JP3841693B2 - Cogeneration system - Google Patents

Cogeneration system Download PDF

Info

Publication number
JP3841693B2
JP3841693B2 JP2002028358A JP2002028358A JP3841693B2 JP 3841693 B2 JP3841693 B2 JP 3841693B2 JP 2002028358 A JP2002028358 A JP 2002028358A JP 2002028358 A JP2002028358 A JP 2002028358A JP 3841693 B2 JP3841693 B2 JP 3841693B2
Authority
JP
Japan
Prior art keywords
heat
hot water
demand
amount
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002028358A
Other languages
Japanese (ja)
Other versions
JP2003227656A (en
Inventor
義孝 栢原
伸 岩田
桂嗣 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2002028358A priority Critical patent/JP3841693B2/en
Publication of JP2003227656A publication Critical patent/JP2003227656A/en
Application granted granted Critical
Publication of JP3841693B2 publication Critical patent/JP3841693B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンと発電機とを一体化したものとか燃料電池といったような電力と熱とを発生する熱電併給装置からの電力を電気負荷に供給するとともに熱を給湯消費機器や暖房機器に供給し、熱量が不足した場合には、不足分の熱量をヒータや燃焼式ボイラなどの補助加熱手段で補えるように構成したコージェネレーションシステムに関する。
【0002】
【従来の技術】
この種のコージェネレーションシステムでは、電力需要に合わせて熱電併給装置を運転し、熱電併給装置で発生する熱で昇温させた湯を給湯や暖房に用いるようにしている。
【0003】
ところが、浴槽への湯張りといった給湯時などのように給湯需要量が増大する場合に、それを賄うのに必要な熱量を確保できず、熱量不足を生じる。従来では、このような熱量不足が発生したときに、不足した分の熱量を、燃焼式ボイラなどの補助加熱手段で補い、給湯および暖房を良好に行えるようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、給湯の場合、浴槽への湯張りは連続的であり、また、台所での食器洗浄の場合、給湯停止は一時的で実質的に熱の供給は連続的である。これに対して、温水式暖房機や温水式床暖房機といった暖房機器やデシカント除湿機などでは、暖房空間内の温度を設定範囲内に維持するように温度制御が行われて、湯を供給したり、その供給を停止したりするため、熱の供給が間欠的である。
【0005】
このように、熱量不足が発生したときにおいて、暖房機器に対して湯を供給するために燃焼式ボイラなどの補助加熱手段からの熱を間欠供給する場合には、燃焼式ボイラなどの補助加熱手段の発停を繰り返すことになり、給湯のために燃焼式ボイラなどの補助加熱手段からの熱を連続供給する場合に比べて、熱の利用効率が低下する欠点があった。
【0006】
本発明は、このような事情に鑑みてなされたものであって、請求項1に係る発明は、湯が連続的に供給される熱消費機器からの給湯要求に際し、その後で熱量不足を発生して補助加熱手段の作動を必要とするような場合に、熱の利用効率を向上して経済性を向上できるようにすることを目的とし、請求項2に係る発明は、貯湯槽内での貯湯量をも考慮して、経済性を一層向上できるようにすることを目的とし、請求項3に係る発明は、補助加熱手段の作動を極力抑えて経済性をより一層向上できるようにすることを目的とし、請求項4に係る発明は、熱損失を少なくできるようにすることを目的とし、請求項5に係る発明は、発停による熱損失を抑えながら熱出力の立ち上がりを早くして、熱の不足分を良好に補えるようにすることを目的とする。
【0007】
【課題を解決するための手段】
請求項1に係る発明は、上述のような目的を達成するために、
電力と共に熱を発生する熱電併給装置と、
前記熱電併給装置で発生する熱で昇温させて湯を得る排熱回収手段と、
前記熱電併給装置での熱の不足分を補うための補助加熱手段とを備え、
前記排熱回収手段または前記補助加熱手段からの熱を、湯が連続的に供給される第1熱消費機器、または/および、湯が間欠的に供給される第2熱消費機器にて消費するように構成したコージェネレーションシステムにおいて、
前記第2熱消費機器における第2熱需要を特定する第2熱需要特定手段と、
前記第2熱消費機器における第2熱需要と前記第1熱消費機器における第1熱需要とを含む熱需要の経時的変化を特定する熱需要特定手段と、
前記排熱回収手段からの湯による熱供給量の経時的変化を特定する熱供給量特定手段と、
前記第1熱消費機器からの熱供給要求に応答して、その時点から設定時間内における前記熱需要特定手段による熱需要量の総和と、前記熱供給量特定手段による熱供給量の総和とを比較し、前記熱需要量の総和よりも前記熱供給量の総和が小さいときに熱不足と判定する熱不足判定手段と、
前記第1熱消費機器からの給湯要求に応答して、前記設定時間内に前記第2熱需要特定手段で特定された第2熱需要があるかどうかを判定する第2熱需要判定手段と、
前記熱不足判定手段にて熱不足と判定されかつ前記第2熱需要判定手段にて第2熱需要があると判定された場合に、前記補助加熱手段を起動するバックアップ制御手段と、
を備えて構成する。
【0008】
また、請求項2に係る発明は、前述のような目的を達成するために、
請求項1に記載のコージェネレーションシステムにおいて、
排熱回収手段は、熱電併給装置で得た湯を貯める貯湯槽を備え、
熱供給量特定手段は、前記熱電併給装置から前記貯湯槽への熱の供給量の経時的変化を特定する貯湯熱供給量特定手段と、前記貯湯槽内に貯まっている貯湯量を検出する貯湯量検出手段と、を備え、
熱不足判定手段が、第1熱消費機器からの給湯要求に応答して、その時点から設定時間内における熱需要特定手段による熱需要量の総和と、前記貯湯熱供給量特定手段による貯湯熱供給量の総和と前記貯湯量検出手段で検出される貯湯量とを加算した総熱量とを比較し、前記熱需要量の総和よりも前記総熱量が小さいときに熱不足と判定するように構成する。
【0009】
また、請求項3に係る発明は、前述のような目的を達成するために、
請求項1または2に記載のコージェネレーションシステムにおいて、
第1熱消費機器からの給湯要求に応答して、その時点から設定時間内における熱需要特定手段による熱需要量の総和から、熱供給量特定手段による熱供給量の総和を減算して不足熱量を算出する不足熱量算出手段と、
前記不足熱量算出手段で算出された不足熱量を補うのに必要な補助加熱手段の運転時間を算出する運転時間算出手段とを備え、
バックアップ制御手段を、前記補助加熱手段を起動した後、前記運転時間算出手段で算出された運転時間だけ運転するように構成する。
【0010】
また、請求項4に係る発明は、前述のような目的を達成するために、
請求項1、2、3のいずれかに記載のコージェネレーションシステムにおいて、
排熱回収手段を、熱電併給装置の熱で昇温させた湯を、第1熱消費機器または/および第2熱消費機器に直接供給し得るように構成する。
【0011】
また、請求項5に係る発明は、前述のような目的を達成するために、
請求項1、2、3、4のいずれかに記載のコージェネレーションシステムにおいて、
補助加熱手段を燃焼式ボイラで構成する。
【0012】
【作用】
請求項1に係る発明のコージェネレーションシステムの構成によれば、第1熱消費機器からの給湯要求に際し、その時点から設定時間内に熱量不足を生じるかどうかを判断する。ここで、熱量不足を生じると判断した場合には、更に、その設定時間内に第2熱消費機器に熱を供給する第2熱需要があるかどうかを判断し、第2熱需要があるときには、熱量不足の発生に先立って補助加熱手段を起動し、補助加熱手段で得た熱を第1熱消費機器への給湯に用い、後での第2熱需要に対しては排熱回収手段で得た湯を供給して対処する。
【0013】
請求項2に係る発明のコージェネレーションシステムの構成によれば、貯湯量検出手段によって、貯湯槽内に貯まっている貯湯量を検出し、第1熱消費機器からの給湯要求に際し、貯湯槽内の貯湯量を加味した状態で、その時点から設定時間内に熱量不足を生じるかどうかを判断する。ここで、熱量不足を生じると判断した場合には、更に、その設定時間内に第2熱消費機器に熱を供給する第2熱需要があるかどうかを判断し、第2熱需要があるときには、熱量不足の発生に先立って補助加熱手段を起動し、補助加熱手段で得た熱を第1熱消費機器への給湯に用い、後での第2熱需要に対しては、貯湯槽に供給しようとする熱および貯湯槽からの湯を供給して対処する。
【0014】
また、請求項3に係る発明のコージェネレーションシステムの構成によれば、熱量不足を生じると判断した場合に、その不足熱量を算出し、その不足する熱量分だけを補助加熱手段からの熱によって補う。
【0015】
また、請求項4に係る発明のコージェネレーションシステムの構成によれば、熱電併給装置の熱によって得た湯を、貯湯槽を経ずに第1熱消費機器および第2熱消費機器に直接供給する。
【0016】
また、請求項5に係る発明のコージェネレーションシステムの構成によれば、バックアップ制御手段による起動に伴い、燃焼式ボイラにおいて燃料の燃焼とともに熱を出力することができる。
【0017】
【発明の実施の形態】
次に、本発明の実施例を図面に基づいて詳細に説明する。
図1は、本発明に係るコージェネレーションシステムの実施例を示すシステム構成図であり、1は熱電併給装置を、2は貯湯槽をそれぞれ示している。
【0018】
貯湯槽2には、その底側から上部にわたって第1のポンプ3を備えた循環配管4が接続されている。循環配管4に熱交換器5が設けられ、その熱交換器5と熱電併給装置1とにわたって、第2のポンプ6を備えた熱回収用循環配管7が接続されている。
【0019】
この構成により、熱電併給装置1と熱交換器5とにわたってジャケット冷却水を循環させている。貯湯槽2の下部から取り出した水を熱交換器5にて熱電併給装置1からの排熱によって加熱し、貯湯槽2の上部に戻すようになっており、貯湯槽2内では、上部に湯が、下部に水が温度成層を形成する状態で貯められている。そして、湯を貯湯槽2の上部から、湯が連続的に供給される第1熱消費機器に供給するように構成されている。
なお、上述した貯湯槽2の下部から取り出した水を熱電併給装置1からの排熱によって加熱するための構成としては、ジャケット冷却水の循環回路に別の熱交換器を設け、その別の熱交換器と前述熱交換器5とにわたって、フロンや二酸化炭素などの冷媒を熱回収用熱媒として循環させるように構成しても良い。
【0020】
上述した貯湯槽2から第1熱消費機器に湯を供給する構成としては、貯湯槽2の上部に給湯管8が接続され、その給湯管8に、第1熱消費機器としての浴槽9や台所、洗面所、シャワーなどへの分岐給湯配管10が接続され、貯湯槽2内の湯を取り出して各所に供給できるようになっている。
【0021】
また、循環配管4には、熱交換器5と直列になるように出力用循環配管11が接続され、その出力用循環配管11に暖房用熱交換器12が設けられ、暖房用熱交換器12に、第3のポンプ13を備えた暖房用循環配管14を介して、湯が間欠的に供給される第2熱消費機器としての、温水式室内暖房機、温水式床暖房機などのセントラルヒーティング用の暖房機器15が接続され、コージェネレーションシステムからの排熱の直接利用や後述するガスボイラなどの補助加熱手段による熱、および、貯湯槽2内の湯を熱源として暖房を行えるように構成されている。
【0022】
熱電併給装置1には、発電電力を取り出す電力線16が接続され、その電力線16に、照明装置や電気機器などの電気負荷17が接続されている。また、電力線16に逆潮流防止用の保護装置18を介して商用電源線19が接続され、熱電併給装置1で発生した電力で不足するときに商用電源からの電力を電気負荷17に投入できるように買電手段20が構成されている。
【0023】
循環配管4の熱交換器5よりも下流側の箇所に、補助加熱手段としてのガスボイラ21が接続され、貯湯槽2内の湯が不足したときなどに、ガスボイラ21を作動して不足分の湯を補充できるようになっている。このガスボイラ21に代えて石油燃焼式のボイラなどを用いても良く、それらの起動に伴う熱出力の立ち上がりが早いタイプのボイラをして燃焼式ボイラと称する。
【0024】
貯湯槽2には、上下方向に所定間隔を隔てて、設定温度以上の湯を感知する4個の湯温センサ22が付設され、それらの湯温センサ22の感知状態に基づいて、貯湯槽2内に貯まっている貯湯量を検出できるように貯湯量検出手段23が構成されている。
【0025】
また、暖房機器15で暖房される暖房空間内に、暖房空間内の温度を測定する温度センサ24が設けられ、その温度センサ24が温度制御手段としてのコントローラ25に接続されるとともに、コントローラ25により第3のポンプ13が制御される構成となっている。
【0026】
コントローラ25では、温度センサ24で測定される暖房空間内の温度に基づき、その暖房空間内の温度が設定温度範囲の上限になるに伴って第3のポンプ13の駆動を停止して暖房機器15への湯の供給を停止し、一方、暖房空間内の温度が設定温度範囲の下限になるに伴って第3のポンプ13を駆動して暖房機器15に湯を供給し、暖房空間内の温度を設定範囲内に維持するように構成されている。
【0027】
給湯管8に、浴槽9などの第1熱消費機器からの給湯要求に応答して、すなわち、第1熱消費機器での給湯に伴う流動状態を検出して給湯要求を出力する給湯感知手段としての給湯感知センサ26が設けられている。給湯感知手段としては、浴槽9のカランや台所の温水用のカランなどの開き状態を検出するように構成するものでも良い。
【0028】
貯湯量検出手段23および給湯感知センサ26が、図2の制御系のブロック図に示すように、マイクロコンピュータ27に接続され、そのマイクロコンピュータ27にガスボイラ21が接続されている。
また、マイクロコンピュータ27に、熱需要特定手段28、貯湯熱供給量特定手段29および第2熱需要特定手段30が接続されている。
【0029】
熱需要特定手段28では、図3の電力需要の経時的変化のグラフ、および、図4の熱需要の経時的変化のグラフに示すように、予約とか、前日あるいは1週間前の同じ曜日の同じ時刻などに基づく学習機能などにより、浴槽9、台所、洗面所、シャワーなどの熱負荷への給湯を行う時刻と熱需要量とを特定するようになっている。
【0030】
図3および図4に示すように、熱電併給装置1が電力需要に応じて駆動されるようになっており、その電力需要を予め特定するに伴い、熱電併給装置1から貯湯槽2への熱の供給量も比例的に変化し、それに基づき、貯湯熱供給量特定手段29において、熱電併給装置1から貯湯槽2への熱の供給量の経時的変化を特定するようになっている。
第2熱需要特定手段30では、図4に示す暖房需要の経時的変化に基づき、その暖房需要などの第2熱需要の経時的変化を特定するようになっている。
【0031】
マイクロコンピュータ27には、図2に示すように、熱不足判定手段31、第2熱需要判定手段32およびバックアップ制御手段33が備えられている。
