge start voltage, and discharges in the following different potential arrangement.
[0033]
In the dry type high voltage resistance device 13 in which one resistor row phase 10 ′ is arranged in one row of the rectangular cylinder box 12 ′, the R row phase of the high voltage generator device is connected to the first terminal plate 15 and the second point at the neutral point N. A terminal board 19 is used. Y-connection of the resistor row phase 10 ', in which 1 to 10 rows are connected in series from left to right, 1 to 15 rows from the top to the bottom, every three rows, from one row to the other high voltage resistor element 1' Connect in parallel. The potential difference between the high-voltage resistor elements 1 ′ in series is stable and is stable in an equipotential arrangement of about 381 v, and the potential difference between the high-voltage resistor elements 1 ′ in parallel is 0 v (see FIG. 11).
[0034]
When one high-voltage resistor element 1 'in the resistor row phase 10' is disconnected (assuming that the first row 10), the potential distribution is compared with 3810v on the R side and 0V on the N side. Covers all of columns 1-9. A different potential array is generated between the first row row 9 and the adjacent high-voltage resistor element 1 ′ to generate a potential difference close to 3810 v (see FIG. 15). Note that the disconnection of the high-voltage resistor element 1 ′ is not necessarily disconnected between 5 and 6.
[0035]
It is difficult to search for the discharge start point from the trace melted by the arc discharge, but paying attention to the fact that the beginning of the discharge starts from the corona, the corona discharge can be observed when the voltage is gradually increased in the dark room. In the early corona discharge, there is no dissolution and the discharge end can be easily confirmed. On the side of the high-voltage resistor element 1 ′, the shape of the cuts at the peripheral edges of the protruding piece 9, burrs, and attached dust become the discharge start end. The other party tends to discharge favorably on the protrusion even if it is farther than the nearby flat plate.
[0036]
The protruding piece 9 having a sharp tip is also discharged between the protruding pieces 9 due to the disconnection of one high-voltage resistor element 1 ′. In connection with this, electric discharge is also generated between the connection terminals 7 at both ends of the high-voltage resistor element 1 ′ and the metal outer cylinder 2 ′. Even if an insulating material is used for the rectangular cylinder box 12 ', the discharge from the protruding piece 9 due to the different potential arrangement cannot be prevented.
[0037]
In the conventional dry type high voltage resistance device 13, the chain disconnection and the discharge characteristics of the overhanging piece 9 when the neutral point N of the three-phase resistor circuits 17 in which the soft insulation and the resistor array phase 10 ′ are Y-connected are commonly connected. However, it has not been possible to elucidate the adverse effects that successively spread when one of the high-voltage resistor elements 1 ′ is disconnected. Accidents due to these harmful effects tended to be cleared up due to operational mistakes.
Further, when a Δ connection having no common neutral point N is adopted in the dry type high voltage resistance device 13, there is no chain breakage due to the common neutral point N, but a chain caused by arc discharge between the parallel high voltage resistor elements 1 '. Disconnection and arc discharge between the high-voltage resistor element 1 ′ and the array plate 12a ′ could not be prevented.
[0038]
Here, the main objects to be solved of the present invention are as follows.
That is, the first object of the present invention is to provide a dry high voltage that can adopt a low-pressure conventional Δ connection that is unsuitable for high pressure in view of various disadvantages of the Y connection in the high voltage resistance circuit of the dry high voltage resistance device 1. It is an object of the present invention to provide a resistance device and a method for preventing arc discharge of the device.
[0039]
The second object of the present invention is to provide a dry high voltage resistance device and a method for preventing arc discharge of the device employing a high voltage resistor element having a special insulation structure capable of withstanding Δ connection.
[0040]
The third object of the present invention is to provide a dry high voltage resistance device having a high voltage resistance circuit having vibration resistance, arc resistance, and chain breakage, and a method for preventing arc discharge of the device.
[0041]
Other objects of the present invention will become apparent from the specification, drawings, and particularly the description of each claim.
