JP3842600B2 - 荷電物質移動装置 - Google Patents

荷電物質移動装置 Download PDF

Info

Publication number
JP3842600B2
JP3842600B2 JP2001264752A JP2001264752A JP3842600B2 JP 3842600 B2 JP3842600 B2 JP 3842600B2 JP 2001264752 A JP2001264752 A JP 2001264752A JP 2001264752 A JP2001264752 A JP 2001264752A JP 3842600 B2 JP3842600 B2 JP 3842600B2
Authority
JP
Japan
Prior art keywords
electrode
polarity
electrodes
voltage
biological material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264752A
Other languages
English (en)
Other versions
JP2003075302A (ja
Inventor
章裕 笠原
義雄 石森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001264752A priority Critical patent/JP3842600B2/ja
Priority to US10/230,149 priority patent/US7198754B2/en
Priority to DE10240094A priority patent/DE10240094B4/de
Priority to CN02141990.6A priority patent/CN1410548A/zh
Publication of JP2003075302A publication Critical patent/JP2003075302A/ja
Application granted granted Critical
Publication of JP3842600B2 publication Critical patent/JP3842600B2/ja
Priority to US11/690,873 priority patent/US20070190665A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば遺伝子やタンパク質などの生体物質のような荷電物質を移動するための荷電物質移動装置に係り、特に生体物質検出装置に好適な荷電物質移動装置に関する。
【0002】
【従来の技術】
近年、遺伝子やタンパク質のような生体物質の検出システムの開発が進められている。例えば、遺伝子の検出はインターフェロンによる治療効果予測に利用されている。このインターフェロンによる治療効果予測を例に、従来の生体物質検出技術について述べる。
【0003】
C型肝炎に感染すると、肝硬変を経て肝癌に進行することが知られており、その治療法の一つにインターフェロンを用いる方法がある。ただ、日本人ではインターフェロンの照射は約2〜3割の人にしか効果がなく、効果があっても非常に強い副作用が報告されている。そのため、あらかじめインターフェロンの治療効果を予測し、効果が期待できるときだけ使うテイラーメイド医療が最近注目され始めた。
【0004】
インターフェロンによる治療効果の予測には、これまでウイルスの型およびウイルス量を遺伝子レベルで調べる方法が知られている。これは日本人に多い1b型には効果が少ないが、2a型には効果的に作用し、またウイルス量が106copy/mL以上と多い場合にも効果が少ないと考えられている。実際の診断ではこれらの組み合わせによることが多く、予測が難しい場合があった。また最近、インターフェロンによる治療効果を予測する方法として、MxAたんぱく質をコードする遺伝子のプロモータ領域に存在する一塩基多型(SNP)を指標にした方法が報告された。これはG/G型ではインターフェロンの効果が低く、逆にG/T型、T/T型には効果的に作用するというものである。
【0005】
このように遺伝子レベルの解析で、インターフェロンの治療効果予測が可能になりつつあるが、これまでは全て煩雑で高価な従来技術(電気泳動やマイクロプレート+EIA等)を利用して検出を行う方法であり、臨床検査として行う場合はより簡便な手法が求められていた。
【0006】
このような背景の下で最近、DNAチップと呼ばれる生体物質検出用素子による遺伝子検査技術が注目を集めている(Beattie et al. 1993, Fodor et al. 1991, Khrapko et al. 1989, Southern et al. 1994)。DNAチップは、複数種の配列が異なるDNAプローブを固定化した数cm角の硝子やシリコンのチップからできており、チップ上で蛍光色素や放射線同位元素(RI)等で標識した試料遺伝子、あるいは未標識の試料遺伝子と標識オリゴヌクレオチドの混合物を反応させる。試料中にチップ上のDNAプローブと相補的な配列が存在すると、チップ上の特定部位で標識に由来する信号が得られる。固定化しておいたDNAプローブの配列と位置があらかじめ分っていれば、試料遺伝子中に存在する塩基配列を簡単に調べることができる。こうしたDNAチップは、1回の試験で塩基配列に関する多くの情報が得られることから、臨床診断技術として利用できる可能性がある(Pease et al. 1994, Parinov et al. 1996)。
【0007】
【発明が解決しようとする課題】
