JP3840042B2 - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP3840042B2
JP3840042B2 JP2000211130A JP2000211130A JP3840042B2 JP 3840042 B2 JP3840042 B2 JP 3840042B2 JP 2000211130 A JP2000211130 A JP 2000211130A JP 2000211130 A JP2000211130 A JP 2000211130A JP 3840042 B2 JP3840042 B2 JP 3840042B2
Authority
JP
Japan
Prior art keywords
contact
region
evaluation
amount
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000211130A
Other languages
Japanese (ja)
Other versions
JP2002025397A (en
Inventor
功 奥富
貴史 草野
敦史 山本
芳充 丹羽
三孝 本間
巖 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000211130A priority Critical patent/JP3840042B2/en
Publication of JP2002025397A publication Critical patent/JP2002025397A/en
Application granted granted Critical
Publication of JP3840042B2 publication Critical patent/JP3840042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Contacts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、遮断性能を向上させた接点を有する真空バルブを備えた真空遮断器に関する。
【0002】
【従来の技術】
一般に真空遮断器には、遮断性能、耐電圧性能、耐溶着性能が要求され、接点材料の役割が大きい。しかし1つの接点材料でこれらの総ての機能を同時に満たす事が出来ない。そこで一部の機能を犠牲にして対応している製品が多い。
【0003】
一般に真空遮断器は、図7(a)に示す如く絶縁容器101の両端開口部を蓋体102a、102bにより閉塞した真空容器103内に、一対の接点104、105を対向させて設けると共に、これらを、蓋体102a、102bを貫通させて真空容器103内に挿入された通電軸106、107の端部にそれぞれ装着し、その一方の通電軸107を図示しない操作機構により軸方向に移動可能として、一方の接点(以下固定接点)104に対して、他方の接点(以下可動接点)105を接触または開離出来るようにしてある。この場合、蓋体102bと通電軸107との間には、真空容器103内を真空気密に保持しかつ導電棒107の軸方向への移動を可能とするベローズ108が設けられる。なお図中109は、前記各接点104、105および導電棒106,107を包囲する如く設けられたアークシールドである。
【0004】
上記真空遮断器は、通常両接点104、105が接触し通電状態となる。この状態からの動作により通電軸107が図中矢印M方向に移動すると、可動接点105が固定接点104から開離し、両接点104、105間にはアークが発生する。このアークは陰極例えば可動接点105側からの金属蒸気の発生により維持され、電流がゼロ点(零点)に達すると金属蒸気の発生が止まってアークが維持できなくなり、遮断が完了する。
【0005】
ところで、上記両接点104、105間に発生するアークは、遮断電流が大きいとアーク自身により生じた磁場と外部回路の作る磁場との相互作用により著しく不安定な状態となる。その結果アークは接点面上を移動し(接点が電極に取り付けられ一体化している時には、アークは電極面上にも移動している場合もある)、接点の端部或いは周辺部に片寄り、その部分を局部的に過熱し、多量の金属蒸気を放出させて、真空容器103内の真空度を低下させる。その結果、真空遮断器の遮断性能は低下する。これらは金属組織などで代表される接点の状態に依存する事が多い。
【0006】
図7(b)は、一対の接点41、51を対向させて設けると共に、接点41の背面にはコイル電極40、接点51の背面にはコイル電極50をそれぞれ装着した真空バルブである。なお、図7(b)において、図7(a)と同一の部分または対応する部分は、同符号で示してある。
【0007】
【発明が解決しようとする課題】
上記のように真空遮断器では、アーク片寄りが発生することがあり、接点(電極)を局部的に溶融し、蒸気の発生が大きくなり、遮断不能となる恐れがあった。
【0008】
また、接点の全面積で電流を均一に分担することは不可能である為、上記のように遮断不能となる恐れがあつた。
【0009】
更に、遮断性能を向上させる施策の1つとして、接点の背面にコイル電極を配置しこれに電流Iを流すと、両接点間には接点面に対して垂直方向に磁界が発生する。この磁界により遮断時において両接点間に点弧するアークは拘束される。
【0010】
このようにして、アーク分布は両接点間の磁力線と同様になるが、この分布は必ずしも均一でなく、平行でない上、特に各接点の端部近傍に於いては、接点面に対して垂直に点弧しないばかりか、アークが接触子空間から外部にはみ出す現象が発生し、予定する遮断性能が得られない恐れがあった。
【0011】
この様に、これまでに接点やこれを搭載した電極構造の様々な改善が行われているが、或るものは遮断性能が十分でなかったり、他のものはコスト高であったりした。
【0012】
本発明の目的は、接点間に発生させる磁束を均一で平行度の高いものとし、遮断性能の向上を図る上で有利な真空遮断器を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成する為に、本発明は、
Cr領域と、残部としてのCu領域とで構成され、前記Cu領域中のFeは、粒子直径が5μm以下で、0.01〜5μmの間隔で分散し、前記Cr領域中のFeは、0.01〜15μmの間隔で分散してなる10〜60重量%Crを含有したCu−Cr合金から成り、
前記Cr領域中に存在するFe量と、前記Cu領域中に存在するFe量との合計Fe量である総Fe量が、0.002〜0.5重量%であり、かつ前記Cu領域中に占めるFe量が、前記総Fe量に対して、0.01〜20重量%を占めることを特徴とする接点を備えた真空遮断器である。
【0014】
すなわち、接点として、総Fe量(Fe(Cu+Cr))が0.002〜0.5重量%からなる10〜60重量%Cr−Cuの接点を配置すると、対向する一対の接点空間の磁束は、接点面の特定領域に集中することがなく、しかも平行でかつ接点表面に対してほぼ垂直なものとなり、遮断性能が向上すると共に安定化する。
【0016】
ここで、総Fe量(Fe(Cu+Cr))に対するCu領域中に占めるFe量(Fe(Cu))が0.01%未満では、接点空間の磁束分布の均一性に欠ける為、遮断特性の向上への効果が少なく、また20%を越えるとCu−Cr合金全体の導電率が低下しやはり遮断特性の低下が見られる。
【0018】
また、Cu領域中に分散しているFe(Fe(Cu))の間隙を0.01μm未満としても、0.01μm未満に均一にする製造コストの大幅な上昇にもかかわらず、遮断特性の向上への格別の効果は示さない。また5μmを越えると接点空間の磁束分布の均一性に欠ける為、遮断特性の低下が見られる。
【0020】
また、Cu領域中のFe(Fe(Cu))が5μmよりも大きな粒子直径となると、接点空間の磁束分布の均一性が乱れ、安定した遮断特性が得られない。
【0022】
また、Cr領域中のFe(Fe(Cr))の間隙を0.01μm未満としても、0.01μm以上と比較して、製造コストの増加の割りには遮断特性の向上効果が少ない。また15μmを越えると接点空間の磁束分布の均一性に欠ける為遮断特性の低下が見られる。
【0037】
【発明の実施の形態】
以下、本発明の実施形態について詳細に説明する。
【0038】
所定のCu−Cr接点を搭載した真空遮断器について、遮断試験を行っていると、制御し得る条件を一定としても遮断特性が大幅に変動する(遮断特性がばらつく)場合が見られた。遮断試験後の接点表面の損傷を複数個の真空バルブについて観察すると、遮断後の接点面はいずれも大幅に異なる損傷形態を示している事が判った。この現象は特に接点面および接点空間での磁束分布の不揃いが一因と考えられる。すなわちこの磁束分布の不揃いが、遮断電流値のバラツキや遮断後の接点面の損傷状態の差異として影響を与えていると考えられる。
【0039】
ところでCu−Cr接点では、接点製造技術に起因したCr粒子の大きさや形状の不揃い(粒度分布)、Cr粒子の凝集(偏析)、Cu相の大きさや形状の不揃い(結晶粒度)、Cu相中、結晶粒界あるいはCr粒子とCu相との境界に存在する空隙の量、空隙の大きさや空隙の分布状況などが異なると共にその存在が避けられず、材料的ミクロ欠陥として存在する。従って、接点の内部およびその表面層には、無数の欠陥が存在する為、金属組織的な均一性は得られていない。その結果、この材料的ミクロ欠陥の存在が接点表面および接点空間での磁束の均一性に撹乱を与え、遮断特性の安定性とその向上に対して障害となっている。
【0040】
しかし、上記した幾つかの材料的ミクロ欠陥を排除する事による上記磁束分布の不揃いの抑制は、経済性を考慮した製造技術では困難である。
【0041】
そこで本発明では、Cu−Cr合金のCr領域中に存在するFe量(Fe(Cr))と、Cu領域中に存在するFe量(Fe(Cu))とを最適化することによって、接点表面および接点空間での磁束の分布の均一性を得て、上記磁束分布の不揃いの解決に対して有益である事を見出だし、その結果アーク集中による局部的な溶融、過度の金属蒸気の放出を抑制し、遮断特性に対して好結果を与えた。
【0042】
これに対して、Cr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))とが最適化されていない時には、アークは遮断する電流値が大きくなると、アーク自身によって生じた磁場と外部回路によって生じる磁場との相互作用によって、著しく不安定な状態となる。この為アークは接点面を移動し接点の端部あるいは周辺部に片寄りその部分を過熱し、多量のCu、Cr蒸気を放出させて、真空バルブの真空度を低下させたり、多量の熱電子を放出させて、遮断の限界電流値を低下させたりする。
【0043】