[0042]
[Means for Solving the Problems]
In solving the problem, the method according to the present invention is designed to connect the plurality of three-phase resistor circuits in which the resistor array phases connecting the high-voltage resistor elements in series to Δ are connected in parallel. The high-voltage resistor comprising a high-voltage insulating sleeve that is detachably fitted and secured to both end portions supported by various supports of a metal cylindrical outer cylinder without a heat radiating projecting piece extending in a spiral direction A characteristic construction method that suppresses arc discharge as much as possible by using an anti-element is taken.
[0043]
In solving the problem, the apparatus of the present invention is located near both ends supported by various supports of a metal cylindrical outer cylinder that does not have an overhanging piece for heat dissipation extending on the outer circumferential surface longitudinal spiral related to arc discharge. A plurality of three-phase resistor circuits, each having a high-voltage resistance element having a high-voltage resistance sleeve that is detachably fitted and fixed to the board, and a plurality of the high-voltage resistance-resistance elements connected in series are connected to Δ. Characteristic constituent means having a high-voltage resistor circuit connected in parallel is taken.
[0044]
More specifically, in solving the problem, the present invention achieves the object by adopting each of the novel characteristic constituent means listed below.
[0045]
That is, the first feature of the device of the present invention is that a metal cylindrical outer cylinder using an outer sheath as a total protective covering material is smoothed, and electrode rods inserted from both ends of the outer cylinder. The spiral resistance heating wire stretched between the inner ends, and the electrode dedicated and the powdered insulator filled between the resistance heating portion and the inner wall surface of the outer cylinder are baked and solidified to solidify the spiral. Insulator with embedded resistance heating wire and cylindrical shape that can be inserted and secured to both ends of the outer cylinder supported at both ends, and the length and thickness can be adjusted according to the operating voltage. A high-voltage resistor element having a high-voltage insulating sleeve is formed, and is penetrated on both side array plates of a chassis earth type rectangular tube box having a cooling air outlet at the lower end and a heat exhaust air outlet at the upper end. The high voltage insulation sleeve is attached to each corresponding support port. In addition, both ends of the high-voltage resistor element can be pulled out one by one and supported so as to be able to suppress high-voltage arc discharge, and a resistor array phase connecting a plurality of the high-voltage resistor elements in series is connected to Δ. The present invention employs a configuration of a dry type high voltage resistance device having a high voltage resistance circuit for connecting a plurality of the three-phase resistor circuits in parallel.
[0046]
A second feature of the device according to the present invention is that the high voltage resistor element according to the first feature of the device according to the present invention has a capacity of about 412.5v and a capacity of about 1.74 kW. Adopted.
[0047]
According to a third feature of the device of the present invention, the resistor array phase in the second feature of the device of the present invention is a dry type in which about 16 high-voltage resistor elements are connected in series with respect to a working voltage of 6600v. It is in the configuration adoption of the high voltage resistance device.
[0048]
A fourth feature of the device according to the present invention is that the three-phase resistor circuit according to the second or third feature of the device according to the present invention has a configuration of a dry high-voltage resistor device having a capacity of about 83.52 kw. .
[0049]
A fifth feature of the device according to the present invention is that the high withstand voltage insulating sleeve according to the first, second, third or fourth feature of the device according to the present invention is made of a material having an AC withstand voltage of about 12000 v / mm for 1 minute. When the thickness is about 3 mm, the dry high voltage resistance device is a sintered ceramic having a dielectric strength close to about 36000 v / 1 minute.
[0050]
A sixth feature of the device of the present invention resides in the adoption of a dry type high-voltage resistance device in which the high voltage insulation sleeve in the fifth feature of the device of the present invention has a thickness of about 3 mm.
[0051]
A seventh feature of the device of the present invention is that the array plate according to the first, second, third, fourth, fifth, or sixth feature of the device of the present invention is capable of withdrawing the high-voltage insulating sleeve. A dry type high-voltage resistance device is adopted in which a circular support port of a size that fits through is provided in a plurality of multi-stage rows so that the upper and lower stage arrangement positions are arranged in a half-like manner with the interval being shifted by half.