上述したような生体物質検出装置では、DNAチップなどの生体物質検出用素子上の電極に形成されたDNAプローブなどのリガンドと、試料液中の検出対象の生体物質を反応させるために、生体物質検出素子上で試料液中の生体物質を移動させることが必要となる。ところが、従来では試料液を単純に生体物質検出用素子上に流していたため、生体物質をそれに対応するリガンドと必ずしも反応させることができないという問題があった。
【0008】
また、一般的には特に検出対象が遺伝子の場合、試料液中の遺伝子濃度が低いために、PCR法などの遺伝子増幅法により予め対象となる遺伝子を増幅する必要があった。
【0009】
本発明は、このような問題点を解決するためになされたものであり、生体物質のような荷電物質と荷電物質検出用素子上の各リガンドとを効率良く反応させるように荷電物質を移動させることができる荷電物質移動装置を提供することを目的とする。
【0010】
また、本発明はさらに試料中の検出対象荷電物質の濃縮をも可能として生体物質検出装置に用いた場合の検出感度向上を達成できる荷電物質移動装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明は基板と、この基板上に所定の配列方向に沿って配列された複数の電極と、試料溶液中の荷電物質を該電極上でその配列方向に沿って移動させるために該電極を駆動する駆動回路とを具備し、駆動回路は複数の電極のうちの一部の電極に荷電物質の荷電極性と逆極性の電圧を印加し、かつ該逆極性の電圧を印加する電極の位置を電極の配列方向に順次変化させることを特徴とする。遺伝子検出装置に適用する場合、複数の電極には所定の荷電物質と反応するリガンドがそれぞれ固定化される。
【0012】
このように荷電物質は電極上をその配列方向に沿って順次移動するので、生体物質の検出に適用した場合、生体物質と電極に固定化された各リガンドとを効率良く反応させることが可能となる。
【0013】
また、本発明では駆動回路が複数の電極のうち荷電物質の荷電極性と逆極性の電圧を印加する電極に対して、電極の配列方向で隣接する少なくとも一つの電極に荷電極性と同一極性の電圧を印加してもよい。このように電極に電圧を印加すると、所定の電極に静電吸引力でトラップされた荷電物質が隣接する電極からの静電反発力で当該所定の電極上に閉じ込められることにより、荷電物質の濃縮も可能となるため、生体物質検出に用いた場合、検出感度が向上する。
【0014】
【発明の実施の形態】
以下、図面を参照して本発明の生体物質検出装置に適用した実施の形態について説明する。
図1は、本発明の一実施形態に係る生体物質検出装置の構成を示す断面図である。基台1は、中央上部に後に詳しく説明する生体物質検出用素子5を載せるための突出した素子載置部2を有し、さらに図中左側に試料液通過孔3、中央下部に試料液通過孔3に連通した試料液排出口4をそれぞれ有する。
【0015】
基台1上には、素子載置部2に載せられた生体物質検出用素子5を上下両側から保持すると共に、素子5への試料液の案内と、素子5を通過した試料液の試料液通過孔3への案内を主として行うための上部ホルダ6及び下部ホルダ7が配置されている。
【0016】
上部ホルダ6の中央部には試料液導入部8が設けられており、この試料液導入部8には試料液供給パイプ10が接続されている。試料液供給パイプ10から試料液導入部8に導入された試料液は、生体物質検出用素子5上に案内され、ここで生体物質の検出に供された後、下部ホルダ6と上部ホルダ7とによって形成された試料液案内ダクト9及び基台1に形成された試料液通過孔3を経て、試料液排出口4から外部へ排出される。
【0017】
上部ホルダ6には長方形状の貫通孔11が形成されており、この貫通孔11を通して接触電極15を挿入することにより、接触電極15の先端を生体物質検出用素子5上の作用極として機能する電極に接触させることが可能である。この接触電極15を用いることにより、生体物質検出用信号を電流、電位などの電気的信号として取り出すことができる。
【0018】
図2は、生体物質検出用素子5の構成を示す平面図である。素子基板20上の図1中に示した試料液導入部8直下の位置に、凹部からなる試料液受入部21が設けられている。さらに、素子基板20上には試料液受入部21に一端を連通させた渦巻き状の試料液案内溝22が形成され、この案内溝22の底部に渦巻きに沿って作用極として機能する複数の円形状の電極23が配列されている。素子基板20の案内溝22の他端には試料液排出部24が設けられ、この試料液排出部24は図1中に示した試料液案内ダクト9に連通している。
【0019】
電極23には、少なくとも一種類の特異的検出用リガンドが固定されている。すなわち、電極23はリガンド固定化部を兼ねている。電極23の各々に固定化されるリガンドは、検出対象の生体物質に応じて、例えば遺伝子、遺伝子プローブ、タンパク質、タンパク質断片、補酵素、レセプタ及び糖鎖のいずれかから選択される。
【0020】
電極23の各々に異なったリガンドを固定化すれば、一度に複数の生体物質を検出することができる。また、電極23の各々に同じリガンドを固定化することで、一度に多数の生体物質の検出を行うことも可能である。フォトリソグラフィを利用して、あらかじめ素子基板20上に多数の電極23(リガンド固定化部)をパターニングしておくと、生体物質検出用素子5の量産性が向上する。
【0021】
電極23は、例えば素子基板20上に形成された多層配線により電極パッド25にそれぞれ接続される。電極パッド25には、電極23に所定の電圧を印加して電極23を駆動する駆動回路26が接続される。この駆動回路26の動作については、後に詳しく説明する。
【0022】