熱不足判定手段31では、給湯感知センサ26からの給湯要求に応答して、その時点から、例えば、2時間などの設定時間内における熱需要特定手段28による熱需要量の総和と、貯湯熱供給量特定手段29による熱供給量の総和と貯湯量検出手段23で検出される貯湯量とを加算した総熱量とを比較し、熱需要量の総和よりも総熱量が小さいときに不足信号を出力するようになっている。
【0032】
第2熱需要判定手段32では、給湯感知センサ26からの給湯要求に応答して、設定時間以内に第2熱需要が第2熱需要特定手段30で特定されているかどうかを判別し、第2熱需要が特定されているときに第2熱需要信号を出力するようになっている。
【0033】
バックアップ制御手段33では、熱不足判定手段31からの不足信号と第2熱需要判定手段32からの第2熱需要信号の両方が出力されたときに、ガスボイラ21を起動するようになっている。
【0034】
上記制御系による自動判別が、例えば、5分間などごとに繰り返され、不足信号と第2熱需要信号の少なくとも一方の出力が停止されたときに、ガスボイラ21の作動が停止されるようになっている。
【0035】
熱電併給装置1を、主として電力需要に応じて運転し、それに伴って貯湯槽2に湯を供給していく一方、熱需要に合わせて湯を第1熱消費機器に供給していく。これにより、図4に示すように、貯湯量SHが増減することになるが、浴槽9などのように、多量の湯を必要とするときには、貯湯槽2内の貯湯量SHでは不足する場合を生じる。
【0036】
このような場合にあって、上記構成により、浴槽9などの第1熱消費機器からの給湯要求があったときに、その時点から設定時間内に熱量不足が生じ、かつ、その設定時間内に第2熱消費機器に熱を供給する第2熱需要があるときに、熱量不足の発生に先立ってガスボイラ21を起動し、ガスボイラ21で得た熱を浴槽9などの第1熱消費機器への給湯に用い、後での第2熱需要に対しては貯湯槽2からの湯を供給し、ガスボイラ21からの熱の利用効率を向上し、コージェネレーションシステム全体としての経済性を向上できる。
【0037】
図5は、本発明に係るコージェネレーションシステムの第2実施例の制御系を示すブロック図であり、第1実施例と異なるところは次の通りである。
すなわち、マイクロコンピュータ40に、熱不足判定手段31に代えて、不足熱量算出手段41と運転時間算出手段42とが備えられている。
【0038】
不足熱量算出手段41では、給湯感知センサ26からの給湯要求に応答して、その時点から設定時間以内における熱需要特定手段28による熱需要量の総和から、貯湯熱供給量特定手段29による熱供給量の総和と貯湯量検出手段23で検出される貯湯量とを加算した総熱量を減算し、不足熱量を算出するようになっている。
【0039】
運転時間算出手段42では、備えたガスボイラ21の性能に基づき、不足熱量算出手段41で算出された不足熱量を補うのに必要なガスボイラ21の運転時間を算出するようになっている。
【0040】
運転時間算出手段42で算出された運転時間がバックアップ制御手段43に入力され、ガスボイラ21を起動した後、運転時間算出手段42で算出された運転時間だけ運転するようになっている。
【0041】
第2実施例の構成によれば、必要最少限の熱量をガスボイラ21で得ることができ、そのガスボイラ21の起動時間を極力少なくして、ガスボイラ21で得る熱量を極力低減でき、経済性を一層向上できる。
【0042】
上記実施例では、熱電併給装置1を電力需要に応じて駆動するように構成しているが、本発明としては、熱需要に応じて駆動する場合にも適用できる。すなわち、予め特定される熱需要の変化と、実際の給湯との間に時間的にずれを生じて熱量不足を発生する場合に有効だからである。
【0043】
上記実施例では、湯が間欠的に供給される機器として暖房機器15を示しているが、本発明としては、例えば、デシカント除湿機を使用する場合にも適用でき、暖房機器15やデシカント除湿機などをして第2熱消費機器と総称する。
【0044】
上記実施例では、熱電併給装置1で発生する熱により循環配管4を流れる水を加熱して湯を得、その湯を貯湯槽2に供給して貯め、貯めた湯を浴槽9などの第1熱消費機器や暖房機器15などの第2熱消費機器に供給するようにしているが、本発明としては、熱電併給装置1で発生する熱で昇温させた湯を、貯湯槽2を通さずに、第1熱消費機器および第2熱消費機器に直接供給できるように構成するものでも良い。
【0045】
また、本発明としては、貯湯槽2を設けずに、熱電併給装置1で発生する熱を第1熱消費機器および第2熱消費機器に直接供給できるように構成するものでも良く、このような貯湯槽2を設けずに熱電併給装置1で発生する熱を回収する構成、ならびに、貯湯槽2を設けて熱電併給装置1で発生する熱を回収する構成をして排熱回収手段と総称する。
【0046】
上述した、貯湯槽2を設けずに熱電併給装置1で発生する熱を回収する構成の場合において、排熱回収手段からの湯による経時的変化を特定する構成をして熱供給量特定手段と称する。
また、貯湯槽2を設けて熱電併給装置1で発生する熱を回収する構成の場合において、貯湯槽2からの湯による経時的変化を特定する構成をして貯湯熱供給量特定手段と称し、この貯湯熱供給量特定手段と貯湯量検出手段23とから成る構成をして熱供給量特定手段と称する。
【0047】
上記実施例では、補助加熱手段としてガスボイラ21を用いているが、本発明としては、ガスボイラ21に代えて電気ヒータを使用するものでも良い。
【0048】
【発明の効果】
以上の説明から明らかなように、請求項1に係る発明のコージェネレーションシステムによれば、第1熱消費機器からの給湯要求に際し、その時点から設定時間内に熱量不足を発生して補助加熱手段の作動を必要とする場合で、更に、その設定時間内に第2熱消費機器に熱を供給する第2熱需要があるときに、熱量不足の発生に先立って補助加熱手段を起動し、補助加熱手段で得た熱を、熱の利用効率の高い第1熱消費機器への給湯に用い、後での熱の利用効率の低い第2熱需要に対しては排熱回収手段で得た湯を供給して対処するから、補助加熱手段で得た熱を効率良く利用でき、不足分の熱量を補うのに、第2熱需要に対して補助加熱手段で得た熱を用いる場合に比べて、補助加熱手段で得る熱量を低減でき、経済性を向上できる。
【0049】
また、請求項2に係る発明のコージェネレーションシステムによれば、貯湯槽内に貯まっている貯湯量を検出し、その貯湯量を加味した状態で、熱不足を判定するから、補助加熱手段で得る熱量を一層低減でき、経済性を一層向上できる。
【0050】
また、請求項3に係る発明のコージェネレーションシステムによれば、熱量不足を生じると判断した場合に、その不足熱量を算出し、その不足する熱量分だけを補助加熱手段からの熱によって補うから、補助加熱手段の作動を極力抑えて補助加熱手段で得る熱量を極力低減でき、経済性をより一層向上できる。
【0051】
また、請求項4に係る発明のコージェネレーションシステムによれば、第1熱消費機器および第2熱消費機器に供給する湯を、熱電併給装置から直接供給される排熱によって得ることができるから、貯湯槽内を通過して第1熱消費機器および第2熱消費機器に供給する場合に比べて熱損失を少なくでき、経済性を一層向上できる。
【0052】
また、請求項5に係る発明のコージェネレーションシステムによれば、補助加熱手段として燃焼式ボイラを用いるから、電気ヒータなどに比べて、バックアップ制御手段による起動に伴う熱出力の立ち上がりを早くできる。
しかも、燃焼式ボイラでは、発停に伴っての熱損失が比較的大きいが、そのような発停の多い第2熱消費機器よりも優先して発停の少ない第1熱消費機器に燃焼式ボイラで得られる熱を供給するから、全体として、発停による熱損失を抑えながら熱出力の立ち上がりを早くして、熱の不足分を良好に補うことができ、本発明を実施する上でより効果的である。
【図面の簡単な説明】
【図1】本発明に係るコージェネレーションシステムの実施例を示すシステム構成図である。
【図2】第1実施例の制御系のブロック図である。
【図3】電力需要の経時的変化を示すグラフである。
【図4】熱需要の経時的変化を示すグラフである。
【図5】本発明に係るコージェネレーションシステムの第2実施例の制御系を示すブロック図である。
【符号の説明】
1…熱電併給装置
2…貯湯槽
9…浴槽(第1熱消費機器)
15…暖房機器(第2熱消費機器)
21…ガスボイラ(燃焼式ボイラ、補助加熱手段)
23…貯湯量検出手段(熱供給量特定手段)
26…給湯感知センサ(給湯感知手段)
28…熱需要特定手段
29…貯湯熱供給量特定手段(熱供給量特定手段)
30…第2熱需要特定手段
31…熱不足判定手段
32…第2熱需要判定手段
33,43…バックアップ制御手段
41…不足熱量算出手段
42…運転時間算出手段
[0001]
BACKGROUND OF THE INVENTION
The present invention supplies electric power from a combined heat and power supply device that generates electric power and heat, such as an engine and generator integrated or a fuel cell, to an electric load and also supplies heat to a hot water supply consuming device or a heating device. The present invention also relates to a cogeneration system configured such that when the amount of heat is insufficient, the amount of heat is supplemented by auxiliary heating means such as a heater or a combustion boiler.
[0002]
[Prior art]
In this type of cogeneration system, a cogeneration apparatus is operated in accordance with electric power demand, and hot water heated by heat generated by the cogeneration apparatus is used for hot water supply or heating.
[0003]
However, when the amount of hot water supply increases, such as during hot water supply such as hot water filling a bathtub, the amount of heat necessary to cover it cannot be secured, resulting in a shortage of heat. Conventionally, when such a shortage of heat occurs, the shortage of heat is supplemented by auxiliary heating means such as a combustion boiler so that hot water supply and heating can be performed satisfactorily.
[0004]
[Problems to be solved by the invention]
However, in the case of hot water supply, the hot water filling to the bathtub is continuous, and in the case of dishwashing in the kitchen, the hot water supply stop is temporary and the supply of heat is substantially continuous. On the other hand, in heating equipment such as hot water heaters and hot water floor heaters and desiccant dehumidifiers, temperature control is performed to maintain the temperature in the heating space within the set range, and hot water is supplied. Or the supply of heat is intermittent in order to stop the supply.
[0005]
As described above, when the heat from the auxiliary heating means such as the combustion boiler is intermittently supplied to supply the hot water to the heating device when the heat quantity is insufficient, the auxiliary heating means such as the combustion boiler is used. Therefore, the heat utilization efficiency is lower than that in the case of continuously supplying heat from auxiliary heating means such as a combustion boiler for hot water supply.
[0006]
This invention is made | formed in view of such a situation, and the invention which concerns on Claim 1 generate | occur | produces the lack of calorie | heat amount after that in the case of the hot water supply request | requirement from the heat consumption apparatus with which hot water is supplied continuously. The purpose of the invention according to claim 2 is to improve the efficiency of use of heat and improve the economy when the operation of the auxiliary heating means is required. The invention according to claim 3 aims to further improve the economy by suppressing the operation of the auxiliary heating means as much as possible for the purpose of making it possible to further improve the economy in consideration of the amount. The purpose of the invention according to claim 4 is to reduce the heat loss, and the invention according to claim 5 is to reduce the heat loss due to start and stop while increasing the rise of the heat output. The purpose is to make up for the shortage of That.