[0054]
The first feature of the method of the present invention is to form a high-voltage resistance circuit by connecting a plurality of three-phase resistor circuits in which a plurality of high-voltage resistor elements are connected in series to each other and connecting in parallel a plurality of three-phase resistor circuits. A metal cylindrical outer cylinder with a smooth surface and an outer sheath as the entire protective covering material, and a threaded shape stretched between the inner ends of the electrodes dedicated from both ends of the outer cylinder A resistance heating wire, and an insulator in which the helical resistance heating wire is embedded and fixed by baking and solidifying a powdery insulator filled between the electrode heating and the resistance heating wire and the inner wall surface of the outer cylinder; The high-pressure insulation sleeve having a high pressure-resistant insulating sleeve that is formed in a cylindrical shape that is detachably fitted and fixed to both ends of the outer cylinder that is supported at both ends, and whose length and thickness can be adjusted according to the operating voltage. Using a resistor element, the cooling vent at the lower end and the upper end Both ends of the high-voltage resistor element can be pulled out to the outside one by one through the high-voltage insulation sleeves in the corresponding support ports provided through the two-sided array plates of the chassis earth type rectangular cylinder box with the respective heat exhaust openings. By supporting through, it is easy to replace each high-voltage resistor element at the time of disconnection, and suppresses high-voltage arc discharge between the high-voltage resistor element and the both side array plates or between the parallel high-voltage resistor elements. The dry high voltage resistance device arc discharge prevention method is employed.
[0055]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the accompanying drawings based on the apparatus examples and methods.
Prior to the description of the present embodiment, an example of a resistor element used in the device example will be described.
[0056]
(Example of resistor element)
FIG. 1 is a partially omitted cutaway side view showing a high voltage resistor element in which a high voltage insulating sleeve is disassembled and removed, and FIG. 2 is a partially omitted cutaway showing a mounting state of the high voltage resistor element penetrating both ends of the array plate. It is a side view.
In the resistor element example, the same parts are denoted by the same reference numerals, and the same reference numerals without a dash (') represent the corresponding parts of the conventional example. The following apparatus examples and method examples are also the same.
[0057]
In the figure, reference numeral 1 is a high-voltage resistor element, and 2 is a metal outer cylinder, which has a shape that makes it difficult to generate discharge by smoothing the surface, and satisfies the requirements of excellent heat dissipation characteristics even without a spiral protruding piece. An exterior sheath is used as the entire protective covering material for the object 5. Reference numeral 3 denotes a coiled resistance heating wire stretched between the inner ends of the electrode rods 4 and 4 inserted respectively from both ends of the outer cylinder 2.
[0058]
Reference numeral 5 denotes an insulator similar to the conventional example 5 '. However, the powdery material is baked and solidified by heating, and the inner wall of the outer cylinder 2, the conductive metal electrode rods 4 and 4, and the resistance heating wire 3 It is filled between. As a result, the insulator 5 serves to uniformly insulate the outer cylinder 2 from the electrode rods 4 and 4 and the resistance heating wire 3, and absorbs the vibration energy from the outside to absorb the resistance heating wire 3 having a weak self-holding force. The effect of fixing firmly will also be exhibited.
[0059]
Moreover, since it is solidified unlike the conventional thing, the insulator 5 is not biased by external force vibration, and reliable insulation can be expected. Reference numeral 7 denotes a connection terminal that is inserted into the electrode rod 4 and the screw portion 4a at the outer end, and is clamped and fixed on both sides by nuts 8 and 8.
[0060]
Reference numeral 19 denotes a high voltage insulating sleeve. The high withstand voltage insulating sleeve 19 is excellent in electrical withstand voltage characteristics, heat resistance, water resistance (when testing is performed outdoors, it may be destroyed by rapid cooling of rain water, etc.), load resistance and impact resistance. Sintered ceramic is used. A material having an AC withstand voltage of 12000 v / mm for 1 minute is used as an electrical characteristic. For example, when the thickness is 3 mm, a material having a dielectric strength close to 36000 v / min can be manufactured.