このように試料液供給パイプ10から供給される試料液は、上部ホルダ6及び下部ホルダ7により案内されて生体物質検出用素子5に中央部から導入され、素子5の周辺部に設けられたリガンド固定化部上に均一に供給された後、下方から排出される構成となっている。従って、試料液中の生体物質の検出を均一な条件で行うことが可能である。
【0023】
検出対象生体物質が遺伝子の場合、電極23にはリガンドとしてDNAプローブが固定される。DNAプローブとは、周知のように特定の遺伝子と反応する1本鎖遺伝子である。試料液中の遺伝子を1本鎖状態にしておくと、電極23に固定されているDNAプローブに対応して特定の配列を持つ遺伝子のみが電極23にトラップされ、やがてDNAプローブとその遺伝子とが相補的な結合を行う(ハイブリダイゼーション)。
【0024】
以上の構成をさらに具体的に説明すると、まず、素子基板20に用いる基板材料は特に限定されるものではないが、例えばガラス、石英ガラス、アルミナ、サファイア、フォルステライト、炭化珪素、酸化珪素、窒化珪素、等の無機絶緑材料を使用できる。また、ポリエチレン、エチレン、ポリプロピレン、ポリイソブチレン、ポリメチルメタクリレート、ポリエチレンテレフタレート、不飽和ポリエステル、含フッ素樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリビニルアセタール、アクリル樹脂、ポリアクリロニトリル、ポリスチレン、アセタール樹脂、ポリカーボネート、ポリアミド、フェノール樹脂、ユリア樹脂、エポキシ樹脂、メラミン樹脂、スチレン・アクリロニトリル共重合体、アクリロニトリルブタジエンスチレン共重合体、シリコーン樹脂、ポリフェニレンオキサイド、ポリスルホン等の有機材料を基板材料に用いることもできる。さらに、後述する光学的手法で生体物質検出を行う場合であれば、基板材料としてナイロンやセルロースなどの繊維薄膜を適用することも可能である。
【0025】
電極23に用いる電極材料についても、特に限定されるものではないが、リガンド固定化スポットを含む電極については、生体物質の検出を電気化学的に検出する場合、例えば、金、金の合金、銀、プラチナ、水銀、ニッケル、パラジウム、シリコン、ゲルマニウム、ガリウム、タングステン等の金属単体及びこれらの金属を少なくとも2種以上含む合金、あるいはグラファイト、グラシーカーボン等の炭素等、またはこれらの酸化物、化合物、あるいは酸化珪素等の半導体化合物や、CCD、FET、CMOSなど各種半導体デバイスを用いることが可能である。
【0026】
電極23の作製法としては、メッキ、印刷、スパッタ、蒸着などを用いることができる。蒸着法としては、抵抗加熱法、高周波加熱法及び電子ビーム加熱法のいずれかを用いることができる。スパッタリング法としては、直流2極スパッタリング、バイアススパッタリング、非対称交流スパッタリング、ゲッタスパッタリング及び高周波スパッタリングのいずれかを用いることが可能である。さらに、電極としてポリピロール、ポリアニリンなどの電解重合膜や導電性高分子も用いることが可能である。
【0027】
電極23の表面を覆う絶縁性薄膜に用いる絶縁材料については、特に限定されるものではないが、例えばフォトポリマやフォトレジスト材料が好ましい。フォトレジスト材料としては、光露光用フォトレジスト、遠紫外用フォトレジスト、X線用フォトレジスト、電子線用フォトレジストが用いられる。光露光用フォトレジストには、主原料が環化ゴム、ポリけい皮酸、ノボラック樹脂が挙げられる。遠紫外用フォトレジストには、環化ゴム、フェノール樹脂、ポリメチルイソプロペニルケトン(PMIPK),ポリメチルメタクリレート(PMMA)等が用いられる。また、X線用レジストには、COP、メタルアクリレートほか、薄膜ハンドブック(オーム社)に薄膜ハンドブック(オーム社)に記載の物質を用いることができる。電子線用レジストには、PMMA等のような薄膜ハンドブック(オーム社)に記載の物質を用いることが可能である。ここで用いるレジストの厚さは10nm以上、1mm以下であることが望ましい。
【0028】
作用極である電極23をフォトレジストによって被覆し、リソグラフィを行うことで、電極23の面積を一定にすることが可能になる。これによって、DNAプローブなどのリガンド固定化量がそれぞれの電極23間で均一になり、再現性に優れた生体物質検出を可能にする。従来、レジスト材料は最終的には除去するのが一般的であるが、電極23がDNAプローブの固定された遺伝子検出用である場合においては、レジスト材料を除去することなく電極23の一部として用いることも可能である。この場合は、用いるレジスト材料に耐水性の高い物質を使用する必要がある。
【0029】
電極23の上部に形成する絶緑薄膜には、フォトレジスト材料以外の材料を用いることも可能である。例えば、Si、Ti、Al、Zn、Pb、Cd、W、Mo、Cr、Ta、Ni等の酸化物、窒化物、炭化物、そのの他合金を用いることも可能である。これらの材料をスパッタ、蒸着あるいはCVD等を用いて薄膜を形成した後、フォトリソグラフィで電極露出部のパターニングを行い、面積を一定に制御する。
【0030】
次に、図3〜図6を用いて駆動回路26の駆動動作について説明する。駆動回路26は、電極23に所定極性の電圧を印加することにより、生体物質検出用素子5上の中央部に設けられた試料液受入部21に受入した試料液中の検出対象生体物質を順次電極23の配列方向に移動させる。
【0031】
検出対象生体物質が遺伝子の場合、遺伝子の水溶液である試料液が試料液供給パイプ10から試料液導入部8を介して生体物質検出用素子5上の試料液受入部21に供給され、案内溝22によって電極23上に案内される。遺伝子の荷電極性は負であり、図3〜図6では検出対象生体物質が遺伝子の場合の駆動例について示している。図3〜図6は、いずれも電極23に対する電圧印加状態の時間的推移を示しており、(a)→(b)→(c)の順に電圧印加状態(電圧の極性)は推移するものとする。