なお、従来遮断の限界電流値を向上させる手段として、接点面を有効に使用する技術、すなわち遮断に関与する実質面積を大きくして電流密度を低下させる技術がある。電流密度を低下させれば接点表面の損傷も軽減され、遮断特性、耐電圧特性の向上に有益となる。
【0044】
しかしこの場合でも、やはり前述同様にアークが接点の端部あるいは周辺部に片寄る為、接点を局部的に融解し蒸気の発生が大となり、遮断不能を示す場合が見受けられる。
【0045】
Cu−Cr合金のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))とを最適化することによって、接点表面および接点空間での磁束の分布の均一性を得て、磁束は平行でしかも部材に対して垂直なものとなり、遮断性能が向上する。本発明はこの原理を応用したものである。
【0046】
遮断動作の繰り返しの経過と共に、遮断特性にはバラツキを生ずる現象が見られている。発明者らは遮断特性にバラツキを生じた場合の真空バルブに搭載されていた接点を調査したところ、接点表面および内部には、局部的ではあるが金属組織上のバラツキが見られた。特に遮断特性が劣る真空バルブの接点には、金属組織的な不均一さが観察されている。ここで重要なのは、この金属組織的な不均一さが、遮断特性を左右している事実である。この金属組織的な不均一部分が磁界分布の均一性を乱し、遮断時のアークはこの部分に停滞する傾向を示し、遮断特性の経時劣化(遮断や開閉動作の繰り返しによる遮断特性の低下やバラツキ)となったものである。
【0047】
この様に、接点表面および内部の金属組織的な不均一部分の存在こそ、接点面や接点間の磁束分布の均一性を乱すものであり、遮断特性の安定性に対して好ましくない事が判った。従って、接点表面および内部の金属組織を均一な状態、すなわちCu−Cr合金のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))とを最適化した状態とする事が好ましい。
【0048】
また、アークと平行な磁界を印加する電極の存在によって、接点中のFeの僅かな分散状態の差異による接点面上でのアークのミクロ的な片寄りを平均化する効果を示す結果、遮断特性の向上に対して相乗的効果を発揮する。
【0049】
すなわち、接点はCr領域と残部としてのCu領域とで構成される10〜60重量%Crを含有したCu−Cr合金であり、接点中の総Fe量(Fe(Cu+Cr))、すなわち前記Cr領域中に存在するFe量(Fe(Cr))と前記Cu領域中に前記Cu領域中に存在するFe量(Fe(Cu))との合計を、0.002〜0.5重量%とし、前記Cu領域中に占めるFe量(Fe(Cu))は、前記Cu−Cr合金中の総Fe量(Fe(Cu+Cr))に対して、0.01〜20重量%とし、0.01〜5μmの間隙を持ってかつ5μmよりも大きな粒子直径を持たない程度にほぼ均一に分散し、前記Cr領域中に分散しているFe(Fe(Cr))は、前記Cu−Cr接点中に0.01〜15μmの間隙を持ってほぼ均一に分散した事を特徴とする接点部材と、少なくとも70%IACSの導電率を持つ事を特徴とする通電軸部材と、接点自身で電極を構成した平板型接点、スパイラル型電極、縦磁界型電極、自発拡散型電極、コントレート型電極のいずれかから選択した電極部材とからなる各部材を備えて真空遮断器とする事によって、安定した遮断特性を発揮する。
【0050】
以下実施例と比較例とを対比させながら本発明の効果を明らかにする。以下に評価条件を図1〜図2に、評価結果を図3〜図6に示す。
【0051】
(1)遮断特性
着脱式の遮断テスト用真空遮断装置に所定接点を装着し、接点表面のベーキング、電流、電圧エージング、開極速度条件を一定同一とした後、6〜12台の遮断器について50Hz、7.2kV、15kAの回路を10〜1000回遮断させた時の再点弧の発生状況と遮断電流値の範囲を評価した。必要とした一部の接点に対しては、20〜25kAを遮断させた。
【0052】
なお評価は,接点のみ装着した着脱式真空遮断装置、接点と密着する様に電極も装着した着脱式真空遮断装置を使用した。
【0053】
(2)アーク拡がりの状況
各接点を着脱式の真空遮断装置に装着し、接点電極表面のべーキング、電流、電圧エージング、開極速度条件を一定同一とした後、7.2kV、50Hzで12kAを10回遮断させた後の電極表面の被アーク部分の面積を測定した。
【0054】
被アーク部分が接点面のほぼ全面を覆いかつ接点表面の凹凸も少なくほぼ平滑である時を(評価AA)、比較例2の被アーク部分の拡がりの面積を100%とした時、拡がりの面積が150%以上を示した場合を(評価A)とし、80〜150%の範囲の場合を(評価B)とした。被アーク部分が接点面の50〜80%以下の場合を(評価X)、50%以下の場合を(評価Y)、被アーク部分が接点面の1〜数か所以下に集中し接点表面は顕著な凹凸を示した場合を(評価Z)、被アーク部分が接点面の1〜2か所以下に集中し接点表面は顕著な凹凸を示し、かつ10%以上の再点弧の発生を伴った場合を(評価ZZ)とした。判定は、評価AA、A、B、Cを合格、評価X、Y、Z、ZZを不合格の目安とした。
【0055】
(3)耐電圧特性
各接点素材で直径30mmの円盤を製作しこれを陽極側接点とし、先端に50Rの曲率半径を持つNi製の針電極を陰極側接点とし、両接点を対向させ前記針電極を直径30mmの前記円盤上を微少移動させ、その都度1〜10kVずつ昇電圧させスパークを発生した時の静耐圧値の接点円盤上での分布を測定し、そのバラツキ幅(最大値〜最小値)を比較した。
【0056】
静耐圧値が比較例2よりも大でかつ静耐圧値の幅(最大値〜最小値)が20%以内の場合を耐電圧特性評価の(評価A)、20〜50%を(評価B)、50%以上を(評価C)とした。
【0057】
静耐圧値が比較例2と同程度またはそれ以下で、かつ静耐圧値の幅(最大値〜最小値)が20%以内の場合を(評価X)、20〜50%を(評価Y)、50%以上を(評価Z)とした。
【0058】
(4)その他
供試接点中の前記Cr領域中に存在するFe量(Fe(Cr))と、前記Cu領域中に存在するFe量(Fe(Cu))の評価は、供試接点をCr領域とCu領域とに分別した後、各々中のFe量を化学分析によって確認した。
【0059】
また、前記Cr領域中に存在するFe量(Fe(Cr))と、前記Cu領域中に存在するFe量(Fe(Cu))の分布の状況は、X線微少分析装置による面分析法によって行った。
【0060】
(実施例1〜3、比較例1〜2)
接点中のCr領域中に存在するFe量(Fe(Cr))と、Cu領域中に存在するFe量(Fe(Cu))との合計Fe量(Fe(Cu+Cr))を、0.001重量%以下(比較例1)、および0.002〜2.0重量%(実施例1〜3、比較例1)含有したCu−25%Cr(重量%)を供試接点として、選択した。
【0061】
<アークの拡がり性>
7.2kV、50Hzで12kAを10回遮断させた後の電極表面の被アーク部分の面積を比較する事によって、接点中の合計Fe量(Fe(Cu+Cr))がアークの拡がり性に及ぼす効果を調査した。接点面でのアークの拡がり性が良い接点は、遮断性能の向上に対して有益である。
【0062】
接点中の合計Fe量(Fe(Cu+Cr))を0.002重量%(実施例1)とした接点のアークの拡がり性評価は(評価A)、0.08重量%(実施例2)とした接点では(評価AA)、0.5重量%(実施例3)とした接点では(評価AA)を示した。所定量のFeが存在する結果、アークは接点面上に偏る事なく広く分散させるのに有益な作用を示した。
【0063】
これに対して、接点中の合計Fe量(Fe(Cu+Cr))を0.001重量%以下(比較例1)とした接点では、合計Fe量(Fe(Cu+Cr))の不足によってFeによるアークの拡がり状況は十分でなく、(評価B)〜(評価Y)にバラツキを示し好ましくない。
【0064】
更に、接点中の合計Fe量(Fe(Cu+Cr))を2.0重量%(比較例2)とした接点では、Feの分布に偏析が見られ磁束分布に偏りが現れ、再点弧が多発し、(評価ZZ)を示し好ましくない。
【0065】
<遮断特性>
接点中の合計Fe量(Fe(Cu+Cr))と遮断特性との関係を調査した。すなわち接点中の合計Fe量(Fe(Cu+Cr))を0.002〜0.5重量%(実施例1〜3)とした接点を搭載した真空遮断器に対して、15kAを遮断した場合、接点面および接点間の磁界の強さが、合計Fe量(Fe(Cu+Cr))が0.001重量%以下(比較例1)の接点よりも、5〜50%程度向上すると共にその分布も偏る事なく均一な分布となる(接点面の例えば外周部など特定部分の磁束密度を特に制御する様に設計した電極構造を搭載した真空遮断器では、この部分を除いた部分に於いて)。
【0066】
その結果、50Hz、7.2kV、15kAを1000回遮断させた時の再点弧発生状況を判断基準とした遮断特性では、接点中の合計Fe量(Fe(Cu+Cr))を0.002重量%(実施例1)とした接点では(評価B)、0.08重量%(実施例2)とした接点では(評価AA)、0.5重量%(実施例3)とした接点では(評価A〜B)を示した。接点面および接点中に所定量のFeが存在する効果、および偏析する事なく分布している事による効果である。
【0067】
これに対して、合計Fe量(Fe(Cu+Cr))を0.001重量%以下(比較例1)とした接点では、合計Fe量(Fe(Cu+Cr))の不足によって接点間の磁束分布を均一化する効果が十分には得られず、再点弧発生状況が(評価X)を示し好ましくない。
【0068】
更に、接点中の合計Fe量(Fe(Cu+Cr))を2.0重量%(比較例2)とした接点では、接点中でのFeの分布に偏りを示す部分が生ずる場合があり、このFeの分布の偏りに対応して、接点面および接点間の磁束分布は偏りを示し、均一化した磁束分布を得る妨げとなる。その結果、再点弧発生状況が(評価B〜X)を示し好ましくない。
【0069】
<耐電圧性>
接点中の合計Fe量(Fe(Cu+Cr))を0.002〜0.5重量%としたCu−25%Crで製作した直径30mmの円板状の接点(陽極側接点)と、Ni製の針状の接点(陰極側接点)とを対向させた後、昇電圧させスパークを発生した時の静耐圧値を評価した。
【0070】
接点中の合計Fe量(Fe(Cu+Cr))を0.002重量%(実施例1)とした接点の静耐圧値は(評価A)、0.08重量%(実施例2)とした接点では(評価A)、0.5重量%(実施例3)とした接点では(評価A)〜(評価B)を示し良好であった。
【0071】
また、接点中の合計Fe量(Fe(Cu+Cr))を0.001重量%以下(比較例1)とした接点では、(評価A)を示した。
【0072】
これに対して、接点中の合計Fe量(Fe(cu+cr))を2.0重量%(比較例2)とした接点では、Feの分布に偏析が見られその結果磁束分布に偏りが現れ、再点弧が多発しく評価Z)を示し好ましくなかつた。
【0073】
(実施例4〜7、比較例3〜4)