[0007]
[Means for Solving the Problems]
In order to achieve the above-described object, the invention according to claim 1
A combined heat and power device that generates heat with electric power;
Waste heat recovery means for obtaining hot water by raising the temperature with heat generated by the combined heat and power supply device;
An auxiliary heating means for making up for the lack of heat in the combined heat and power supply device,
Heat from the exhaust heat recovery means or the auxiliary heating means is consumed by a first heat consuming device to which hot water is continuously supplied or / and a second heat consuming device to which hot water is intermittently supplied. In the cogeneration system configured as follows,
Second heat demand specifying means for specifying the second heat demand in the second heat consuming device;
A heat demand specifying means for specifying a temporal change in heat demand including the second heat demand in the second heat consuming device and the first heat demand in the first heat consuming device;
A heat supply amount specifying means for specifying a temporal change in the heat supply amount by hot water from the exhaust heat recovery means;
In response to the heat supply request from the first heat consuming device, a sum of heat demand by the heat demand specifying means and a sum of heat supply by the heat supply specifying means within a set time from that time point In comparison, a heat shortage determination means for determining a heat shortage when the total heat supply amount is smaller than the total heat demand,
In response to a hot water supply request from the first heat consuming device, second heat demand determination means for determining whether or not there is a second heat demand specified by the second heat demand specification means within the set time;
Backup control means for activating the auxiliary heating means when it is determined by the heat shortage determination means that there is insufficient heat and the second heat demand determination means determines that there is a second heat demand;
It comprises and comprises.
[0008]
In order to achieve the above-described object, the invention according to claim 2
The cogeneration system according to claim 1,
The waste heat recovery means includes a hot water storage tank for storing hot water obtained by the combined heat and power supply device,
The heat supply amount specifying means is a hot water storage heat supply amount specifying means for specifying a change over time in the amount of heat supplied from the cogeneration device to the hot water storage tank, and a hot water storage for detecting the amount of hot water stored in the hot water storage tank. An amount detecting means,
In response to the hot water supply request from the first heat consuming device, the heat shortage determining means sums the heat demand amount by the heat demand specifying means within the set time from that time, and the hot water supply heat supply by the hot water storage heat supply amount specifying means Comparing the total amount of heat and the total amount of heat obtained by adding the amount of stored hot water detected by the stored amount of hot water detection means, and determining that the heat is insufficient when the total amount of heat is smaller than the total amount of heat demand .
[0009]
In order to achieve the above-described object, the invention according to claim 3
In the cogeneration system according to claim 1 or 2,
Responding to a hot water supply request from the first heat consuming device, subtracting the sum of the heat supply amount by the heat supply amount specifying means from the sum of the heat demand amounts by the heat demand specifying means within the set time from that point in time, the insufficient heat amount An insufficient heat amount calculating means for calculating
An operation time calculating means for calculating an operation time of the auxiliary heating means necessary to supplement the insufficient heat amount calculated by the insufficient heat amount calculating means,
The backup control means is configured to operate only for the operation time calculated by the operation time calculation means after the auxiliary heating means is activated.
[0010]
In order to achieve the above-described object, the invention according to claim 4
In the cogeneration system according to any one of claims 1, 2, and 3,
The exhaust heat recovery means is configured so that hot water whose temperature has been raised by heat of the combined heat and power supply device can be directly supplied to the first heat consuming device and / or the second heat consuming device.
[0011]
Further, in order to achieve the above-described object, the invention according to claim 5
In the cogeneration system according to any one of claims 1, 2, 3, and 4,
The auxiliary heating means is composed of a combustion boiler.
[0012]
[Action]
According to the configuration of the cogeneration system of the first aspect of the invention, when a hot water supply request from the first heat consuming device is made, it is determined whether or not a shortage of heat will occur within the set time from that point. Here, when it is determined that there is a shortage of heat, it is further determined whether there is a second heat demand for supplying heat to the second heat consuming device within the set time, and when there is a second heat demand Prior to the occurrence of a shortage of heat, the auxiliary heating means is activated, the heat obtained by the auxiliary heating means is used for hot water supply to the first heat consuming device, and the second heat demand is later recovered by the exhaust heat recovery means. Supply the hot water obtained to deal with it.
[0013]
According to the configuration of the cogeneration system of the invention according to claim 2, the amount of hot water stored in the hot water storage tank is detected by the hot water storage amount detection means, and when there is a hot water supply request from the first heat consuming device, In a state where the amount of stored hot water is taken into account, it is determined whether or not there will be a shortage of heat within a set time from that point. Here, when it is determined that there is a shortage of heat, it is further determined whether there is a second heat demand for supplying heat to the second heat consuming device within the set time, and when there is a second heat demand Prior to the occurrence of a shortage of heat, the auxiliary heating means is activated, the heat obtained by the auxiliary heating means is used for hot water supply to the first heat consuming device, and the second heat demand is supplied to the hot water storage tank later. Deal with the heat to be supplied and hot water from the hot water tank.