[0061]
Further, the shape of the high voltage insulating sleeve 19 is cylindrical, and when the outer diameter of the outer cylinder 2 of the high voltage resistor element 1 is 12 mm, for example, the inner diameter is about 12.5 mm and the outer diameter is 3 mm. In this case, it becomes about 18.5 mm. The length and thickness are adjustable according to the operating voltage.
In addition, as shown in FIG. 2, the lengths on both sides of the support port 12b of the array plate 12a in consideration of a decrease in insulation value due to surface contamination and moisture are about 50 mm.
[0062]
Needless to say, these numerical values are merely examples, and are not limited to these numerical values. In the figure, reference numerals 26 and 27 denote retaining grooves with spring grooves. The former fastens an extractable high-pressure insulating sleeve 19 to the support port 12b of the array plate 12a, and the latter attaches the removable outer cylinder 2 to the high-pressure insulating sleeve. It stops at 19.
[0063]
An array plate 12a corresponds to the array plate 12a 'of the rectangular cylinder box 12' in FIG. 7 showing the resistor array phase 10 of the conventional example, and includes a group of high-voltage resistor elements penetrating both ends. The three-phase resistor circuit 17 can be used as a support when the three-phase resistor circuit 17 is formed so as to be significantly smaller after being connected to the protruding piece 9 minutes. Further, the rectangular cylinder box 12 itself can be configured so as not to be disassembled.
Accordingly, the rectangular cylinder box 12 itself for overhanging and storing the group of high-voltage resistance-resistant elements that are lightweight and compact is miniaturized to at least 1/3.
[0064]
(Example of equipment)
An example of an apparatus showing an embodiment of the present invention using the high-voltage resistor element will be described with reference to the drawings.
FIG. 3 is a partially broken front view of the device example in which both ends of the high-voltage resistor element group are passed through the both-side array plate of the rectangular cylinder box, and FIG. FIG. 5 is a longitudinally parallel explanatory view of a three-phase resistor circuit in which three resistor row phases are Δ-connected. In the figure, 26 is an R, S, T3 phase distribution line connected to the high voltage power generator.
[0065]
As shown in FIGS. 3 and 4, the high-voltage resistor element 1 has a cooling air outlet 12c at the lower end and a heat radiating air outlet 12d at the upper end, respectively, as shown in FIG. A plurality of circular support ports 12b arranged in a plurality of rows arranged in a plurality of rows in the form of a reciprocally spaced half-piece, and a plurality of support ports 12b of the parallel array plate 12a of the chassis earth type rectangular tube box 12 are detachably inserted. The both ends of the high-voltage resistor elements 1 are arranged in an alternating half-like ridge shape, with both ends penetrating through the pressure-resistant insulating sleeve 19.
[0066]
Each high-voltage resistor element 1 has an interval that can maintain the insulation performance according to the operating voltage, and extends over one end-side connection terminal 7 every other high-voltage resistor element 1 adjacent to each other in each stage row. Are alternately connected to the other end side connection terminals 7 in series by connecting members 11 to form resistor row phases 10 of R, S, and T phases.
[0067]
The R, S, T resistor array phase No. 10 is connected to the first open connection terminal 7 by the R, S, T distribution main line 28 'and the connection line 29, and the 16th open connection terminal is A three-phase resistor circuit α is formed by connecting the S, T, R of the other connected distribution branch line 28 ″ with the connection line 30.
The three-phase resistor circuit α group is connected in parallel across the three-phase distribution main line 28 ′ and the three-phase distribution branch line 28 ″ to obtain the dry high-voltage resistance device γ equipped with the high-voltage resistance circuit β.
[0068]
【Example】
In this embodiment, for example, a resistor row phase 10 in which 16 high-voltage resistor elements 1 of 412.5 v and 1.74 kW, for example, are connected in series with respect to a use voltage of 6600 v is connected to Δ in units of three-stage rows. An 83.52 kw three-phase resistor circuit α is formed, and three sets of the three-phase resistor circuits α are arranged in parallel, for example, 250 kw and six sets are arranged in parallel to form, for example, 500 kw.