前記実施例1〜3、比較例1〜2では合金中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中の(Fe(Cu))を3〜10重量%と一定にしたときの、遮断特性、耐電圧特性に及ぼす合金中の合計Fe量(Fe(Cu+Cr))を最適化した。
【0074】
しかし本発明でのCu領域中の(Fe(Cu))は、上記3〜10重量%に限ることなくその効果を発揮する。すなわちCu領域中の(Fe(Cu))が0.01〜20重量%(実施例4〜7)の場合には、FeはCu領域中に凝集する事なく分布する結果、安定した磁束分布を得て、安定したアークの拡がり性を発揮し遮断特性の判定が(評価B)〜(評価A)を示し好ましい値であつた。所定量のFeがCu領域中に存在する結果、アークを接点面上の局所に偏ることなく広く分散させるのに有益な作用を示した。
【0075】
これに対して、接点中のCu領域中のFe量(Fe(Cu))を0.005重量%以下とする接点の製造は、高価となり供給性の観点から除外した(比較例3)。
【0076】
更に、接点中のCu領域中のFe量(Fe(Cu))を45%(比較例4)とした接点では、Feの分布をCr領域中とCu領域中とで比較すると後者のCu領域中に偏り、その結果磁束分布にも偏りが現われ、接点面全面へのアークの拡がり状況は十分でなく(評価B)〜(評価Y)を示し、静耐圧値は(評価A)であつたにもかかわらず再点弧が不安定に発生した。
【0077】
以上のようにCu領域中のFe量(Fe(Cu))を0.01〜20重量%(実施例4〜7)とした時には、アークの拡がり性が(評価B)〜(評価A)と安定していた事により、接点表面のアーク損傷の程度が軽く微量であり遮断特性、耐電圧特性に優れた効果が発揮したものと考えられる。FeはCr領域中とCu領域中のいずれにも偏る事なく両者中に所定量が存在する事が重要であり、その上でCu領域中のFe量(Fe(Cu))がある一定値必要である事を示唆している。
【0078】
(実施例8〜9、比較例5)
前記実施例1〜7、比較例1〜4では,合金中のCu領域中に存在するFe(Fe(Cu))の粒子直径を0.1〜0.5μmで一定とした時の、遮断特性、耐電圧特性に及ぼす効果を示した。
【0079】
しかし本発明でのCu領域中に存在するFe(Fe(Cu))の粒子直径は、上記0.1〜0.5μmに限ることなくその効果を発揮する。
【0080】
すなわちCu領域中に存在する(Fe(Cu))の粒子直径が、0.01〜5μm(実施例8〜9)の場合には、Cr領域中とCu領域中のいずれにも集中することのない磁束分布が得られ、アーク拡がり性が(評価AA)〜(評価A〜B)を発揮し、遮断特性の判定が(評価A)、(評価B)を示し好ましい値であつた。
【0081】
これに対して、Cu領域中に存在するFe(Fe(Cu))の粒子直径を10〜50μm(比較例5)とした接点では、アークがCr領域中とCu領域との境界に集中するなどでアークの拡がり状況が十分でなくなり、アークの拡がり性の評価は(評価B)〜(評価ZZ)に大きくバラツキを示し好ましくない。その結果、遮断特性は(評価Y)〜(評価Z)、耐電圧特性も顕著なバラツキを示し(評価Y)〜(評価Z)であった。
【0082】
(実施例10〜13、比較例6〜7)
前記実施例1〜12、比較例1〜5では合金中のCr領域中に存在するFe(Fe(Cr))の平均間隔を3〜5μmで一定にした時の、遮断特性、耐電圧特性を示した。
【0083】
しかし本発明でのCr領域中に存在するFe(Fe(Cr))の平均間隔は、上記3〜5μmの場合に限る事なくその効果を発揮する。
【0084】
すなわちCr領域中に存在するFe(Fe(Cr))の平均間隔が、0.01〜0.1μm(実施例10)、0.1〜0.5μm(実施例11)、1〜3μm(実施例12)、8〜15μm(実施例13)の場合でも、Cr領域中とCu領域中のいずれにも集中することのない磁束分布が得られ、安定したアークの拡がり性を発揮し、その結果遮断特性の判定が(評価A)〜(評価B)、耐電圧特性の判定も(評価A)〜(評価B)を示し安定した値であった。
【0085】
これに対して、Cr領域中に存在するFe(Fe(Cr))の平均間隔を0.01μm以下(比較例6)とした接点では、アークはCr領域中とCu領域との境界に集中する事なくアークの拡がり状況は十分であり、アークの拡がり性の評価は(評価A)を示しているが、Cu領域中に占めるFe(Fe(Cu))を総Fe量(Fe(Cu+Cr))の0.01〜20重量%とした上でCr領域中に存在するFe(Fe(Cr))の平均間隔を0.01μm以下とするのは、経済的に供給する観点で不利の為、本発明では除外した。
【0086】
更に、Cr領域中に存在するFe(Fe(Cr))の平均間隔を30μm以上(比較例7)とした接点では、Cr領域中とCu領域中でのFe量の分布にバランスを欠き、その結果磁束分布にも偏りが現れ、接点面全面へのアークの拡がり状況は十分でなく、その結果アークの拡がり性の評価は(評価Y)〜(評価ZZ)と大幅に低下すると共に大きくバラツキを示し好ましくない。その結果、遮断特性の評価は(評価Z)、耐電圧特性も顕著なバラツキを示し(評価X)〜(評価Z)であった。
【0087】
以上の様にCr領域中に存在するFe(Fe(cr))の平均間隔を0.01〜15μm(実施例10〜13)とした時には、Cr領域中とCu領域中のいずれにも集中することのない磁束分布が得られ、アーク拡がり性が(評価A)〜(評価B)と安定していた事により、接点表面のアーク損傷の程度が軽く微量であり遮断特性、耐電圧特性に優れた効果が発揮したものと考えられる。
【0088】
(実施例14〜16、比較例8)
前記実施例1〜13、比較例1〜7では、40%IACS(Cuが100%IACS)の導電率を持つ供試合金を選出し一定とした時の、遮断特性、耐電圧特性を示した。
【0089】
しかし本発明での接点の導電率は、上記40%IACSの場合に限る事なくその効果を発揮する。
【0090】
すなわち接点の導電率が、90%IACS(実施例14)、70%IACS(実施例15)、20%IACS(実施例16)の場合でも、▲1▼接点中のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))との合計Fe量(Fe(Cu+Cr))、▲2▼接点中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中のFe量(Fe(Cu))、▲3▼Cu領域中に存在するFe量(Fe(Cu))の直径、▲4▼Cr領域中に存在するFe量(Fe(Cr))の平均間隔を前記所定の条件内に制御する事によって、遮断特性の判定が(評価A)〜(評価B)、耐電圧特性の判定も(評価A)〜(評価B)を示し安定した値であった。
【0091】
これに対して、接点の導電率を10%IACSとした接点(比較例8)では、遮断テスト中に高い温度上昇が見られると共に遮断テスト後の接触抵抗値も大きくかつ大幅にバラツキを示し好ましくない。その結果、耐電圧特性の判定は(評価A)〜(評価B)を示し安定した値であったが、遮断特性の判定が(評価Z)を示し好ましくなかった。
【0092】
従って、本発明の技術を適応する接点合金の導電率は、20%IACS以上が好ましい。
【0093】
(実施例17〜18、比較例9)
前記実施例1〜16、比較例8では,90%IACS(Cuが100%IACS)の導電率を持つ電極に前記接点を搭載して、遮断特性、耐電圧特性を示した。
【0094】
しかし本発明での電極の導電率は、上記90%IACSの場合に限る事なくその効果を発揮する。
【0095】
すなわち電極の導電率が、100%IACS(実施例17)、70%IACS(実施例18)の場合でも、▲1▼接点中のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))との合計Fe量(Fe(Cu+Cr))、▲2▼接点中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中のFe量(Fe(Cu))、▲3▼Cu領域中に存在するFe量(Fe(Cu))の直径、▲4▼Cr領域中に存在するFe量(Fe(Cr))の平均間隔を前記所定の条件内に制御する事によって、遮断特性の判定が(評価B)、耐電圧特性の判定も(評価A)〜(評価B)示し安定した値であった。
【0096】
これに対して、電極の導電率を50%IACSとした場合(比較例9)では、前記接点の場合(比較例8)と同様に遮断テスト中に高い温度上昇が見られると共に遮断テスト後の接触抵抗値も大きくかつ大幅にバラツキを示し好ましくない。
【0097】
その結果、耐電圧特性の判定は(評価A)〜(評価B)を示し安定した値であったが、遮断特性の判定が(評価Y)を示し好ましくなかった。
【0098】
従って、本発明の技術を適応する電極、例えば接点の背面に装着したコイル電極などの導電率は、70%IACS以上が好ましい。
【0099】
(実施例19〜20、比較例10)
前記実施例1〜18、比較例1〜9では、90%IACSの導電率を持つ通電軸に前記接点を搭載して、遮断特性、耐電圧特性を示した。
【0100】
しかし本発明での通電軸の導電率は、上記90%IACSの場合に限る事なくその効果を発揮する。
【0101】
すなわち通電軸の導電率が、100%IACS(実施例19)、70%IACS(実施例20)の場合でも、▲1▼接点中のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu)))との合計Fe量(Fe(Cu+Cr))、▲2▼接点中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中のFe量(Fe(Cu))、▲3▼Cu領域中に存在するFe(Fe(Cu))の直径、▲4▼Cr領域中に存在するFe(Fe(Cr))の平均間隔を前記所定の条件内に制御する事によって、遮断特性の判定が(評価B)、耐電圧特性の判定も(評価A)〜(評価B)示し安定した値であった。
【0102】
これに対して、通電軸の導電率を50%IACSとした場合(比較例10)では、前記接点の場合(比較例8)と同様に遮断テスト中に高い温度上昇が見られると共に、遮断テスト後の接触抵抗値も大きくかつ大幅にバラツキを示し好ましくない。その結果、耐電圧特性の判定は(評価A)〜(評価B)を示し安定した値であったが、遮断特性の判定が(評価X)を示し好ましくなかった。
【0103】
従って、本発明の技術を適応する通電軸の導電率は、70%IACS以上が好ましい。
【0104】
(実施例21〜22、比較例11〜12)
前記実施例1〜20、比較例1〜10では、CuCr合金中に占めるCu量が75重量%の接点(75%Cu−Cr)を搭載して、遮断特性、耐電圧特性を示した。
【0105】
しかし本発明での接点は、上記75%Cu−Crの場合に限る事なくその効果を発揮する。