【0032】
図3の駆動例について説明すると、まず図3(a)に示すように試料液受入部21に最も近い電極23−1に遺伝子の荷電極性と逆極性である正極性の電圧を印加し、この電極23−1に隣接する電極23−2に負極性の電圧を印加する。従って、試料液受入部21に供給された試料液は、遺伝子の荷電極性と逆極性の電圧が印加されている電極23−1による静電吸引力によって電極23−1上に移動する。この際、試料液に若干の負圧を与えると、試料液はより速やかに移動することができる。電極23−1に隣接する電極23−2には、遺伝子の荷電極性と同極性の電圧が印加されているため、遺伝子は電極23−1上にトラップされる。
【0033】
次に、図3(b)に示すように電極23−1に印加する電圧の極性を反転させて負極性とし、さらに隣接する電極23−2に印加する電圧の極性も反転させて正極性とする。このとき、試料液中の遺伝子はその荷電極性と同極性の電圧が印加された電極23−1からは静電反発力を受け、荷電極性と逆極性の電圧が印加された電極23−2からは静電吸引力を受けるため、電極23−1上から電極23−2上へと移動し、電極23−2上にトラップされることになる。
【0034】
次に、図3(c)に示すように電極23−2に印加する電圧の極性を反転させて負極性とし、さらに隣接する電極23−3に印加する電圧の極性も反転させて正極性とすることにより、試料液中の遺伝子を電極23−2上から電極23−3上へと移動させ、トラップさせる。
【0035】
以下、同様にして試料液中の遺伝子の荷電極性と同一極性の電圧を印加する電極の位置及び荷電極性と逆極性の電圧を印加する電極の位置を順次ずらせることにより、遺伝子を順次隣接する電極上へと移動させることができる。この移動の過程で、ある電極上に保持された特定の遺伝子が当該電極に固定化されているリガンドと相補的な配列を持っていると、それらの遺伝子とリガンドとが反応して結合することになる。すなわち、ハイブリダイゼーションが生じる。
【0036】
このようにして遺伝子は、生体物質検出用素子5において電極23上をその配列方向に沿って順次移動し、試料液排出部24から素子5の外部へ排出されることになる。
【0037】
図4に、本実施形態における駆動回路26の他の駆動例を示す。図3に示した駆動例では、例えば図3(b)を参照すると、電極23のうち遺伝子をトラップている電極の電極23−2の遺伝子の移動方向と反対側の電極23−1にのみ遺伝子の荷電極性と同極性である極性の電圧を印加したが、図4(b)に示すように移動方向側の電極23−3にも極性の電圧を印加するようにしてもよい。図4(a)(b)(c)は、それぞれ図3(a)(b)(c)と同じタイミングでの電圧印加状態を示しており、図4(a)に示す最初の状態は図3(a)と同様であるが、図4(b)(c)では正極性の電圧が印加された電極から見て遺伝子の移動方向前後(電極23の配列方向の両側)の電極に負極性の電圧を印加している。
【0038】
このようにすると、電極23のうち遺伝子をトラップしている正極性の電圧が印加された電極に対して、遺伝子移動方向前後の両電極に負極性の電圧が印加されていることにより、これら両電極による静電反発力によって、遺伝子をトラップしている電極上に遺伝子が閉じ込められるため、遺伝子の濃縮が可能となる。従って、遺伝子の検出を効率よく行うことができ、予め遺伝子を増幅する必要がなくなるか、あるいは増幅の程度が緩和される。
【0039】
次に、図5の駆動例では電極23のうち隣接する2個の電極に正極性の電圧を印加し、当該2個の電極の組に隣接する電極にこれと逆極性の電圧を印加する動作を電極23の配列方向において電極1個分ずつずらせて行っている。
【0040】
さらに、図6は同時に全ての電極23に電圧を印加する駆動例であり、図5と同様に電極23のうち隣接する2個の電極に正極性の電圧を印加し、当該2個の電極の組に隣接する電極にこれと逆極性の電圧を印加する動作を電極23の配列方向において電極1個分ずつずらせて行っている。
【0041】
なお、電極23のうち遺伝子の荷電極性と逆極性である正極性の電圧を印加する電極の数n、同極性である負極性の電圧を印加する電極の数m、印加電圧の極性を切り替える際のずらせる電極数pとしたとき、n,m,pは全て1以上の任意の数に選ぶことができる。最も単純には、n=m=p=1でもよく、その場合、電極23の一つに注目すると、印加電圧の極性を周期的に正極性と負極性とに交互に切り替えることになる
図7は、本発明の他の実施形態に係る生体物質検出用素子における電極構成と駆動例を示している。同図に示されるように、本実施形態では生体物質検出用素子における素子基板の中央部に配置された試料液受入部31を中心とする円周上に案内溝32が形成され、この案内溝32の底部にリガンドが固体化された電極33が配列されている。試料液受入部31に供給された試料液は、案内溝32内に導かれ、電極33上に到達する。
【0042】
このような構成において、図示しない駆動回路により図7(a)(b)(c)に示すように、図6に示した駆動例と同様に電極33に電圧を印加することによって、試料溶液中の遺伝子などの検出対象生体物質を円周に沿って電極33上を移動させることができる。
【0043】
すなわち、まず図7(a)に示すように電極33のうち点線で囲んだ隣接する2個の電極の組に正極性の電圧を印加し、この組の電極に隣接する電極に負極性の電圧を印加する。次に、所定の単位時間後に、図7(b)に示すように正極性の電圧を印加する2個の電極の組の位置を電極1個分だけずらせ、それに伴い2個の電極の組に隣接した負極性の電圧を印加する電極の位置も電極1個分だけずらせる。さらに所定の単位時間経過後に、図7(c)に示すように正極性の電圧を印加する2個の電極の組の位置と極性の電圧を印加する電極の位置を電極1個分だけずらせる。以下、このような印加電圧の極性の切り替えを単位時間毎に、つまり所定周期で行うことにより、試料液中の検出対象生体物質(例えば遺伝子)が隣接する電極33の配列上を円周方向に移動し、電極33の各々に固定されているリガンドと均一に効率よく反応することができる。