[0069]
(Example method)
A method example showing an embodiment of the present invention applied to the dry type high voltage resistance device γ will be described.
In this method example, even if one of the high-voltage resistor elements 1 is disconnected in the high-voltage resistor circuit β having the three-phase resistor circuit α group Δ-connected to the group of high-voltage resistor elements having the special structure, the electrical adverse effect is obtained. Falls within the three-phase resistor circuit α to which it belongs, and can prevent chain disconnection extending to other adjacent three-phase resistor circuits α.
[0070]
In addition, even if the high-voltage resistor element 1 of a certain three-phase resistor circuit α is disconnected due to arc discharge or natural deterioration, the resistor row phase in the three-phase resistor circuit α is combined with the structure having discharge resistance. The arc discharge between the high-voltage resistor elements 1 between 10 is also suppressed, and the arc discharge with the high-voltage resistor element 1 of the other three-phase resistor circuit α in parallel is also suppressed, and the other three-phase resistor circuit α is chain-disconnected. Therefore, safe and stable operation control is ensured and a reliable load test is guaranteed.
[0071]
Further, in the alternating array of the high-voltage resistor elements 1 between the respective stages, the expansion of the array interval is accompanied by an effect of preventing arc discharge.
[0072]
The typical apparatus example and method example of the present embodiment have been described above, but the present invention is not necessarily limited only to the means of the apparatus example and the method of the method example. The object of the present invention can be achieved and can be implemented with appropriate modifications within a range having the effects described below.
[0073]
【The invention's effect】
As described above, the present invention employs a high-voltage resistor element having excellent insulation resistance and arc discharge resistance, thereby allowing arc discharges between the high-voltage resistor elements of the parallel resistor array phases in the same three-phase resistor circuit. In addition, the cause of chain disconnection due to arc discharge between the high-voltage resistor elements of the three-phase resistor circuits in parallel can be eliminated, and stable operation and operation with high fidelity can be ensured.
[0074]
Moreover, the disconnected high-voltage resistor elements can be removed and replaced with new high-voltage resistor elements by removing the spring groove retaining ring from the array plate of the dry high-voltage resistor device. It is possible to cope with any disconnection accident of the high voltage resistance circuit.
[Brief description of the drawings]
FIG. 1 is a partially broken vertical cutaway side view of a high-voltage resistor element in which a high-voltage insulating sleeve used in the present invention is disassembled and removed.
FIG. 2 is a partly omitted vertical fracture side view showing a mounting state of the high-voltage resistor element penetrating and passing through both ends of the high-voltage resistor element on the array plate.
FIG. 3 is a partially cutaway front view of a dry high-voltage resistance device showing an embodiment of the present invention and having both ends of a high-voltage resistor element group penetrating over both side array plates of a chassis earth type rectangular cylinder box.
FIG. 4 is a central longitudinal sectional view of a resistor array phase by series connection of high-voltage resistor elements penetrating both ends of an array plate in the dry-type high-voltage resistor device.
FIG. 5 is a longitudinally parallel explanatory view of a three-phase resistor circuit in which the same three-phase resistor array phases are Δ-connected.
FIG. 6 is a partially cutaway side view of a conventional high-voltage resistor element.
FIG. 7 is a plan view of a resistor array phase connected in series with high-voltage resistor elements penetrating both ends to an array plate on both sides of the rectangular cylinder box broken in the same manner.
FIG. 8 is a schematic configuration perspective view of the dry high-voltage resistance device.
FIG. 9 is a partially cutaway view in which a cooling fan is provided in the dry high-voltage resistance device.
FIG. 10 is an equivalent circuit diagram of the Y-connected three-phase resistor circuit.
FIG. 11 is an equipotential arrangement diagram of the RN phase in the high-voltage resistance circuit.