【0106】
すなわち90%Cu−Cr(実施例21)、40%Cu−Cr(実施例22)の場合でも、▲1▼接点中のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))との合計Fe量(Fe(Cu+Cr))、▲2▼接点中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中のFe量(Fe(Cu))、▲3▼Cu領域中に存在するFe量(Fe(Cu))の直径、▲4▼Cr領域中に存在するFe(Fe(Cr))の平均間隔を前記所定の条件内に制御する事によって、遮断特性の判定が(評価A)、耐電圧特性の判定も(評価B〜A)、(評価A)を示し安定した値であった。
【0107】
これに対して、95%Cu−Crとした場合(比較例11)では、遮断テスト中に溶着の発生が見られ、その為に接点消耗、接点表面の荒れを招き再点弧の発生も見られ、その結果、遮断特性の判定は(評価X〜Z)であり、耐電圧特性の判定も(評価Z)を示し好ましくなかった。
【0108】
更に、15%Cu−Crとした場合(比較例12)の接点では、▲1▼接点中のCr領域中に存在するFe量(Fe(Cr))とCu領域中に存在するFe量(Fe(Cu))との合計Fe量(Fe(Cu+Cr))、▲2▼接点中の合計Fe量(Fe(Cu+Cr))中に占めるCu領域中のFe量(Fe(Cu))▲3▼Cu領域中に存在するFe(Fe(Cu))の直径、▲4▼Cr領域中に存在するFe(Fe(Cr))の平均間隔を前記所定の条件内に制御しているにもかかわらず、遮断テスト中に高い温度上昇が見られると共に、遮断テスト後の接触抵抗値も大きくかつ大幅にバラツキを示し好ましくない。その結果、耐電圧特性の判定は(評価A)を示し安定した値であったが、遮断特性の判定が(評価X〜Z)を示し好ましくなかった。
【0109】
従って、本発明の技術を適応する接点は40〜90重量%のCuを含有するCu−Cr合金が好ましい。
【0110】
(変形例等)
接点中のCu領域中に存在するFe(Fe(Cu))の一部または総て、接点中のCr領域中に存在するFe(Fe(Cr))の一部または総てをNiまたはCoの1つで置換しても同等の磁界分布の均一効果を得て、遮断特性向上の効果を得る。
【0111】
また、上記実施例、比較例では、合金中のCr領域中に存在するFe(Fe(Cr))は平均間隔を0.01〜15μmとしほぼ均一に分散している場合にその効果を発揮することを説明したが、合金中のCu領域中に分散しているFe(Fe(Cu))は平均間隔を0.01〜5μmとしほぼ均一に分散していることが好ましい。
【0112】
【発明の効果】
以上説明したように、本発明の真空遮断器によれば、接点面、接点間の磁界の強さと分布を適切に制御し、遮断性能の向上を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1〜13、及び比較例1〜7の評価条件を示す表図。
【図2】 本発明の実施例14〜22、及び比較例8〜12の評価条件を示す表図。
【図3】 本発明の実施例1〜7、及び比較例1〜4の評価結果を示す表図。
【図4】 本発明の実施例8〜13、及び比較例5〜7の評価結果を示す表図。
【図5】 本発明の実施例14〜20、及び比較例8〜10の評価結果を示す表図。
【図6】 本発明の実施例21〜22、及び比較例11〜12の評価結果を示す表図。
【図7】 代表的な真空バルブの二つの構成例を示す断面図。
【符号の説明】
101…絶緑容器
102a…固定側蓋体
102b…可動側蓋体
103…真空容器
104…固定側接点
105…可動側接点
106…固定側通電軸
107…可動側通電軸
108…ベローズ
109…アークシールド
M…可動側通電軸107の移動方向
40…コイル電極(固定側接点41の背面)
41…固定側接点
50…コイル電極(可動側接点51の背面)
51…可動側接点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum circuit breaker including a vacuum valve having a contact with improved breaking performance.
[0002]
[Prior art]
Generally, a vacuum circuit breaker is required to have a breaking performance, a withstand voltage performance, and a welding resistance performance, and a role of a contact material is large. However, one contact material cannot satisfy all these functions at the same time. Therefore, there are many products that support some functions.
[0003]
In general, a vacuum circuit breaker is provided with a pair of contacts 104 and 105 facing each other in a vacuum container 103 in which openings at both ends of an insulating container 101 are closed with lids 102a and 102b as shown in FIG. Are attached to the end portions of the current-carrying shafts 106 and 107 inserted through the lids 102a and 102b into the vacuum vessel 103, and one of the current-carrying shafts 107 can be moved in the axial direction by an operating mechanism (not shown). The other contact (hereinafter referred to as a movable contact) 105 can be brought into contact with or separated from one contact (hereinafter referred to as a fixed contact) 104. In this case, a bellows 108 that holds the inside of the vacuum vessel 103 in a vacuum-tight manner and enables the conductive rod 107 to move in the axial direction is provided between the lid 102 b and the energizing shaft 107. In the figure, reference numeral 109 denotes an arc shield provided so as to surround each of the contacts 104 and 105 and the conductive rods 106 and 107.
[0004]
The vacuum circuit breaker is normally energized when both the contacts 104 and 105 are in contact with each other. When the energizing shaft 107 moves in the direction of the arrow M in the figure by the operation from this state, the movable contact 105 is separated from the fixed contact 104, and an arc is generated between both the contacts 104,105. This arc is maintained by the generation of metal vapor from the cathode, for example, the movable contact 105 side. When the current reaches the zero point (zero point), the generation of metal vapor stops and the arc cannot be maintained, and the interruption is completed.
[0005]
By the way, the arc generated between the two contacts 104 and 105 becomes extremely unstable due to the interaction between the magnetic field generated by the arc itself and the magnetic field generated by the external circuit when the breaking current is large. As a result, the arc moves on the contact surface (when the contact is attached to and integrated with the electrode, the arc may also move on the electrode surface), and is shifted to the end or the periphery of the contact, The portion is locally heated to release a large amount of metal vapor, and the degree of vacuum in the vacuum vessel 103 is lowered. As a result, the breaking performance of the vacuum circuit breaker decreases. These often depend on the state of contacts represented by metallographic structures.