[0014]
Further, according to the configuration of the cogeneration system of the invention according to claim 3, when it is determined that the heat quantity is insufficient, the insufficient heat quantity is calculated, and only the insufficient heat quantity is compensated by the heat from the auxiliary heating means. .
[0015]
According to the configuration of the cogeneration system of the invention according to claim 4, the hot water obtained by the heat of the combined heat and power supply device is directly supplied to the first heat consuming device and the second heat consuming device without going through the hot water storage tank. .
[0016]
Moreover, according to the structure of the cogeneration system of the invention which concerns on Claim 5, heat can be output with combustion of a fuel in a combustion type boiler with the starting by a backup control means.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a system configuration diagram showing an embodiment of a cogeneration system according to the present invention. 1 shows a combined heat and power supply device, and 2 shows a hot water storage tank.
[0018]
A circulation pipe 4 having a first pump 3 is connected to the hot water tank 2 from the bottom side to the top. A heat exchanger 5 is provided in the circulation pipe 4, and a heat recovery circulation pipe 7 including a second pump 6 is connected across the heat exchanger 5 and the combined heat and power supply device 1.
[0019]
With this configuration, jacket cooling water is circulated through the combined heat and power supply device 1 and the heat exchanger 5. The water taken out from the lower part of the hot water tank 2 is heated by the heat exchanger 5 by the exhaust heat from the combined heat and power supply device 1 and returned to the upper part of the hot water tank 2. However, water is stored in a state where temperature stratification is formed in the lower part. And it is comprised so that hot water may be supplied from the upper part of the hot water storage tank 2 to the 1st heat consumption apparatus to which hot water is supplied continuously.
In addition, as a structure for heating the water taken out from the lower part of the hot water tank 2 mentioned above by the exhaust heat from the combined heat and power supply device 1, another heat exchanger is provided in the circulation circuit of jacket cooling water, A refrigerant such as chlorofluorocarbon or carbon dioxide may be circulated as a heat recovery heat medium across the exchanger and the heat exchanger 5.
[0020]
As a structure for supplying hot water from the hot water storage tank 2 to the first heat consuming device, a hot water supply pipe 8 is connected to the upper part of the hot water storage tank 2, and a bathtub 9 or a kitchen as the first heat consuming equipment is connected to the hot water supply pipe 8. A branch hot water supply pipe 10 to a washroom, a shower, etc. is connected so that hot water in the hot water storage tank 2 can be taken out and supplied to various places.
[0021]
In addition, an output circulation pipe 11 is connected to the circulation pipe 4 so as to be in series with the heat exchanger 5, and a heating heat exchanger 12 is provided in the output circulation pipe 11, and the heating heat exchanger 12 is provided. In addition, a central heater such as a hot water type indoor heater or a hot water type floor heater as a second heat consuming device to which hot water is intermittently supplied via a heating circulation pipe 14 provided with a third pump 13. Heating equipment 15 is connected, and is configured so that heating can be performed by directly using exhaust heat from the cogeneration system, heat by auxiliary heating means such as a gas boiler described later, and hot water in the hot water storage tank 2 as a heat source. ing.
[0022]
A power line 16 for extracting generated power is connected to the combined heat and power supply apparatus 1, and an electric load 17 such as a lighting device or an electric device is connected to the power line 16. In addition, a commercial power line 19 is connected to the power line 16 via a protection device 18 for preventing a reverse power flow so that power from the commercial power source can be input to the electric load 17 when the power generated by the cogeneration apparatus 1 is insufficient. The power purchase means 20 is configured.
[0023]
A gas boiler 21 as an auxiliary heating means is connected to the downstream side of the heat exchanger 5 of the circulation pipe 4 and when the hot water in the hot water storage tank 2 is insufficient, the gas boiler 21 is operated to run out of hot water. Can be replenished. An oil-fired boiler or the like may be used in place of the gas boiler 21, and a type of boiler whose heat output rises quickly upon activation thereof is referred to as a combustion-type boiler.
[0024]
The hot water tank 2 is provided with four hot water temperature sensors 22 that sense hot water of a set temperature or more at a predetermined interval in the vertical direction, and the hot water tank 2 is based on the sensing state of the hot water temperature sensors 22. The hot water storage amount detection means 23 is configured so as to detect the amount of hot water stored inside.
[0025]
Further, a temperature sensor 24 for measuring the temperature in the heating space is provided in the heating space heated by the heating device 15, and the temperature sensor 24 is connected to a controller 25 as temperature control means. The third pump 13 is controlled.
[0026]
In the controller 25, based on the temperature in the heating space measured by the temperature sensor 24, the driving of the third pump 13 is stopped as the temperature in the heating space becomes the upper limit of the set temperature range, and the heating device 15 is stopped. On the other hand, as the temperature in the heating space becomes the lower limit of the set temperature range, the third pump 13 is driven to supply hot water to the heating device 15, and the temperature in the heating space Is maintained within the set range.
[0027]
Responding to a hot water supply request from the first heat consuming device such as the bathtub 9 to the hot water supply pipe 8, that is, as a hot water detection means for detecting a flow state accompanying hot water supply in the first heat consuming device and outputting a hot water supply request A hot water detection sensor 26 is provided. The hot water supply sensing means may be configured to detect the open state of the tub 9 currant or the hot water currant in the kitchen.
[0028]
As shown in the block diagram of the control system in FIG. 2, the hot water storage amount detection means 23 and the hot water supply sensor 26 are connected to a microcomputer 27, and the gas boiler 21 is connected to the microcomputer 27.
The microcomputer 27 is connected with a heat demand specifying means 28, a hot water storage heat supply specifying means 29, and a second heat demand specifying means 30.