FIG. 12 is a Y series equivalent circuit of the above dry type high voltage resistance device.
FIG. 13 is a Y series equivalent circuit of the dry type high voltage resistance device when the R row phase is disconnected in the same manner as in FIG.
FIG. 14 is an explanatory diagram of disconnection and potential increase according to the same.
FIG. 15 is an RN phase different potential arrangement diagram in the high-voltage resistor circuit when the R row phase is disconnected in the same row as above.
[Explanation of symbols]
α, 17… 3-phase resistor circuit
β, 25 ... high voltage resistance circuit
γ, 13 ... Dry type high voltage resistance device
1, 1 '... high voltage resistor element
2, 2 '... outer cylinder
3. Resistance heating wire
4 ... Electrode bar
5,5 '... insulator
6 ... Sealing member
7 ... Connection terminal
8 ... Nut
9 ... Overhang piece
9a ... Pointed edge
10, 10 '... resistor array phase
11: Connection member
12, 12 '... rectangular tube box
12a, 12a '... array plate
12b ... support port
12c ... Cooling vent
12d ... Radiating exhaust vent
14 ... Cooling fan
15 ... 1st terminal board
16 ... Input line
18, 29, 30 ... connection lines
19 ... 2nd terminal board
20 ... Neutral wire
21 ... Anti-vibration rubber
22 ... Insulator
23 ... Food
24 ... Blower
26, 27 ... Retaining ring with spring groove
28 ... Three-phase distribution line
28 '... Three-phase distribution main line
28 ″… 3 phase distribution branch line

Claims (8)

表面を滑らかにし、全保護覆い素材として外装シースを用いた金属製円筒状の外筒と、当該外筒の両端からそれぞれ内挿された電極棒の内端相互間に亙り張設した螺施状抵抗発熱線と、当該電極捧及び当該抵抗発熱部と前記外筒の内壁面との間に充填された粉末状絶縁物を焼き付け固形化して当該螺旋状抵抗発熱線を埋蔵固定した絶縁物と、両端支持される前記外筒の両端寄り部位に抜き出し自在に嵌挿止着した円筒状にして、使用電圧に応じて長さと厚味を調整自在に形成される高耐圧絶縁スリーブとを具備する高圧抵抗体素子を形成し、
下端に冷却送風口をかつ上端に放熱排風口をそれぞれ開口したシャーシーアース型方形筒ボックスの両側配列板に貫設した各対応支持口に前記高耐圧絶縁スリーブを介して、当該高圧抵抗体素子両端を1本ずつ外部に抜き出し可能にかつ高圧アーク放電抑止可能に貫通支持するとともに、
当該高圧抵抗体素子を直列に複数接続する抵抗体列相をΔに結線した当該3相抵抗体回路の複数を並列に接続する高圧抵抗回路を有する、
ことを特徴とする乾式高圧抵抗装置。
A metal cylindrical outer cylinder with a smooth surface and an outer sheath as the entire protective covering material, and a threaded shape stretched between the inner ends of the electrode rods inserted from both ends of the outer cylinder. A resistance heating wire, and an insulator in which the helical resistance heating wire is embedded and fixed by baking and solidifying a powdered insulator filled between the electrode and the resistance heating portion and the inner wall surface of the outer cylinder; A high-pressure insulating sleeve having a high pressure-resistant insulating sleeve that is formed in a cylindrical shape that is detachably fitted and fixed to both ends of the outer cylinder that is supported at both ends, and whose length and thickness can be adjusted according to the operating voltage. Forming a resistor element;
The high-voltage resistor element is connected to the corresponding support ports provided through the high-voltage insulation sleeves through the both side array plates of the chassis earth type rectangular tube box having the cooling air outlet at the lower end and the heat exhaust air outlet at the upper end. While supporting both ends so that they can be pulled out one by one and high voltage arc discharge can be suppressed,
A high-voltage resistor circuit that connects a plurality of the three-phase resistor circuits connected in parallel to the resistor row phase connecting a plurality of the high-voltage resistor elements in series;
A dry-type high-voltage resistance device characterized by that.