[0006]
FIG. 7B shows a vacuum valve in which a pair of contacts 41 and 51 are provided to face each other, and a coil electrode 40 is mounted on the back surface of the contact 41 and a coil electrode 50 is mounted on the back surface of the contact 51. In FIG. 7B, the same or corresponding parts as those in FIG. 7A are denoted by the same reference numerals.
[0007]
[Problems to be solved by the invention]
As described above, in the vacuum circuit breaker, there is a possibility that the arc is displaced, the contact (electrode) is locally melted, the generation of steam is increased, and the circuit breaker cannot be interrupted.
[0008]
In addition, since it is impossible to share the current uniformly over the entire area of the contact, there is a risk that the circuit cannot be interrupted as described above.
[0009]
Further, as one of the measures for improving the breaking performance, when a coil electrode is arranged on the back surface of the contact and a current I is supplied to the coil electrode, a magnetic field is generated between the two contacts in a direction perpendicular to the contact surface. This magnetic field restrains the arc that is ignited between the two contacts when interrupted.
[0010]
In this way, the arc distribution is similar to the magnetic field lines between the two contacts, but this distribution is not necessarily uniform and not parallel, and in particular near the end of each contact, it is perpendicular to the contact surface. In addition to not starting, there was a possibility that the arc would protrude from the contact space to the outside, and the expected breaking performance could not be obtained.
[0011]
As described above, various improvements have been made to the contact point and the electrode structure on which the contact point is mounted. Some of them have insufficient breaking performance, and others have high costs.
[0012]
An object of the present invention is to provide a vacuum circuit breaker that is advantageous in improving the breaking performance by making the magnetic flux generated between the contacts uniform and high in parallelism.
[0013]
[Means for Solving the Problems]
  To achieve the above purposeThe bookThe invention
  The Fe region is composed of a Cr region and the remaining Cu region. Fe in the Cu region has a particle diameter of 5 μm or less and is dispersed at an interval of 0.01 to 5 μm. A Cu-Cr alloy containing 10 to 60 wt% Cr dispersed at intervals of 01 to 15 µm,
  The total Fe amount, which is the total Fe amount of the Fe amount present in the Cr region and the Fe amount present in the Cu region, is 0.002 to 0.5% by weight, and in the Cu region. Provided with a contact characterized in that the amount of Fe occupies 0.01 to 20% by weight with respect to the total amount of FeIt is a vacuum circuit breaker.
[0014]
That is, as a contact, the total Fe amount (Fe(Cu + Cr)) In the range of 0.002 to 0.5 wt%, the magnetic flux in the pair of contact spaces facing each other does not concentrate on a specific area of the contact surface. Parallel and almost perpendicular to the contact surface, the breaking performance is improved and stabilized.
[0016]
  here, Total Fe amount (Fe(Cu + Cr)The amount of Fe in the Cu region (Fe)(Cu)) Is less than 0.01%, the uniformity of the magnetic flux distribution in the contact space is lacking, so the effect of improving the breaking characteristics is small, and if it exceeds 20%, the conductivity of the entire Cu—Cr alloy is lowered and also cut off. Degradation of properties is observed.
[0018]
  Also, Fe (Fe(Cu)) Is less than 0.01 μm, it does not show any particular effect on the improvement of the cut-off characteristics, despite a significant increase in manufacturing cost to make it less than 0.01 μm. On the other hand, when the thickness exceeds 5 μm, the uniformity of the magnetic flux distribution in the contact space is lacking, so that the interruption characteristic is deteriorated.
[0020]
  Also, Fe in the Cu region (Fe(Cu)) Becomes a particle diameter larger than 5 μm, the uniformity of the magnetic flux distribution in the contact space is disturbed, and a stable interruption characteristic cannot be obtained.
[0022]
  AlsoFe in the Cr region (Fe(Cr)) Is less than 0.01 μm, the effect of improving the blocking characteristics is small for an increase in manufacturing cost compared to 0.01 μm or more. On the other hand, when the thickness exceeds 15 μm, the uniformity of the magnetic flux distribution in the contact space is lacking, so that the interruption characteristic is lowered.
[0037]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0038]
When a breaker test was performed on a vacuum circuit breaker equipped with a predetermined Cu-Cr contact point, there was a case where the breakage characteristics fluctuated greatly (breakdown characteristics varied) even if the controllable conditions were constant. When the damage on the contact surface after the interruption test was observed for a plurality of vacuum valves, it was found that the contact surfaces after the interruption showed significantly different damage forms. This phenomenon is considered to be caused in particular by uneven magnetic flux distribution on the contact surface and contact space. That is, it is considered that the uneven magnetic flux distribution has an influence as a variation in the breaking current value and a difference in the damaged state of the contact surface after breaking.
[0039]
By the way, in the Cu-Cr contact, the size and shape irregularity of the Cr particles (particle size distribution), the aggregation of the Cr particles (segregation), the irregularity of the size and shape of the Cu phase (crystal grain size) due to the contact manufacturing technology, In addition, the amount of voids present at the grain boundaries or the boundaries between Cr particles and the Cu phase, the size of the voids and the distribution of the voids are different, and the existence thereof is unavoidable and exists as a material micro defect. Therefore, since there are innumerable defects in the inside of the contact and its surface layer, the metal structure uniformity is not obtained. As a result, the presence of this material micro-defect disturbs the uniformity of the magnetic flux on the contact surface and contact space, which is an obstacle to the stability and improvement of the breaking characteristics.
[0040]
However, it is difficult to suppress the unevenness of the magnetic flux distribution by eliminating some of the above-described material micro-defects by a manufacturing technique considering economics.
[0041]
Therefore, in the present invention, the amount of Fe existing in the Cr region of the Cu—Cr alloy (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu))), The magnetic flux distribution uniformity on the contact surface and contact space is obtained, and it is found that it is beneficial for solving the magnetic flux distribution unevenness. Suppressive melting and excessive release of metal vapor were suppressed, giving good results for the barrier properties.
[0042]
In contrast, the amount of Fe existing in the Cr region (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)When the current value to cut off the arc becomes large, the interaction between the magnetic field generated by the arc itself and the magnetic field generated by the external circuit becomes extremely unstable. For this reason, the arc moves on the contact surface and overheats the end or periphery of the contact, releases a large amount of Cu and Cr vapor, lowers the vacuum degree of the vacuum valve, and generates a large amount of thermoelectrons. Is released, and the limit current value of interruption is reduced.
[0043]
Conventionally, as a means for improving the limit current value of interruption, there is a technique of effectively using the contact surface, that is, a technique of increasing the substantial area involved in interruption and reducing the current density. Decreasing the current density also reduces the damage on the contact surface, which is beneficial for improving the breaking characteristics and withstand voltage characteristics.
[0044]
However, even in this case, as described above, since the arc is shifted to the end portion or the peripheral portion of the contact point, the contact point is melted locally, the generation of steam becomes large, and there is a case where interruption is impossible.
[0045]
The amount of Fe present in the Cr region of the Cu-Cr alloy (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)), The uniformity of the distribution of the magnetic flux on the contact surface and the contact space is obtained, the magnetic flux is parallel and perpendicular to the member, and the interruption performance is improved. The present invention applies this principle.
[0046]
As the interruption operation is repeated, a phenomenon that the interruption characteristic varies is observed. When the inventors investigated the contact point mounted on the vacuum valve in the case where the interruption characteristics varied, local variations in the metal structure were observed on the contact surface and inside. In particular, metal structure non-uniformity has been observed at the contacts of vacuum valves that have poor blocking characteristics. What is important here is the fact that this metallographic non-uniformity affects the barrier properties. This non-uniform part of the metal structure disturbs the uniformity of the magnetic field distribution, and the arc at the time of interruption tends to stagnate in this part, and the deterioration of the interruption characteristic over time (decrease in interruption characteristic due to interruption and repeated switching operation) Variation).
[0047]
In this way, it can be seen that the presence of non-uniform parts in the contact surface and inside the metal structure disturbs the uniformity of the magnetic flux distribution between the contact surfaces and the contacts, and is not preferable for the stability of the breaking characteristics. It was. Therefore, the contact surface and the internal metallographic structure are in a uniform state, that is, the amount of Fe existing in the Cr region of the Cu-Cr alloy (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) Are preferably optimized.
[0048]
In addition, due to the presence of an electrode that applies a magnetic field parallel to the arc, the effect of averaging the microscopic deviation of the arc on the contact surface due to a slight difference in the state of Fe dispersion in the contact is shown as a result. Has a synergistic effect on improvement.