【0044】
このようにして、生体物質検出用素子に導入された試料液中の検出対象生体物質を濃縮させながら順次電極33上を移動させることが可能となる。すなわち、本実施形態によるとリガンドが固定化された電極33上で検出対象生体物質が濃縮状態となるため、従来のようにPCR法などの遺伝子増幅法によって予め検出対象生体物質を増幅することなく、検出対象生体物質とリガンドを効率よく反応させることができ、検出効率が向上する。
【0045】
図8(a)(b)は、本発明の他の実施形態に係る生体物質検出装置の構成を示す平面図及び断面図である。
本実施形態の生体物質検出装置においては、基台40の中央に形成された突出部40A上の中央に、試料液受入部41と、試料液受入部41を中心として形成された凹部42、及び凹部42内に試料液受入部41を中心として放射状に形成された扇状の複数の電極43が設けられている。電極43には、リガンドが固定化されている。さらに、基台40には、生体物質検出用素子を通過した試料液を試料液排出口に案内する試料液通過孔44が設けられている。
【0046】
このような生体物質検出装置をにおいても、電極43を図示しない駆動回路によって図7で説明したと同様に駆動することにより、検出対象生体物質を濃縮させつつ電極43が配列された円周方向に順次移動させ、検出対象生体物質とリガンドを効率よく反応させることができる。
【0047】
図9には、本発明の別の実施形態に係る生体物質検出用素子の構成を示す。
素子基板50上の対向する二つの角の近傍に、試料液受入部51及び試料液排出部54が配置されている。さらに、これら試料液受入部51と試料液排出部54との間にジグザグ状の試料液案内溝52が形成され、この試料液案内溝52内にリガンドが固定化された電極53が配置されている。
【0048】
このような構成の生体物質検出用素子を用いた場合においても、電極53を図示しない駆動回路により図3〜図6で説明したと同様に駆動することによって、検出対象生体物質を電極53が配列された円周方向に順次移動させ、さらには移動中に検出対象生体物質を濃縮させることで、リガンドを効率よく反応させることが可能となる。
【0049】
図10は、本発明のさらに別の実施形態として、複数の反応工程を有する生体物質処理装置の概略構成を示している。
本実施形態では、基板60上に複数の反応室61A〜61Fが配置され、これらの反応室61A〜61Fは試料液案内溝62によって適宜連絡されている。試料液案内溝62には、電極63が配列されている。電極63は、例えばリガンドが固定化されていてもよい。
【0050】
このような生体物質処理装置においても、電極63を図示しない駆動回路により図3〜図6で説明したと同様に駆動することによって、処理対象生体物質を電極53が配列された円周方向に順次移動させ、さらには移動中に処理対象生体物質を濃縮させることで、処理対象生体物質を反応室61A〜61F内で効率よく反応処理することが可能となる。
【0051】
次に、図11を用いて本発明のさらに別の実施形態に係る生体物質処理装置を説明する。本実施形態は、電荷を有しない生体物質の処理に使用される装置であり、例えば界面活性剤などによるミセル構造となっている。
【0052】
ミセル構造とは、非荷電物質をミセルで被覆することによって強制的に荷電させた構造であり、図11では生体物質が負極性に荷電されている。このようにミセル構造により強制的に荷電させた生体物質を移動を移動させる場合にも、上述した各実施形態で説明した構成の生体物質移動装置や生体物質処理装置を用いることができる。
【0053】
本発明による生体物質移動装置を用いた生体物質検出用素子ないしは生体物質検出装置が対象とする試料検体は、特に限定されるものではなく、例えば、血液、血清、白血球、尿、便、***、唾液、組織、培養細胞、喀痰等を用いることができる。ここで、検出対象物質が遺伝子の場合、これらの試料検体から例えば遺伝子の抽出を行う。抽出方法は特に限定されるものではなく、フェノール−クロロホルム法等の液一液抽出法や、担体を用いる固液抽出法を用いることができる。また、市販の核酸抽出方法QIAamp(QIAGEN社製)、スマイテスト(住友金属社製)等を利用することも可能である。
【0054】
次に、こうして抽出した遺伝子の試料溶液を前述の実施形態で説明した生体物質検出用素子(DNAチップ)上に導入し、リガンドであるDNAプローブが固定化された電極上でハイブリダイゼーション反応を行う。反応溶液は、例えばイオン強度0.01〜5の範囲で、pH5〜10の範囲の緩衝液とする。この溶液中にはハイブリダイゼーション促進剤である硫酸デキストランや、サケ***DNA、牛胸腺DNA、EDTA、界面活性剤などを適宜添加することが可能である。ここに抽出した試料遺伝子を添加し、生体物質検出用素子への導入前に90℃以上で熱変性させることが必要となる。未反応の試料遺伝子は、試料液排出口4から回収され、必要に応じて再度、生体物質検出用素子用素子に導入することもできる。
【0055】
抽出した遺伝子は、あらかじめFITCやCy3、Cy5、ローダミンなどの蛍光色素やビオチン、ハプテン、オキシダーゼやポスファターゼ等の酵素や、フェロセンやキノン類等の電気化学的に活性な物質で標識するか、あるいは、これらの物質で標識したセカンドプローブを用いることで検出が可能になる。蛍光色素で標識した場合には、光学的検出が可能になる。