前記高圧抵抗体素子は、
約412.5v前後間、約1.74kw前後間の容量を有する、
ことを特徴とする請求項1に記載の乾式高圧抵抗装置。
The high-voltage resistor element is
It has a capacity between about 412.5v and about 1.74kw,
The dry high-voltage resistance device according to claim 1.
前記抵抗体列相は、
使用電圧6600vに対し、前記高圧抵抗体素子を約16本前後直列接続する、
ことを特徴とする請求項2に記載の乾式高圧抵抗装置。
The resistor array phase is:
About 16 high-voltage resistor elements are connected in series for a working voltage of 6600 v.
The dry-type high-voltage resistance device according to claim 2.
前記3相抵抗体回路は、
約83.52kw前後間の容量を有する、
ことを特徴とする請求項2又は3に記載の乾式高圧抵抗装置。
The three-phase resistor circuit is
Having a capacity of around 83.52 kW,
The dry high-voltage resistance device according to claim 2 or 3,
前記高耐圧絶縁スリーブは、
交流耐電圧約12000v/mm1分間の素材を用いて厚さ約3mmとすると約36000v/1分間に近い絶縁耐力を有する焼結セラミックである、
ことを特徴とする請求項1、2、3又は4に記載の乾式高圧抵抗装置。
The high voltage insulation sleeve is
A sintered ceramic having a dielectric strength close to about 36000 v / min when the thickness is about 3 mm using a material having an AC withstand voltage of about 12000 v / mm for 1 min.
The dry high-voltage resistance device according to claim 1, 2, 3, or 4.
前記高耐圧絶縁スリーブは、
約3mm前後間厚である、
ことを特徴とする請求項5に記載の乾式高圧抵抗装置。
The high voltage insulation sleeve is
About 3 mm thick,
The dry high-voltage resistance device according to claim 5.
前記配列板は、
前記高耐圧絶縁スリーブが抜出自在に貫嵌する大きさの円形支持口を、上下各段配列位置を半部ずつ間隔をずらせた相互齟齬状に複数多段列に貫設してなる、
ことを特徴とする請求項1、2、3、4、5又は6に記載の乾式高圧抵抗装置。
The array plate is
A circular support port having a size that allows the high-pressure insulating sleeve to be freely inserted is formed in a plurality of multi-stage rows in a vertical manner with the upper and lower stages arranged at half intervals.
The dry-type high-voltage resistance device according to claim 1, 2, 3, 4, 5 or 6.
高圧抵抗体素子を直列に複数接続する抵抗体列相をΔに結線した3相抵抗体回路の複数を並列に接続して高圧抵抗回路を形成するに当り、表面を滑らかにし、全保護覆い素材として外装シースを用いた金属製円筒状の外筒と、当該外筒の両端からそれぞれ内挿された電極捧の内端相互間に亙り張設した螺施状抵抗発熱線と、当該電極捧及び当該抵抗発熱線と前記外筒の内壁面との間に充填された粉末状絶縁物を焼き付け固形化して当該螺旋状抵抗発熱線を埋蔵固定した絶縁物と、両端支持される前記外筒の両端寄り部位に抜き出し自在に嵌挿止着した円筒状にして、使用電圧に応じて長さと厚味を調整自在に形成される高耐圧絶縁スリーブを具備する前記高圧抵抗体素子を用いて、
下端に冷却送風口をかつ上端に放熱排風口をそれぞれ開口したシャーシーアース型方形筒ボックスの両側配列板に貫設した各対応支持口に前記高耐圧絶縁スリーブを介して当該高圧抵抗体素子両端を1本ずつ外部に抜き出し可能に貫通支持することにより、当該各高圧抵抗体素子の断線時の交換を容易とするとともに、当該高圧抵抗体素子と前記両側配列板間や並列する当該高圧抵抗体素子相互間の高圧アーク放電を抑止する、
ことを特徴とする乾式高圧抵抗装置アーク放電防止方法。
When forming a high-voltage resistor circuit by connecting a plurality of three-phase resistor circuits in which a plurality of resistor elements are connected in series to each other and connecting them in parallel, the surface is smoothed and used as a protective covering material. A metal cylindrical outer cylinder using an outer sheath, a screw-like resistance heating wire stretched between inner ends of the electrode elements inserted from both ends of the outer cylinder, the electrode elements and the electrode elements An insulator in which a powdered insulator filled between the resistance heating wire and the inner wall surface of the outer cylinder is baked and solidified to embed and fix the spiral resistance heating wire, and both ends of the outer cylinder supported at both ends are supported. Using the high-voltage resistor element comprising a high-voltage insulation sleeve that is formed into a cylindrical shape that can be freely inserted into and removed from the site, and the length and thickness can be adjusted according to the operating voltage,