[0049]
That is, the contact is a Cu—Cr alloy containing 10 to 60 wt% Cr composed of a Cr region and the remaining Cu region, and the total amount of Fe in the contact (Fe(Cu + Cr)), That is, the amount of Fe existing in the Cr region (Fe(Cr)) And the amount of Fe present in the Cu region in the Cu region (Fe(Cu)) And 0.002 to 0.5% by weight, and the amount of Fe in the Cu region (Fe(Cu)) Is the total amount of Fe in the Cu-Cr alloy (Fe(Cu + Cr)) To 0.01 to 20% by weight, with a gap of 0.01 to 5 [mu] m and a particle diameter larger than 5 [mu] m substantially uniformly dispersed, and dispersed in the Cr region Fe (Fe(Cr)) Is a contact member characterized by being dispersed substantially uniformly with a gap of 0.01 to 15 μm in the Cu—Cr contact, and a current carrying shaft characterized by having a conductivity of at least 70% IACS It is equipped with each member consisting of a member and an electrode member selected from a flat plate contact, a spiral electrode, a longitudinal magnetic field electrode, a spontaneous diffusion electrode, and a control electrode, each of which constitutes an electrode by a contact itself. By using a container, it exhibits stable shut-off characteristics.
[0050]
Hereinafter, the effects of the present invention will be clarified while comparing Examples and Comparative Examples. The evaluation conditions are shown in FIGS. 1 to 2 and the evaluation results are shown in FIGS.
[0051]
(1) Interrupting characteristics
A predetermined contact is attached to the detachable type breaker for breaker test, and the contact surface baking, current, voltage aging, and opening speed conditions are set to be the same, and then 6 to 12 breakers are set to 50 Hz, 7.2 kV. The occurrence of re-ignition when the 15 kA circuit was interrupted 10 to 1000 times and the range of the interrupting current value were evaluated. Some required contacts were blocked at 20-25 kA.
[0052]
For the evaluation, a detachable vacuum interrupter with only contacts and a detachable vacuum interrupter with electrodes attached so as to be in close contact with the contacts were used.
[0053]
(2) Status of arc spreading
After attaching each contact point to a detachable vacuum interrupter and making the contact electrode surface baking, current, voltage aging, and opening speed conditions constant, block 12 kA at 7.2 kV, 50 Hz 10 times The area of the arced portion of the electrode surface was measured.
[0054]
When the arced part covers almost the entire surface of the contact surface and there is little unevenness on the contact surface (evaluation AA), when the area of the arced part of Comparative Example 2 is 100%, the area of the spread (Evaluation A), and the case of 80 to 150% is (Evaluation B). When the arced part is 50 to 80% or less of the contact surface (Evaluation X), and when it is 50% or less (Evaluation Y), the arced part is concentrated in one to several places on the contact surface, In the case of marked unevenness (Evaluation Z), the portion to be arced is concentrated in 1 to 2 or less places on the contact surface, the contact surface shows remarkable unevenness, and more than 10% of re-ignition occurs. (Evaluation ZZ). In the determination, the evaluations AA, A, B, and C were used as a pass, and the evaluations X, Y, Z, and ZZ were used as a criterion for rejection.
[0055]
(3) Withstand voltage characteristics
A disk with a diameter of 30 mm is manufactured from each contact material, and this is used as an anode-side contact. A Ni-made needle electrode having a radius of curvature of 50R at the tip is used as a cathode-side contact. The distribution of the static withstand voltage value on the contact disk when the spark was generated by slightly increasing the voltage on the disk and increasing the voltage by 1 to 10 kV each time was compared, and the variation width (maximum value to minimum value) was compared.
[0056]
When the static withstand voltage value is larger than that of Comparative Example 2 and the width of the static withstand voltage value (maximum value to minimum value) is within 20%, the withstand voltage characteristic evaluation (Evaluation A) is 20 to 50% (Evaluation B). 50% or more was defined as (Evaluation C).
[0057]
When the static withstand voltage value is about the same as or lower than that of Comparative Example 2 and the width of the static withstand voltage value (maximum value to minimum value) is within 20% (Evaluation X), 20 to 50% (Evaluation Y), 50% or more was defined as (Evaluation Z).
[0058]
(4) Other
Fe amount present in the Cr region in the test contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)In the evaluation of), after the test contacts were separated into a Cr region and a Cu region, the amount of Fe in each was confirmed by chemical analysis.
[0059]
Further, the amount of Fe existing in the Cr region (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) Distribution was performed by surface analysis using an X-ray microanalyzer.
[0060]
(Examples 1-3, Comparative Examples 1-2)
The amount of Fe present in the Cr region in the contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) And total Fe amount (Fe(Cu + Cr)) Containing 0.001 wt% or less (Comparative Example 1) and 0.002 to 2.0 wt% (Examples 1 to 3 and Comparative Example 1) Selected as a contact.
[0061]
<Arc spreadability>
By comparing the area of the arced part on the surface of the electrode after blocking 12 kA 10 times at 7.2 kV and 50 Hz, the total amount of Fe in the contact (Fe(Cu + Cr)) Was investigated on the arc spreadability. A contact having good arc spreading at the contact surface is beneficial for improving the breaking performance.
[0062]
Total Fe content in contacts (Fe(Cu + Cr)) Is 0.002% by weight (Example 1), the evaluation of the arc spread of the contact is (Evaluation A), and the contact of 0.08% by weight (Example 2) is (Evaluation AA), 0.5% by weight % (Example 3) indicates (Evaluation AA). As a result of the presence of a predetermined amount of Fe, the arc showed a beneficial effect for wide dispersion without being biased on the contact surface.
[0063]
In contrast, the total amount of Fe in the contact (Fe(Cu + Cr)) Is 0.001% by weight or less (Comparative Example 1), the total Fe amount (Fe(Cu + Cr)) Is not preferable because the state of the arc spreading by Fe is not sufficient, and (Evaluation B) to (Evaluation Y) vary.
[0064]
Further, the total amount of Fe in the contact (Fe(Cu + Cr)) Is 2.0% by weight (Comparative Example 2), segregation is observed in the Fe distribution, magnetic flux distribution is uneven, re-ignition occurs frequently, and (Evaluation ZZ) is not preferable.
[0065]
<Blocking characteristics>
Total Fe content in contacts (Fe(Cu + Cr)) And the blocking characteristics were investigated. That is, the total amount of Fe in the contact (Fe(Cu + Cr)) Is 0.002 to 0.5% by weight (Examples 1 to 3), a vacuum circuit breaker equipped with a contact is cut off at 15 kA. Fe content (Fe(Cu + Cr)) Is about 5 to 50% higher than that of 0.001% by weight or less (Comparative Example 1), and the distribution is uniform without any deviation (magnetic flux density in a specific portion such as the outer peripheral portion of the contact surface). (Except for this part in a vacuum circuit breaker equipped with an electrode structure designed to control the above).
[0066]
As a result, in the interruption characteristics based on the re-ignition occurrence situation when 50 Hz, 7.2 kV, and 15 kA are interrupted 1000 times, the total Fe amount (Fe(Cu + Cr)) Is 0.002% by weight (Example 1) (Evaluation B), 0.08% by weight (Example 2) (Evaluation AA), 0.5% by weight (Example 3) (Evaluations A to B) are shown for the contacts. This is the effect that a predetermined amount of Fe exists in the contact surface and the contact, and the effect that it is distributed without segregation.
[0067]
In contrast, the total Fe amount (Fe(Cu + Cr)) Is 0.001% by weight or less (Comparative Example 1), the total Fe amount (Fe(Cu + Cr)), The effect of uniformizing the magnetic flux distribution between the contacts cannot be sufficiently obtained, and the re-ignition occurrence state shows (Evaluation X), which is not preferable.
[0068]
Further, the total amount of Fe in the contact (Fe(Cu + Cr)) Is 2.0% by weight (Comparative Example 2), there may be a portion where the distribution of Fe in the contact is uneven, and the contact surface and the contact correspond to the uneven distribution of Fe. In the meantime, the magnetic flux distribution shows a bias, and obstructs obtaining a uniform magnetic flux distribution. As a result, the re-ignition occurrence state shows (Evaluation B to X), which is not preferable.
[0069]
<Voltage resistance>
Total Fe content in contacts (Fe(Cu + Cr)) Of 0.002 to 0.5% by weight with a Cu-25% Cr 30 mm diameter disk contact (anode contact) and Ni needle contact (cathode contact) After facing each other, the static withstand voltage value was evaluated when a spark was generated by increasing the voltage.
[0070]
Total Fe content in contacts (Fe(Cu + Cr)) Is 0.002 wt% (Example 1), the static withstand voltage value of (Evaluation A) is 0.08 wt% (Example 2) of the contact (Evaluation A), 0.5 wt% ( The contact point of Example 3) was good with (Evaluation A) to (Evaluation B).
[0071]
Also, the total Fe amount in the contact (Fe(Cu + Cr)) Was 0.001% by weight or less (Comparative Example 1), (Evaluation A) was shown.
[0072]
On the other hand, in the contact where the total Fe amount (Fe (cu + cr)) in the contact is 2.0 wt% (Comparative Example 2), segregation is observed in the Fe distribution, and as a result, the magnetic flux distribution is biased. Re-ignition frequently occurred and evaluation Z) was preferable.
[0073]
(Examples 4-7, Comparative Examples 3-4)
In Examples 1 to 3 and Comparative Examples 1 and 2, the total amount of Fe in the alloy (Fe(Cu + Cr)(Fe) in the Cu region occupying(Cu)) In a constant amount of 3 to 10% by weight, the total Fe content in the alloy (Fe(Cu + Cr)) Optimized.