[0029]
In the heat demand specifying means 28, as shown in the graph of the change in power demand with time in FIG. 3 and the graph of the change in heat demand with time in FIG. 4, the reservation or the same day on the same day of the previous day or one week ago The learning function based on the time and the like specify the time for supplying hot water to the heat load such as the bathtub 9, the kitchen, the washroom, and the shower, and the amount of heat demand.
[0030]
As shown in FIG. 3 and FIG. 4, the combined heat and power supply device 1 is driven according to the power demand, and the heat from the combined heat and power supply device 1 to the hot water tank 2 is specified as the power demand is specified in advance. The supply amount of water also changes proportionally, and based on this, the hot water storage heat supply amount specifying means 29 specifies the change over time in the supply amount of heat from the thermoelectric supply device 1 to the hot water storage tank 2.
The second heat demand specifying means 30 is adapted to specify the temporal change of the second heat demand such as the heating demand based on the temporal change of the heating demand shown in FIG.
[0031]
As shown in FIG. 2, the microcomputer 27 includes a heat shortage determination unit 31, a second heat demand determination unit 32, and a backup control unit 33.
In response to the hot water supply request from the hot water detection sensor 26, the shortage of heat determination means 31 starts from that point, for example, the total amount of heat demand by the heat demand specifying means 28 within a set time such as 2 hours, and hot water storage heat supply. The total heat quantity obtained by adding the total amount of heat supplied by the quantity specifying means 29 and the hot water quantity detected by the stored hot water quantity detecting means 23 is compared, and a shortage signal is output when the total heat quantity is smaller than the total heat demand quantity. It is supposed to be.
[0032]
In response to the hot water supply request from the hot water detection sensor 26, the second heat demand determination means 32 determines whether the second heat demand is specified by the second heat demand specification means 30 within the set time, The second heat demand signal is output when the heat demand is specified.
[0033]
The backup control unit 33 starts the gas boiler 21 when both the shortage signal from the heat shortage determination unit 31 and the second heat demand signal from the second heat demand determination unit 32 are output.
[0034]
The automatic determination by the control system is repeated every 5 minutes, for example, and when the output of at least one of the shortage signal and the second heat demand signal is stopped, the operation of the gas boiler 21 is stopped. Yes.
[0035]
The combined heat and power supply device 1 is operated mainly according to the electric power demand, and hot water is supplied to the hot water tank 2 along with it, while hot water is supplied to the first heat consuming device according to the heat demand. As a result, as shown in FIG. 4, the hot water storage amount SH increases or decreases. However, when a large amount of hot water is required, such as in the bathtub 9, the hot water storage amount SH in the hot water storage tank 2 is insufficient. Arise.
[0036]
In such a case, due to the above configuration, when there is a hot water supply request from the first heat consuming device such as the bathtub 9, a shortage of heat occurs within the set time from that point, and within the set time. When there is a second heat demand for supplying heat to the second heat consuming device, the gas boiler 21 is activated prior to the occurrence of a shortage of heat, and the heat obtained by the gas boiler 21 is supplied to the first heat consuming device such as the bathtub 9. Used for hot water supply, hot water from the hot water storage tank 2 is supplied to the second demand for heat later, and the utilization efficiency of heat from the gas boiler 21 is improved, so that the economy of the entire cogeneration system can be improved.
[0037]
FIG. 5 is a block diagram showing a control system of a second embodiment of the cogeneration system according to the present invention. The differences from the first embodiment are as follows.
That is, the microcomputer 40 is provided with an insufficient heat amount calculation means 41 and an operation time calculation means 42 instead of the heat shortage determination means 31.
[0038]
In response to the hot water supply request from the hot water detection sensor 26, the insufficient heat amount calculation means 41 calculates the heat supply by the hot water storage heat supply amount specifying means 29 from the total heat demand by the heat demand specifying means 28 within the set time from that time. The deficient heat amount is calculated by subtracting the total heat amount obtained by adding the sum of the amounts and the hot water amount detected by the hot water storage amount detection means 23.
[0039]
The operation time calculation means 42 calculates the operation time of the gas boiler 21 necessary to make up for the insufficient heat quantity calculated by the insufficient heat quantity calculation means 41 based on the performance of the gas boiler 21 provided.
[0040]
The operation time calculated by the operation time calculation means 42 is input to the backup control means 43, and after the gas boiler 21 is started, the operation is performed only for the operation time calculated by the operation time calculation means 42.
[0041]
According to the configuration of the second embodiment, the minimum required amount of heat can be obtained by the gas boiler 21, the startup time of the gas boiler 21 can be minimized, and the amount of heat obtained by the gas boiler 21 can be reduced as much as possible. It can be improved.
[0042]
In the said Example, although comprised so that the cogeneration apparatus 1 might be driven according to an electric power demand, as this invention, it can apply also when driving according to a heat demand. That is, it is effective in the case where a shortage of heat occurs due to a time lag between the change in the heat demand specified in advance and the actual hot water supply.
[0043]
In the above-described embodiment, the heating device 15 is shown as a device to which hot water is intermittently supplied. However, the present invention can be applied to, for example, a desiccant dehumidifier, and the heating device 15 or the desiccant dehumidifier is used. These are collectively referred to as the second heat consuming device.
[0044]