Both ends of the high-voltage resistor element through the high-voltage insulating sleeves to the corresponding support ports penetrating the both side array plates of the chassis earth type rectangular tube box having the cooling air outlet at the lower end and the heat radiating air outlet at the upper end, respectively. The high-voltage resistor elements can be pulled out and supported one by one so that the high-voltage resistor elements can be easily replaced when disconnected. Suppresses high-pressure arc discharge between elements,
A dry-type high-voltage resistance device arc discharge prevention method characterized by the above.
JP2003174490A 2003-06-19 2003-06-19 Dry high voltage resistance device and arc discharge prevention method for the same Expired - Lifetime JP3842760B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003174490A JP3842760B2 (en) 2003-06-19 2003-06-19 Dry high voltage resistance device and arc discharge prevention method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003174490A JP3842760B2 (en) 2003-06-19 2003-06-19 Dry high voltage resistance device and arc discharge prevention method for the same

Publications (2)

Publication Number Publication Date
JP2005011988A JP2005011988A (en) 2005-01-13
JP3842760B2 true JP3842760B2 (en) 2006-11-08

Family

ID=34097960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003174490A Expired - Lifetime JP3842760B2 (en) 2003-06-19 2003-06-19 Dry high voltage resistance device and arc discharge prevention method for the same

Country Status (1)

Country Link
JP (1) JP3842760B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108257749B (en) * 2016-12-29 2024-01-12 中国空气动力研究与发展中心超高速空气动力研究所 Steel wire resistor device of starting circuit of chip arc heater and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005011988A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
JP5265264B2 (en) Dry load test equipment
US7847439B2 (en) Dry-type high-voltage load system apparatus and method of preventing chain breaking and arc discharge for use therewith
JP4898960B2 (en) Surge arrester
US9557349B2 (en) Measuring system for continuously monitoring a high-voltage bushing
RU2554604C1 (en) Load testing machine
JP3653520B2 (en) Dry high voltage resistance device and method for preventing chain disconnection of the device
JP3842760B2 (en) Dry high voltage resistance device and arc discharge prevention method for the same
WO2017072818A1 (en) Sheathed heater and load testing device
US7218201B2 (en) High pressure resistance body element
JP6312231B1 (en) Resistor used for load test device, resistor set used for load test device, and load test device
JP5805905B1 (en) Load test equipment, cap of load test equipment
US10134553B2 (en) Contact arms for use in electrical switchgear and methods of fabricating same
KR101160228B1 (en) Multi-Function Instantaneous Trip Apparatus Based Surge Protect Device
KR102014247B1 (en) Encapsulated surge arrester
JP6312232B1 (en) Load test equipment
JP2004363545A (en) High voltage resistor element
JP2010205852A (en) Lightning arrestor
RU2408962C1 (en) Isolator
TW201220330A (en) prevents arc flashover from abnormal transient high voltage during transformer ground fault and avoids transformer burn down
KR20190060381A (en) Switchboard heat emmitting apparatus
JP2018037194A (en) Bushing and switch
TWM356995U (en) Improved transformer structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20060517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

R150 Certificate of patent or registration of utility model

Ref document number: 3842760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term