【0056】
電気化学的に活性なDNA結合物質を用いた検出を行う場合は、以下のような手順で検出を行う。
DNAプローブが固定化された電極(作用極)の表面に形成された二本鎖DNA部分に、選択的に結合するDNA結合物質を作用させ、電気化学的な測定を行う。ここで用いられるDNA結合物質は特に限定されるものではないが、例えば、ヘキスト33258、アクリジンオレンジ、キナクリン、ドウノマイシン、メタロインターカレータ、ビスアクリジン等のビスインターカレータ、トリスインターカレータ、ポリインターカレータ等を用いることが可能である。さらに、これらのインターカレータを電気化学的に活性な金属錯体、例えば、フェロセン、ビオロゲン等で修飾しておくことも可能である。
【0057】
DNA結合物質の濃度は、その種類によって異なるが、一般的には1ng/ml〜1mg/mlの範囲で使用する。この際、イオン強度0.001〜5の範囲で、pH5〜10の範囲の緩衝液を用いる。
【0058】
作用極としての電極をDNA結合物質と反応させた後、洗浄し、電気化学的な測定を行う。電気化学的な測定は、3電極タイプ、すなわち参照極、対極、作用極、あるいは2電極タイプ、すなわち対極、作用極で行う。測定では、DNA結合物質が電気化学的に反応する電位以上の電位を印加し、DNA結合物質に由来する反応電流値を測定する。この際、電位は定速で掃引するか、あるいはパルスで印加するか、あるいは、定電位を印加することができる。測定には、ポテンショスタット、デジタルマルチメータ、ファンクションジェネレータ等の装置を用いて電流、電圧を制御する。
【0059】
【実施例1】
図2で説明した生体物質検出用素子をインターフェロン治療効果予測用DNAチップとして構成し、以下の実験を行った。
まず、ヒトの白血球から染色体DNAを採取し、適当なプライマを用いてMxA遺伝子部分の100bp程度の断片をPCR増幅した。増幅後、熱変性させたものをDNAチップに導入した。なお、予めDNAチップの電極33上にはMxA遺伝子中に存在するSNP(一塩基多型)に関連するDNAプローブが固定化されている。試料液の導入後、電極23を駆動し、最終的に余剰試料液が観測されてから緩衝液で洗浄し、DNA結合物質(ヘキスト33258)を作用させたところ、インターフェロン治療効果を予測できることが分かった。
【0060】
さらに、この場合、図6で説明したように電極23に印加する電圧の極性を切り替えることにより、導入した遺伝子を濃縮させつつ周辺部に移動させ、遺伝子が電極23上にトラップされた状態で、個々の電極23に印加する電圧の極性を切り替えて、遺伝子を電極23の配列上を移動させることにより、PCR増幅を行わなくとも、精度良く治療効果予測ができることが分かった。
【0061】
【実施例2】
図9で説明した生体物質検出用素子を腫瘍マーカ検出用チップとして構成し、以下の実験を行った。
腫瘍マーカ検出用チップを構成するために各種ヒト腫瘍マーカに対する抗体を電極53の表面に固定化した。非特異的吸着を防ぐために、1%牛血清アルブミンを作用させた。実施例1と同様の操作で順に電極のチャージを変化させ、ヒト血清を試料にして腫瘍マーカの検出を行ったところ、0.1ng/mLオーダーまで高感度に再現性良く検出できることが示された。なお、この際には、第2抗体として西洋大根由来ペルオキシダーゼで標識したものを使用し、発光検出系用の基質を最後に流した。
【0062】
なお、上述した実施形態では生体物質移動装置について説明したが、本発明は生体物質移動装置のみに限定されるものではなく、所定の荷電極性を有する荷電物質の移動装置に全て適用が可能である。
【0063】
【発明の効果】
以上説明したように、本発明によれば生体物質と生体物質検出用素子上の各リガンドとを効率良く反応させるように生体物質を移動させることができる。
【0064】
さらに、本発明によると試料中の検出対象生体物質の濃縮をも可能として生体物質検出装置に用いた場合の検出感度向上を達成できる生体物質移動装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る生体物質検出装置の構成を示す断面図
【図2】同実施形態における生体物質検出用素子の概略構成を示す平面図
【図3】同実施形態に係る生体物質検出用素子の第1の駆動例を示す図
【図4】同実施形態に係る生体物質検出用素子の第2の駆動例を示す図
【図5】同実施形態に係る生体物質検出用素子の第3の駆動例を示す図
【図6】同実施形態に係る生体物質検出用素子の第4の駆動例を示す図
【図7】本発明の他の実施形態に係る生体物質検出用素子の電極構成と該生体物質検出用素子における検出対象生体物質の濃縮及び移動動作を説明するための図
【図8】本発明の他の実施形態に係る生体物質検出装置の構成を示す平面図及び断面図
【図9】本発明の別の実施形態に係る生体物質検出用素子の構成を示す平面図
【図10】本発明の一実施形態に係る生体物質処理装置の概略構成を示す平面図
【図11】本発明のさらに別の実施形態に係る生体物質処理装置の概略構成を示す平面図
【符号の説明】
1…基台
2…素子載置部
3…試料液通過孔
4…試料液排出口
5…生体物質検出用素子
6…上部ホルダ
7…下部ホルダ
8…試料液導入部
9…試料液案内ダクト
20…素子基板
21…試料液受入部
22…試料液案内溝
23…電極
24…試料液排出部
25…電極パッド
26…駆動回路
31…試料液受入部
32…試料液案内溝
33…電極
40…基台
41…試料液受入部
42…凹部
43…電極
44…試料液排出部
50…素子基板
51…試料液受入部
52…試料液案内溝
53…電極
54…試料液排出部
60…基板
61A〜61F…反応室
62…試料液案内溝
63…電極