In the above embodiment, the water flowing through the circulation pipe 4 is heated by the heat generated in the combined heat and power supply device 1 to obtain hot water, the hot water is supplied to the hot water tank 2 and stored, and the stored hot water is stored in the first bath 9 or the like. Although it supplies to 2nd heat consumption apparatus, such as a heat consumption apparatus and the heating apparatus 15, as this invention, the hot water heated up with the heat | fever which generate | occur | produces in the combined heat and power supply apparatus 1 is not passed through the hot water storage tank 2. In addition, it may be configured so that it can be directly supplied to the first heat consuming device and the second heat consuming device.
[0045]
Moreover, as this invention, without providing the hot water storage tank 2, you may comprise so that the heat which generate | occur | produces in the combined heat and power supply apparatus 1 can be directly supplied to a 1st heat consumption apparatus and a 2nd heat consumption apparatus, A configuration for recovering heat generated in the combined heat and power supply device 1 without providing the hot water storage tank 2 and a configuration for recovering heat generated in the combined heat and power supply device 1 by providing the hot water storage tank 2 are collectively referred to as exhaust heat recovery means. .
[0046]
In the case of the configuration for recovering the heat generated in the combined heat and power supply device 1 without providing the hot water storage tank 2 as described above, the configuration for specifying the temporal change due to hot water from the exhaust heat recovery means and the heat supply amount specifying means, Called.
Moreover, in the case of the structure which provides the hot water storage tank 2 and collect | recovers the heat | fever which generate | occur | produces in the combined heat and power supply apparatus 1, it has the structure which specifies the time-dependent change by the hot water from the hot water storage tank 2, and is called a hot water storage heat supply amount specification means, The hot water storage heat supply amount specifying means and the hot water storage amount detecting means 23 are configured as a heat supply amount specifying means.
[0047]
In the said Example, although the gas boiler 21 is used as an auxiliary | assistant heating means, it replaces with the gas boiler 21 and may use an electric heater as this invention.
[0048]
【The invention's effect】
As is apparent from the above description, according to the cogeneration system of the invention according to claim 1, when the hot water supply request from the first heat consuming device is generated, a shortage of heat is generated within the set time from that point, and the auxiliary heating means In addition, when there is a second heat demand for supplying heat to the second heat consuming device within the set time, the auxiliary heating means is activated prior to the occurrence of the shortage of heat, and the auxiliary The heat obtained by the heating means is used for hot water supply to the first heat consuming device having high heat utilization efficiency, and the hot water obtained by the exhaust heat recovery means for the second heat demand having low heat utilization efficiency later. Since the heat obtained by the auxiliary heating means can be used efficiently and the amount of heat for the deficiency is compensated, compared to the case where the heat obtained by the auxiliary heating means is used for the second heat demand. The amount of heat obtained by the auxiliary heating means can be reduced, and the economic efficiency can be improved.
[0049]
Further, according to the cogeneration system of the invention according to claim 2, since the amount of hot water stored in the hot water storage tank is detected and the lack of heat is determined in consideration of the amount of hot water stored, it is obtained by the auxiliary heating means. The amount of heat can be further reduced, and the economic efficiency can be further improved.
[0050]
Further, according to the cogeneration system of the invention according to claim 3, when it is determined that the heat quantity is insufficient, the insufficient heat quantity is calculated, and only the insufficient heat quantity is compensated by the heat from the auxiliary heating means. By suppressing the operation of the auxiliary heating means as much as possible, the amount of heat obtained by the auxiliary heating means can be reduced as much as possible, and the economy can be further improved.
[0051]
Further, according to the cogeneration system of the invention according to claim 4, since the hot water to be supplied to the first heat consuming device and the second heat consuming device can be obtained by exhaust heat directly supplied from the combined heat and power supply device, Heat loss can be reduced compared with the case of passing through the hot water storage tank and supplying the first heat consuming device and the second heat consuming device, and the economic efficiency can be further improved.
[0052]
Further, according to the cogeneration system of the invention according to claim 5, since the combustion boiler is used as the auxiliary heating means, the rise of the heat output accompanying the start-up by the backup control means can be accelerated as compared with an electric heater or the like.
Moreover, in the combustion boiler, the heat loss due to start / stop is relatively large, but the first heat consuming equipment with less start / stop has priority over the second heat consuming equipment with much start / stop. Since the heat obtained from the boiler is supplied, the rise of the heat output can be accelerated while suppressing the heat loss due to start and stop as a whole, and the shortage of heat can be compensated well. It is effective.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing an embodiment of a cogeneration system according to the present invention.
FIG. 2 is a block diagram of a control system of the first embodiment.
FIG. 3 is a graph showing changes in power demand over time.
FIG. 4 is a graph showing changes in heat demand over time.
FIG. 5 is a block diagram showing a control system of a second embodiment of the cogeneration system according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cogeneration apparatus 2 ... Hot water tank 9 ... Bathtub (1st heat consumption apparatus)
15 ... Heating equipment (second heat consuming equipment)
21 ... Gas boiler (combustion boiler, auxiliary heating means)
23 ... Hot water storage amount detection means (heat supply amount identification means)
26 ... Hot water detection sensor (hot water detection means)
28 ... Heat demand specifying means 29 ... Hot water storage heat supply amount specifying means (heat supply amount specifying means)
30 ... second heat demand specifying means 31 ... heat shortage determining means 32 ... second heat demand determining means 33, 43 ... backup control means 41 ... insufficient heat amount calculating means 42 ... operating time calculating means