[0074]
However, in the present invention, (Fe(Cu)) Exhibits its effect without being limited to the above 3 to 10% by weight. That is, (Fe(Cu)) Is 0.01 to 20% by weight (Examples 4 to 7), Fe is distributed without agglomeration in the Cu region. As a result, a stable magnetic flux distribution is obtained, and a stable arc spreading property is obtained. The evaluation of the blocking characteristic exhibited (Evaluation B) to (Evaluation A), which was a preferable value. As a result of the presence of a certain amount of Fe in the Cu region, it showed a beneficial effect in widely dispersing the arc without local bias on the contact surface.
[0075]
In contrast, the amount of Fe in the Cu region in the contact (Fe(Cu)) Of 0.005% by weight or less was expensive and excluded from the viewpoint of supply (Comparative Example 3).
[0076]
Furthermore, the amount of Fe in the Cu region in the contact (Fe(Cu)) Is 45% (Comparative Example 4), the Fe distribution in the Cr region is compared with that in the Cu region, and the latter Cu region is biased. As a result, the magnetic flux distribution is also biased. The condition of the arc spreading to the point was not sufficient, indicating (Evaluation B) to (Evaluation Y), and re-ignition occurred in an unstable manner even though the static withstand voltage value was (Evaluation A).
[0077]
As described above, the amount of Fe in the Cu region (Fe(Cu)) Of 0.01 to 20% by weight (Examples 4 to 7), the arc spreading property was stable as (Evaluation B) to (Evaluation A), so that the degree of arc damage on the contact surface was light. It is thought that it was a very small amount and exhibited an excellent effect on the breaking characteristics and withstand voltage characteristics. It is important that Fe exists in a predetermined amount in both the Cr region and the Cu region without being biased, and the amount of Fe in the Cu region (Fe(Cu)) Suggests that a certain value is required.
[0078]
(Examples 8 to 9, Comparative Example 5)
In the said Examples 1-7 and Comparative Examples 1-4, Fe (Fe which exists in Cu area | region in an alloy)(Cu)) When the particle diameter was kept constant at 0.1 to 0.5 μm, the effect on the cut-off characteristics and withstand voltage characteristics was shown.
[0079]
However, Fe (Fe(Cu)The particle diameter is not limited to the above 0.1 to 0.5 μm, and the effect is exhibited.
[0080]
That is, it exists in the Cu region (Fe(Cu)) Particle diameter of 0.01 to 5 μm (Examples 8 to 9), a magnetic flux distribution that does not concentrate in either the Cr region or the Cu region is obtained, and the arc expansibility ( Evaluations AA) to (Evaluations A to B) were exhibited, and the judgment of the blocking characteristics showed (Evaluation A) and (Evaluation B), which were preferable values.
[0081]
On the other hand, Fe (Fe(Cu)In the case of a contact having a particle diameter of 10 to 50 μm (Comparative Example 5), the arc spreading state becomes insufficient because the arc is concentrated on the boundary between the Cr region and the Cu region, and the evaluation of the arc spreading property is (Evaluation B) to (Evaluation ZZ) vary greatly, which is not preferable. As a result, the interruption characteristics were (Evaluation Y) to (Evaluation Z), and the withstand voltage characteristics were also significantly varied (Evaluation Y) to (Evaluation Z).
[0082]
(Examples 10-13, Comparative Examples 6-7)
In Examples 1 to 12 and Comparative Examples 1 to 5, Fe (Fe(Cr)) Shows the breaking characteristics and withstand voltage characteristics when the average interval is kept constant at 3 to 5 μm.
[0083]
However, Fe (Fe(Cr)The average interval is not limited to the case of 3 to 5 μm, and the effect is exhibited.
[0084]
That is, Fe (Fe(Cr)) Of 0.01 to 0.1 μm (Example 10), 0.1 to 0.5 μm (Example 11), 1 to 3 μm (Example 12), and 8 to 15 μm (Example 13). Even in this case, a magnetic flux distribution that does not concentrate in either the Cr region or the Cu region is obtained, and a stable arc spreading property is exhibited. As a result, the interruption characteristics are judged (Evaluation A) to (Evaluation B). ) And withstand voltage characteristics were also stable (values A to B).
[0085]
On the other hand, Fe (Fe(Cr)) Of the contacts having an average interval of 0.01 μm or less (Comparative Example 6), the arc does not concentrate on the boundary between the Cr region and the Cu region, and the arc spreading state is sufficient, and the evaluation of the arc spreading property Indicates (Evaluation A), but Fe (Fe(Cu)) Total Fe content (Fe(Cu + Cr)) Of 0.01 to 20% by weight of Fe (Fe) in the Cr region(Cr))) Is excluded from the present invention because it is disadvantageous in terms of economical supply.
[0086]
Furthermore, Fe (Fe(Cr)) With an average interval of 30 μm or more (Comparative Example 7), the distribution of Fe amount in the Cr region and the Cu region is not balanced, and as a result, the magnetic flux distribution also appears uneven, The arc spreading condition is not sufficient, and as a result, the evaluation of the arc spreading property is not preferable because it significantly decreases (Evaluation Y) to (Evaluation ZZ) and greatly varies. As a result, the evaluation of the interruption characteristic was (Evaluation Z), and the withstand voltage characteristic was also markedly varied (Evaluation X) to (Evaluation Z).
[0087]
As described above, when the average interval of Fe (Fe (cr)) existing in the Cr region is 0.01 to 15 μm (Examples 10 to 13), it is concentrated in both the Cr region and the Cu region. A stable magnetic flux distribution was obtained, and the arc spreadability was stable (Evaluation A) to (Evaluation B), so that the degree of arc damage on the contact surface was light and minute, and had excellent interruption characteristics and withstand voltage characteristics. It is thought that the effect was demonstrated.
[0088]
(Examples 14 to 16, Comparative Example 8)
In Examples 1 to 13 and Comparative Examples 1 to 7, the cut-off characteristics and the withstand voltage characteristics are shown when a match money having a conductivity of 40% IACS (Cu is 100% IACS) is selected and fixed. .
[0089]
However, the conductivity of the contact in the present invention is not limited to the case of the 40% IACS, and the effect is exhibited.
[0090]
That is, even when the contact conductivity is 90% IACS (Example 14), 70% IACS (Example 15), and 20% IACS (Example 16), (1) Fe present in the Cr region in the contact. Amount (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) And total Fe amount (Fe(Cu + Cr)), (2) Total amount of Fe in the contact (Fe(Cu + Cr)) Fe amount in the Cu region (Fe)(Cu)), (3) Fe amount present in the Cu region (Fe(Cu)) Diameter, (4) the amount of Fe present in the Cr region (Fe(Cr)) By controlling the average interval within the predetermined condition, the determination of the breaking characteristic is (Evaluation A) to (Evaluation B), and the determination of the withstand voltage characteristic is also (Evaluation A) to (Evaluation B) and is stable Value.
[0091]
On the other hand, a contact with a contact conductivity of 10% IACS (Comparative Example 8) shows a high temperature rise during the interruption test and a large and greatly varied contact resistance value after the interruption test. Absent. As a result, the determination of the withstand voltage characteristic showed (Evaluation A) to (Evaluation B) and was a stable value, but the determination of the interruption characteristic showed (Evaluation Z), which was not preferable.
[0092]
Therefore, the electrical conductivity of the contact alloy to which the technique of the present invention is applied is preferably 20% IACS or more.
[0093]
(Examples 17 to 18, Comparative Example 9)
In Examples 1 to 16 and Comparative Example 8, the contact point was mounted on an electrode having a conductivity of 90% IACS (Cu is 100% IACS) to show a breaking characteristic and a withstand voltage characteristic.
[0094]
However, the conductivity of the electrode in the present invention is not limited to the above 90% IACS, and the effect is exhibited.
[0095]
That is, even when the electrode conductivity is 100% IACS (Example 17) and 70% IACS (Example 18), (1) the amount of Fe present in the Cr region in the contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) And total Fe amount (Fe(Cu + Cr)), (2) Total amount of Fe in the contact (Fe(Cu + Cr)) Fe amount in the Cu region (Fe)(Cu)), (3) Fe amount present in the Cu region (Fe(Cu)) Diameter, (4) the amount of Fe present in the Cr region (Fe(Cr)By controlling the average interval within the predetermined condition, the determination of the cutoff characteristic was (Evaluation B), and the determination of the withstand voltage characteristic was also (Evaluation A) to (Evaluation B), which were stable values.
[0096]
On the other hand, in the case where the conductivity of the electrode is 50% IACS (Comparative Example 9), as in the case of the contact (Comparative Example 8), a high temperature rise is observed during the interruption test, and after the interruption test. The contact resistance value is also large and greatly varied, which is not preferable.
[0097]
As a result, the determination of the withstand voltage characteristic showed (Evaluation A) to (Evaluation B) and was a stable value, but the determination of the interruption characteristic showed (Evaluation Y), which was not preferable.
[0098]
Therefore, the conductivity of an electrode to which the technology of the present invention is applied, for example, a coil electrode mounted on the back surface of the contact, is preferably 70% IACS or more.
[0099]
(Examples 19 to 20, Comparative Example 10)
In the said Examples 1-18 and Comparative Examples 1-9, the said contact was mounted in the electricity supply axis | shaft with 90% IACS conductivity, and the interruption | blocking characteristic and the withstand voltage characteristic were shown.
[0100]
However, the conductivity of the current-carrying shaft in the present invention is not limited to the above 90% IACS and exhibits its effect.