Claims (3)

  1. 所定の荷電極性を有する荷電物質を移動させる装置において、
    案内溝を有する基板と、
    前記案内溝の底部に所定の配列方向に沿って配列された複数の電極と、
    前記複数の電極のうちの一部の電極に前記荷電物質の荷電極性と逆極性の電圧を印加すると共に前記逆極性の電圧を印加する電極に対して前記配列方向で隣接する両側の電極に前記荷電極性と同一極性の電圧を印加し、かつ該逆極性の電圧を印加する電極の位置を前記配列方向に順次変化させる駆動動作を行うことによって、前記荷電物質を前記複数の電極上で前記配列方向に沿って移動させるため駆動回路とを具備する荷電物質移動装置。
  2. 前記案内溝は渦巻き状であることを特徴とする請求項1記載の荷電物質移動装置。
  3. 所定の荷電極性を有する荷電物質を移動させる装置において、
    前記荷電物質の受入部を中心とする凹部を有する基板と、
    前記凹部に前記受入部を中心として放射状に形成され、所定の配列方向に沿って配列された扇状の複数の電極と、
    前記複数の電極のうちの一部の電極に前記荷電物質の荷電極性と逆極性の電圧を印加すると共に前記逆極性の電圧を印加する電極に対して前記配列方向で隣接する両側の電極に前記荷電極性と同一極性の電圧を印加し、かつ該逆極性の電圧を印加する電極の位置を前記配列方向に順次変化させる駆動動作を行うことによって、前記荷電物質を前記複数の電極上で前記配列方向に沿って移動させるための駆動回路とを具備する荷電物質移動装置。
JP2001264752A 2001-08-31 2001-08-31 荷電物質移動装置 Expired - Fee Related JP3842600B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001264752A JP3842600B2 (ja) 2001-08-31 2001-08-31 荷電物質移動装置
US10/230,149 US7198754B2 (en) 2001-08-31 2002-08-29 Biological material detection element, biological material detection method and apparatus, charged material moving apparatus
DE10240094A DE10240094B4 (de) 2001-08-31 2002-08-30 Bauteil für die Detektion von biologischem Material und Verfahren und Vorrichtung zur Detektion von biologischem Material
CN02141990.6A CN1410548A (zh) 2001-08-31 2002-09-02 生物物质检测用元件、方法及装置、带电物质移动装置
US11/690,873 US20070190665A1 (en) 2001-08-31 2007-03-26 Biological material detection element, biological material detection method and apparatus, charged material moving apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264752A JP3842600B2 (ja) 2001-08-31 2001-08-31 荷電物質移動装置