Claims (5)

電力と共に熱を発生する熱電併給装置と、
前記熱電併給装置で発生する熱で昇温させて湯を得る排熱回収手段と、
前記熱電併給装置での熱の不足分を補うための補助加熱手段とを備え、
前記排熱回収手段または前記補助加熱手段からの熱を、湯が連続的に供給される第1熱消費機器、または/および、湯が間欠的に供給される第2熱消費機器にて消費するように構成したコージェネレーションシステムにおいて、
前記第2熱消費機器における第2熱需要を特定する第2熱需要特定手段と、
前記第2熱消費機器における第2熱需要と前記第1熱消費機器における第1熱需要とを含む熱需要の経時的変化を特定する熱需要特定手段と、
前記排熱回収手段からの湯による熱供給量の経時的変化を特定する熱供給量特定手段と、
前記第1熱消費機器からの熱供給要求に応答して、その時点から設定時間内における前記熱需要特定手段による熱需要量の総和と、前記熱供給量特定手段による熱供給量の総和とを比較し、前記熱需要量の総和よりも前記熱供給量の総和が小さいときに熱不足と判定する熱不足判定手段と、
前記第1熱消費機器からの給湯要求に応答して、前記設定時間内に前記第2熱需要特定手段で特定された第2熱需要があるかどうかを判定する第2熱需要判定手段と、
前記熱不足判定手段にて熱不足と判定されかつ前記第2熱需要判定手段にて第2熱需要があると判定された場合に、前記補助加熱手段を起動するバックアップ制御手段と、
を備えたことを特徴とするコージェネレーションシステム。
A combined heat and power device that generates heat with electric power;
Waste heat recovery means for obtaining hot water by raising the temperature with heat generated by the combined heat and power supply device;
An auxiliary heating means for making up for the lack of heat in the combined heat and power supply device,
Heat from the exhaust heat recovery means or the auxiliary heating means is consumed by a first heat consuming device to which hot water is continuously supplied or / and a second heat consuming device to which hot water is intermittently supplied. In the cogeneration system configured as follows,
Second heat demand specifying means for specifying the second heat demand in the second heat consuming device;
A heat demand specifying means for specifying a temporal change in heat demand including the second heat demand in the second heat consuming device and the first heat demand in the first heat consuming device;
A heat supply amount specifying means for specifying a temporal change in the heat supply amount by the hot water from the exhaust heat recovery means;
In response to the heat supply request from the first heat consuming device, a sum of heat demand by the heat demand specifying means and a sum of heat supply by the heat supply specifying means within a set time from that time point In comparison, a heat shortage determination means for determining a heat shortage when the total heat supply amount is smaller than the total heat demand,
In response to a hot water supply request from the first heat consuming device, second heat demand determination means for determining whether or not there is a second heat demand specified by the second heat demand specification means within the set time;
Backup control means for activating the auxiliary heating means when it is determined by the heat shortage determination means that there is insufficient heat and the second heat demand determination means determines that there is a second heat demand;
Cogeneration system characterized by having
請求項1に記載のコージェネレーションシステムにおいて、
排熱回収手段は、熱電併給装置で得た湯を貯める貯湯槽を備え、
熱供給量特定手段は、前記熱電併給装置から前記貯湯槽への熱の供給量の経時的変化を特定する貯湯熱供給量特定手段と、前記貯湯槽内に貯まっている貯湯量を検出する貯湯量検出手段と、を備え、
熱不足判定手段が、第1熱消費機器からの給湯要求に応答して、その時点から設定時間内における熱需要特定手段による熱需要量の総和と、前記貯湯熱供給量特定手段による貯湯熱供給量の総和と前記貯湯量検出手段で検出される貯湯量とを加算した総熱量とを比較し、前記熱需要量の総和よりも前記総熱量が小さいときに熱不足と判定するものであるコージェネレーションシステム。
The cogeneration system according to claim 1,
The waste heat recovery means includes a hot water storage tank for storing hot water obtained by the combined heat and power supply device,
The heat supply amount specifying means is a hot water storage heat supply amount specifying means for specifying a change over time in the amount of heat supplied from the cogeneration device to the hot water storage tank, and a hot water storage for detecting the amount of hot water stored in the hot water storage tank. An amount detecting means,
In response to the hot water supply request from the first heat consuming device, the heat shortage determining means sums the heat demand amount by the heat demand specifying means within the set time from that time, and the hot water supply heat supply by the hot water storage heat supply amount specifying means The total amount of heat is compared with the total amount of heat obtained by adding the amount of stored hot water detected by the hot water storage amount detection means, and when the total amount of heat is smaller than the total amount of heat demand, the core is determined to be short of heat. Generation system.
請求項1または2に記載のコージェネレーションシステムにおいて、
第1熱消費機器からの給湯要求に応答して、その時点から設定時間内における熱需要特定手段による熱需要量の総和から、熱供給量特定手段による熱供給量の総和を減算して不足熱量を算出する不足熱量算出手段と、
前記不足熱量算出手段で算出された不足熱量を補うのに必要な補助加熱手段の運転時間を算出する運転時間算出手段とを備え、
バックアップ制御手段を、前記補助加熱手段を起動した後、前記運転時間算出手段で算出された運転時間だけ運転するように構成してあるコージェネレーションシステム。
In the cogeneration system according to claim 1 or 2,
Responding to a hot water supply request from the first heat consuming device, subtracting the sum of the heat supply amount by the heat supply amount specifying means from the sum of the heat demand amounts by the heat demand specifying means within the set time from that point in time An insufficient heat amount calculating means for calculating
An operation time calculating means for calculating an operation time of the auxiliary heating means required to supplement the insufficient heat quantity calculated by the insufficient heat quantity calculating means,
A cogeneration system in which the backup control means is configured to operate only for the operation time calculated by the operation time calculation means after the auxiliary heating means is activated.
請求項1、2、3のいずれかに記載のコージェネレーションシステムにおいて、
排熱回収手段は、熱電併給装置の熱で昇温させた湯を、第1熱消費機器または/および第2熱消費機器に直接供給し得るように構成してあるコージェネレーションシステム。
In the cogeneration system according to any one of claims 1, 2, and 3,
The waste heat recovery means is a cogeneration system configured to be able to directly supply hot water heated by heat of the combined heat and power supply device to the first heat consuming device and / or the second heat consuming device.
請求項1、2、3、4のいずれかに記載のコージェネレーションシステムにおいて、
補助加熱手段が燃焼式ボイラであるコージェネレーションシステム。
In the cogeneration system according to any one of claims 1, 2, 3, and 4,
A cogeneration system where the auxiliary heating means is a combustion boiler.
JP2002028358A 2002-02-05 2002-02-05 Cogeneration system Expired - Fee Related JP3841693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028358A JP3841693B2 (en) 2002-02-05 2002-02-05 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002028358A JP3841693B2 (en) 2002-02-05 2002-02-05 Cogeneration system