[0101]
That is, even when the conductivity of the conducting shaft is 100% IACS (Example 19) and 70% IACS (Example 20), (1) the amount of Fe existing in the Cr region in the contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu))) And total Fe content (Fe(Cu + Cr)), (2) Total amount of Fe in the contact (Fe(Cu + Cr)) Fe amount in the Cu region (Fe)(Cu)), (3) Fe present in the Cu region (Fe(Cu)), (4) Fe (Fe) present in the Cr region(Cr)) Is controlled within the predetermined condition, the determination of the cutoff characteristic is (Evaluation B), and the determination of the withstand voltage characteristic is also (Evaluation A) to (Evaluation B), which are stable values.
[0102]
On the other hand, when the conductivity of the current-carrying shaft is 50% IACS (Comparative Example 10), a high temperature rise is observed during the interruption test as in the case of the contact (Comparative Example 8), and the interruption test is performed. The subsequent contact resistance value is also large and greatly varied, which is not preferable. As a result, the determination of the withstand voltage characteristic showed (Evaluation A) to (Evaluation B) and was a stable value, but the determination of the interruption characteristic showed (Evaluation X), which was not preferable.
[0103]
Accordingly, the conductivity of the current-carrying shaft to which the technology of the present invention is applied is preferably 70% IACS or more.
[0104]
(Examples 21-22, Comparative Examples 11-12)
In the said Examples 1-20 and Comparative Examples 1-10, the interruption | blocking characteristic and withstand voltage characteristic were shown by mounting the contact (75% Cu-Cr) whose Cu amount which occupies in a CuCr alloy is 75 weight%.
[0105]
However, the contact according to the present invention exhibits its effect without being limited to the case of 75% Cu—Cr.
[0106]
That is, even in the case of 90% Cu—Cr (Example 21) and 40% Cu—Cr (Example 22), (1) the amount of Fe present in the Cr region in the contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) And total Fe amount (Fe(Cu + Cr)), (2) Total amount of Fe in the contact (Fe(Cu + Cr)) Fe amount in the Cu region (Fe)(Cu)), (3) Fe amount present in the Cu region (Fe(Cu)), (4) Fe (Fe) present in the Cr region(Cr)) Is controlled within the predetermined condition, the determination of the breaking characteristic is (Evaluation A), the determination of the withstand voltage characteristic is also (Evaluation B to A), and (Evaluation A). It was.
[0107]
On the other hand, in the case of 95% Cu—Cr (Comparative Example 11), the occurrence of welding was observed during the interruption test. As a result, the judgment of the cutoff characteristic was (Evaluation X to Z), and the judgment of the withstand voltage characteristic was also unfavorable, showing (Evaluation Z).
[0108]
Further, in the case of 15% Cu—Cr (Comparative Example 12), (1) the amount of Fe existing in the Cr region in the contact (Fe(Cr)) And the amount of Fe present in the Cu region (Fe(Cu)) And total Fe amount (Fe(Cu + Cr)), (2) Total amount of Fe in the contact (Fe(Cu + Cr)) Fe amount in the Cu region (Fe)(Cu)) (3) Fe present in the Cu region (Fe(Cu)), (4) Fe (Fe) present in the Cr region(Cr)) Is controlled within the predetermined condition, a high temperature rise is observed during the interruption test, and the contact resistance value after the interruption test is large and greatly varied, which is not preferable. As a result, the determination of the withstand voltage characteristic showed (Evaluation A) and was a stable value, but the determination of the interruption characteristic showed (Evaluation X to Z), which was not preferable.
[0109]
Therefore, the contact to which the technique of the present invention is applied is preferably a Cu-Cr alloy containing 40 to 90% by weight of Cu.
[0110]
(Modifications, etc.)
Fe (Fe) present in the Cu region in the contact(Cu)) Part or all of Fe (Fe) present in the Cr region in the contact(Cr)) Even if part or all of them are replaced with one of Ni or Co, the same magnetic field distribution uniformity effect is obtained, and the effect of improving the cutoff characteristics is obtained.
[0111]
In the examples and comparative examples described above, Fe (Fe(Cr)) Explains that the effect is exhibited when the average interval is 0.01 to 15 μm and is dispersed almost uniformly, but Fe (Fe) dispersed in the Cu region in the alloy(Cu)) Is preferably dispersed substantially uniformly with an average interval of 0.01 to 5 μm.
[0112]
【The invention's effect】
As described above, according to the vacuum circuit breaker of the present invention, it is possible to appropriately control the strength and distribution of the magnetic field between the contact surface and the contact point, thereby improving the breaking performance.
[Brief description of the drawings]
FIG. 1 is a table showing evaluation conditions of Examples 1 to 13 and Comparative Examples 1 to 7 of the present invention.
FIG. 2 is a table showing evaluation conditions of Examples 14 to 22 and Comparative Examples 8 to 12 of the present invention.
FIG. 3 is a table showing the evaluation results of Examples 1 to 7 and Comparative Examples 1 to 4 of the present invention.
FIG. 4 is a table showing evaluation results of Examples 8 to 13 and Comparative Examples 5 to 7 of the present invention.
FIG. 5 is a table showing evaluation results of Examples 14 to 20 and Comparative Examples 8 to 10 of the present invention.
FIG. 6 is a table showing evaluation results of Examples 21 to 22 and Comparative Examples 11 to 12 of the present invention.
FIG. 7 is a cross-sectional view showing two configuration examples of a typical vacuum valve.
[Explanation of symbols]
101 ... Green container
102a ... Fixed side lid
102b ... movable side lid
103 ... Vacuum container
104: Fixed contact
105 ... movable contact
106: Fixed side energizing shaft
107: Movable side energizing shaft
108 ... Bellows
109 ... Arc shield
M: Movement direction of the movable energizing shaft 107
40 ... Coil electrode (the back of the fixed contact 41)
41 ... Fixed side contact
50 ... Coil electrode (the back of the movable contact 51)
51 .. movable contact

Claims (1)

Cr領域と、残部としてのCu領域とで構成され、前記Cu領域中のFeは、粒子直径が5μm以下で、0.01〜5μmの間隔で分散し、前記Cr領域中のFeは、0.01〜15μmの間隔で分散してなる10〜60重量%Crを含有したCu−Cr合金から成り、
前記Cr領域中に存在するFe量と、前記Cu領域中に存在するFe量との合計Fe量である総Fe量が、0.002〜0.5重量%であり、かつ前記Cu領域中に占めるFe量が、前記総Fe量に対して、0.01〜20重量%を占めることを特徴とする接点を備えた真空遮断器。
The Fe region is composed of a Cr region and the remaining Cu region. Fe in the Cu region has a particle diameter of 5 μm or less and is dispersed at an interval of 0.01 to 5 μm. A Cu-Cr alloy containing 10 to 60 wt% Cr dispersed at intervals of 01 to 15 µm,
The total Fe amount, which is the total Fe amount of the Fe amount present in the Cr region and the Fe amount present in the Cu region, is 0.002 to 0.5% by weight, and in the Cu region. The vacuum circuit breaker provided with the contact characterized by the amount of Fe occupying 0.01-20 weight% with respect to the said total Fe amount .
JP2000211130A 2000-07-12 2000-07-12 Vacuum circuit breaker Expired - Lifetime JP3840042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000211130A JP3840042B2 (en) 2000-07-12 2000-07-12 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000211130A JP3840042B2 (en) 2000-07-12 2000-07-12 Vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JP2002025397A JP2002025397A (en) 2002-01-25
JP3840042B2 true JP3840042B2 (en) 2006-11-01

Family

ID=18707295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000211130A Expired - Lifetime JP3840042B2 (en) 2000-07-12 2000-07-12 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP3840042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310608A (en) * 2004-04-23 2005-11-04 Shibafu Engineering Corp Vacuum valve

Also Published As

Publication number Publication date
JP2002025397A (en) 2002-01-25

Similar Documents

Publication Publication Date Title
EP2346061B1 (en) Electrode structure for vacuum circuit breaker
JP2862231B1 (en) Vacuum valve
JP3663038B2 (en) Vacuum valve
JP3840042B2 (en) Vacuum circuit breaker
JPH08249991A (en) Contact electrode for vacuum valve
US6762388B2 (en) Vacuum cartridge for an electrical protection apparatus such as a switch or circuit breaker
JP4515696B2 (en) Contact materials for vacuum circuit breakers
US3778573A (en) Vacuum circuit interrupter having improved contact structure
JP4357131B2 (en) Vacuum circuit breaker
US6326573B1 (en) Vacuum switching device
JPH09245589A (en) Vacuum valve
JP4357132B2 (en) Vacuum circuit breaker
JP4515695B2 (en) Contact materials for vacuum circuit breakers
EP4276864A1 (en) Vacuum interrupter
JP3441224B2 (en) Vacuum valve and method of manufacturing the same
JP4156867B2 (en) Contact and vacuum circuit breaker equipped with the same
JP3176308B2 (en) Vacuum valve
JP2839570B2 (en) Vacuum valve
JPH06150784A (en) Vacuum valve
JPH02270233A (en) Vacuum valve
JPH0398222A (en) Vacuum valve
JPS63314731A (en) Vacuum bulb
JPH04324219A (en) Contact material for vacuum bulb
JPH0395815A (en) Vacuum bulb
JPH11120873A (en) Vacuum valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060804

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3840042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term