Publications (2)

Publication Number Publication Date
JP2003075302A JP2003075302A (ja) 2003-03-12
JP3842600B2 true JP3842600B2 (ja) 2006-11-08

Family

ID=19091304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264752A Expired - Fee Related JP3842600B2 (ja) 2001-08-31 2001-08-31 荷電物質移動装置

Country Status (1)

Country Link
JP (1) JP3842600B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4645110B2 (ja) 2004-09-15 2011-03-09 ソニー株式会社 誘電泳動を利用するハイブリダイゼーション検出部と該検出部を備えるセンサーチップ、並びにハイブリダイゼーション検出方法

Also Published As

Publication number Publication date
JP2003075302A (ja) 2003-03-12

Similar Documents

Publication Publication Date Title
US20070190665A1 (en) Biological material detection element, biological material detection method and apparatus, charged material moving apparatus
US6489160B2 (en) Method for producing nucleic acid strand immobilized carrier
US8062491B1 (en) Biological identification system with integrated sensor chip
EP2192199A1 (en) Method of detecting human papilloma virus by using nucleic acid amplification method and nucleic acid chain-immobilized carrier
JP4276301B2 (ja) 固定化プローブを用いる、分子の電気泳動分析
US6670131B2 (en) Nucleic acid detection method and apparatus, and vessel for detecting nucleic acid
US6238909B1 (en) Method and apparatus for obtaining electric field-enhanced bioconjugation
US20090042280A1 (en) Fluidic cartridges for electrochemical detection of dna
JP2007020568A (ja) 分子生物学的分析用および診断用の自己アドレス可能な自己組立て超小型電子システムおよびデバイス
JP4021627B2 (ja) 遺伝子検出用担体、及びインターフェロン療法の有効性を検出するためのその使用
JP4398953B2 (ja) 核酸検出用センサ
JP2002195997A (ja) 核酸検出用センサ
US7910719B2 (en) Method of detecting human papilloma virus by using nucleic acid amplification method and nucleic acid chain-immobilized carrier
JP3848226B2 (ja) 生体物質検出装置及び生体物質検出素子
US11280758B2 (en) Single-particle bridge assay for amplification-free electrical detection of ultralow-concentration biomolecules and non-biological molecules
JP3842600B2 (ja) 荷電物質移動装置
JP4143046B2 (ja) 核酸検出基板および該装置を使用する核酸検出方法
JP4261077B2 (ja) 核酸鎖固定化担体の製造方法
JP4427525B2 (ja) 核酸検出用センサ
US20020179439A1 (en) Microelectronic system and method of use and fabrication
JP3482140B2 (ja) 核酸鎖合成方法、核酸固定化チップおよび核酸鎖検出方法
JP3677237B2 (ja) 核酸検出方法及び装置並びに核酸検出用容器
JP5676846B2 (ja) ヘリコバクター属の微生物由来の核酸を特異的に増幅するためのプライマーセット、前記微生物を検知および/または分類するための方法
JP4034818B1 (ja) 遺伝子検出用担体、及びインターフェロン療法の有効性を検出するためのその使用
WO2008024754A2 (en) Nucleic acid array with releasable nucleic acid probes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060810

LAPS Cancellation because of no payment of annual fees