Publications (2)

Publication Number Publication Date
JP2003227656A JP2003227656A (en) 2003-08-15
JP3841693B2 true JP3841693B2 (en) 2006-11-01

Family

ID=27749601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028358A Expired - Fee Related JP3841693B2 (en) 2002-02-05 2002-02-05 Cogeneration system

Country Status (1)

Country Link
JP (1) JP3841693B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4126282B2 (en) * 2004-02-10 2008-07-30 リンナイ株式会社 Water heater
JP5950159B2 (en) * 2012-07-30 2016-07-13 株式会社ノーリツ Cogeneration system
KR102571630B1 (en) * 2018-12-27 2023-08-29 주식회사 경동나비엔 Method for controlling number of operating accumulating type boilers
CN115597228B (en) * 2022-10-20 2024-05-24 珠海格力电器股份有限公司 Gas water heater, heating control method and device

Also Published As

Publication number Publication date
JP2003227656A (en) 2003-08-15

Similar Documents

Publication Publication Date Title
JP2011185520A (en) Cogeneration system
JP6086014B2 (en) Heat pump water heater
JP3841693B2 (en) Cogeneration system
JP2005291561A (en) Operating method for cogeneration system and cogeneration system
JP7116907B2 (en) hot water storage system
JP4916197B2 (en) Cogeneration system
JP5236407B2 (en) Cogeneration system, operation control device, cogeneration system operation method and program
JP4856384B2 (en) Fuel cell system
JP2004257276A (en) Cogeneration system
JP5239583B2 (en) Cogeneration system
JP2004245451A (en) Storage type hot water supply system
JP4656521B2 (en) Cogeneration system
JP2000088482A (en) Cogeneration system
JP2009206011A (en) Fuel cell power generation system
JP2007330009A (en) Power load controller and cogeneration system equipped therewith
JP3977980B2 (en) Cogeneration system
JP2002048005A (en) Cogeneration system
JP3990526B2 (en) Cogeneration system
JP2003247757A (en) Solar heater
JP3979770B2 (en) Hot water storage hot water supply system
JP2004257590A (en) Heat source system
JP4511810B2 (en) Cogeneration system and control method thereof
JP2006084040A (en) Cogeneration system
JP2010151350A (en) Cogeneration system and hot water storage system
JP3977981B2 (en) Cogeneration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060808

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees