JP3839209B2 - Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element - Google Patents

Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element Download PDF

Info

Publication number
JP3839209B2
JP3839209B2 JP2000018768A JP2000018768A JP3839209B2 JP 3839209 B2 JP3839209 B2 JP 3839209B2 JP 2000018768 A JP2000018768 A JP 2000018768A JP 2000018768 A JP2000018768 A JP 2000018768A JP 3839209 B2 JP3839209 B2 JP 3839209B2
Authority
JP
Japan
Prior art keywords
heating element
ceramic heating
outer cylinder
brazing material
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000018768A
Other languages
Japanese (ja)
Other versions
JP2001208348A (en
Inventor
雅弘 小西
孝哉 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2000018768A priority Critical patent/JP3839209B2/en
Publication of JP2001208348A publication Critical patent/JP2001208348A/en
Application granted granted Critical
Publication of JP3839209B2 publication Critical patent/JP3839209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミック焼結体からなるセラミック基体に発熱部材を埋設してなるセラミック発熱体を用いたグロープラグに関するものである。
【0002】
【従来の技術】
セラミック焼結体からなるセラミック基体に発熱部材を埋設してなるセラミック発熱体を、筒状の金属ハウジングに外筒を介して保持し、該セラミック発熱体の先端部を突出したディーゼルエンジン等に用いられるグロープラグは、種々提案されている。
【0003】
【発明が解決しようとする課題】
上述のグロープラグにあって、セラミック基体に発熱部材を埋設してなるセラミック発熱体に、セラミック外筒を外嵌して、該発熱体の周面との間に供給したロウ材により外筒を接合し、該セラミック発熱体を、筒状の金属ハウジングに保持して、セラミック発熱体の先端部を金属ハウジングから突出した構成が提案されている。
【0004】
図7は上述のセラミック発熱体aと外筒bとの接合手段を示すものである。ここで、外筒bの内径はセラミック発熱体aの外径よりも大きくして、該外筒bとセラミック発熱体aとの間に、ロウ材が供給される周隙sが形成される。そしてこの周隙sにロウ材を供給する為に、同図で示すように、治具dの保持溝eによりセラミック発熱体aと外筒bとを位置決めして、周隙sを同心状の整一な円筒状とし、さらにコイル状ロウ材fを外筒b上に外嵌し、該ロウ材fを溶融して、周隙s内に流下し、これにより該ロウ材fを固化して発熱体aと外筒bとの間を接合するようにしている。
【0005】
ところで、治具dの保持溝eは、これに下端が嵌着するセラミック発熱体aと外筒bの外径に比して微小に径大としてクリアランスを生じさせており、この為、セラミック発熱体aと外筒bが相対的にずれて同心状とならず、周隙sが均一な環状とならない場合がある。そしてこの偏った状態で、ロウ材fが周隙sに供給されて固化すると、偏心状態でセラミック発熱体aと外筒bとが位置決めされることとなり、同軸度が低下する。また、セラミック発熱体aと外筒bとが同軸状に位置決めされていても、ロウ材が溶融して流下する際に、その供給圧によって、偏位する場合もある。
【0006】
このようにセラミック発熱体aと外筒bとが非同軸状に固着されると、ロウ付残留応力の局部的な増大によって、繰り返し通電中にセラミックの外筒端面部にクラックが発生し易い。また、熱引きムラによって、新たな熱応力を誘発し、同様に繰り返し通電すると、外筒bの端面部にクラックが発生することもある。すなわち、ディーゼルエンジンのグロープラグに用いられるセラミック発熱体にあって、その発熱体先端部は、燃焼及び排気時に高温高圧のガスの影響を強く受け、一方では吸気時には急冷される等、エンジンの運転時には、激しい温度差のある熱サイクル雰囲気下に置かれ、厳しい温度衝撃に曝されるから、上述の同軸度が低いと、このような熱衝撃に対して上述したように外筒のクラックを生じ易いこととなる。
【0007】
さらに、従来構成の他の問題点として、溶融されたロウ材fが、外筒bの外側に溢れて流下する場合もあり、外筒bが汚れて後処理が面倒となり、かつロウ材fの無駄な消費が増えることとなる。
【0008】
本発明は、セラミック発熱体と外筒との同軸度を向上し得る等上述の問題点を解決し得るディーゼルエンジン用グロープラグ及びセラミック発熱体の外筒接合方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は、セラミック基体に発熱部材を埋設してなるセラミック発熱体を、筒状の金属ハウジングに、自身の内周面と前記セラミック発熱体との間に形成され軸方向に貫通した周隙に供給されたロウ材によりあらかじめ外嵌固着した外筒を介して保持して、該セラミック発熱体の先端部を金属ハウジングから突出したグロープラグにおいて、少なくとも前記外筒のロウ材の供給側端部の内周に、筒内径よりも径大のガイド溝が形成されていることを特徴とするセラミック発熱体を内蔵するグロープラグである。
【0010】
このように外筒に径大のガイド溝が形成された構成にあっては、その接合過程で、ガイド溝内に一旦停留したロウ材による保持作用によって、セラミック発熱体と外筒とが可及的同軸状となっている。
また本発明は、前記ガイド溝は前記外筒の内周の両端部に形成されていることを特徴とする。さらに本発明は、前記セラミック発熱体と外筒との同軸度が0.12以下であることを特徴とする。
【0011】
さらに、本発明は、前記外筒のロウ材の供給側端部の内周に、筒内径よりも径大のガイド溝を形成するとともに、セラミック発熱体と外筒とを治具により位置決めし、さらにセラミック発熱体に外嵌したコイル状ロウ材を前記ガイド溝の上方に配し、該ロウ材を加熱溶融させ、その溶融物をガイド溝から、外筒と発熱体の周面との周隙に流入させた後に、該ロウ材を固化したセラミック発熱体の外筒接合方法である。
【0012】
かかる手段にあって、ロウ材を加熱溶融すると、その溶融ロウは径大のガイド溝に外側に漏れ出ることなく、確実に案内され、周隙s内に流入し、その冷却に伴って、外筒はセラミック発熱体に固着される。このロウ材の供給工程にあって、ガイド溝に滞留したロウ材により、セラミック発熱体は保持され、このため、ロウ材の周隙sへの流下に際して、その供給圧が作用しても、ガイド溝内のロウ材に保持されて、セラミック発熱体と外筒とは同軸に保持される。而して、ロウ材の固結状態にあって、セラミック発熱体と外筒とは同軸状に保持され、このため、耐久性が向上することとなる。
【0013】
【発明の実施の態様】
本発明のグロープラグ20の一実施例を図1に基づいて説明する。
グロープラグ20は、その一端側に設けられたセラミック発熱体1と、そのセラミック発熱体1の先端部2が突出するようにその外周面を覆う金属製の外筒3、さらにその外筒3を外側から覆う筒状の金属ハウジング4等を備えており、セラミック発熱体1と外筒3との間及び外筒3と金属ハウジング4との間は、それぞれロウ付けにより接合されている。本発明は、セラミック発熱体1と外筒3とのロウ付け接合に係るものであり、これについては後述する、
【0014】
セラミック発熱体1の後端部には、金属線により両端がコイルばね状に形成された結合部材5の一端が外側から嵌合するとともに、その他端側は、金属ハウジング4内に挿通された金属軸6の内端部に嵌着されている。金属軸6の外端部側は金属ハウジング4の外側へ延びるとともに、その外周面に形成されたねじ部6aにナット7が螺合し、これを金属ハウジング4に向けて締めつけることにより、金属軸6が金属ハウジング4に対して固定されている。また、ナット7と金属ハウジング4との間には絶縁ブッシュ8が嵌め込まれている。そして、金属ハウジング4の外周面には、図示しないエンジンブロックにグロープラグ20を固定するためのねじ部5aが形成されている。
【0015】
セラミック発熱体1は、図2に示すように、一方の基端部から延び先端部で方向変換して他方の基端部へ至る方向変換部10aと、その方向変換部10aの各基端部から同方向に延びる2本の直線部10bとを有する略U字状のセラミック抵抗材料からなる発熱部材10を備え、その各両端部にリード線11及び12の先端部が埋設されるとともに、発熱部材10とリード線11及び12の全体が、円形断面を有する棒状のセラミック基体13中に埋設されている。発熱部材10は、方向変換部10aがセラミック基体13の末端側に位置するように配置されている。かかる、発熱部材10は射出成形によって上述の形状に成形される。
【0016】
セラミック基体13は、例えばSi 粉末に、Y 、Er 、Yb 、CaO、MgO等の希土類酸化物あるいはアルカリ土類金属酸化物からなる焼結助剤粉末を3〜15重量%の範囲で添加・混合して焼結したものである。
【0017】
また、発熱部材10を形成するセラミック抵抗材料は、W,Ta,Nb,Ni,Mo,Zr,Hf,V及びCrより選ばられた少なくとも1種類以上の珪化物,炭化物,窒化物を導電材として、窒化珪素を絶縁材として、混合されたものからなる。一方、リード線11及び12は、W,W−Re,Mo,Pt,ニオブ,ニクロム,タンタル等の金属線で構成される。
【0018】
図2において、セラミック基体13と外筒3とは、後述する本発明の手段によりロウ付けにより接合されるとともに、リード線12がこれら接合部を介して外筒3と導通している。また、リード線11の露出部11aを含む領域にも結合部材5がロウ付けされている。このように構成することで、図示しない電源から、金属軸6(図1参照)、結合部材5及びリード線11を介して発熱部材10に対して通電され、さらにリード線12、外筒3、金属ハウジング4、及び図示しないエンジンブロックを介して接地される。
【0019】
かかる構成のグロープラグ20は、ねじ部5aを螺合してエンジンブロックに螺着され、セラミック発熱体1の先端部を、ディーゼルエンジンの予燃焼室又は燃焼室(図示しない)内に露出して取付けられる。
【0020】
次に、本発明の要部に係るセラミック発熱体1と外筒3との接合方法の一例を説明する。
図3は、治具40にセラミック発熱体1及び外筒3を保持した状態を示し、該セラミック発熱体1の下端を保持する構成に係るものである。ここで、外筒3のロウ材の供給側端部には、筒内径よりも径大のガイド溝3aが形成されている。尚、このガイド溝3aは図示したような段付溝の他、丸味(R面)や斜面(C面)などを面取り加工によって形成することもでき、いずれも外筒の内径より径大で、かつ溶融したロウ材を外側から漏出させることなく、セラミック発熱体と外筒との周隙s内に確実に案内する形態であれば良い。更に、ガイド溝3aは、外筒3の方向性を無くし、治具40への嵌着作業を容易とするために下端にも形成されている。この治具40には、前記セラミック発熱体1とほぼ同径の発熱体保持溝41と、該発熱体保持溝41に同心状に連成された外筒3とほぼ同径の外筒保持溝42とを備える。この保持溝41,42によりセラミック発熱体1,外筒3はほぼ同心状に位置保持されると共に、該発熱体保持溝41によりセラミック発熱体1の露出長さが規定される。
【0021】
ところで、保持溝41,42にはセラミック発熱体1,外筒3の挿入を容易とするために、微小に径大としてクリアランスを生じさせている。このため、発熱体保持溝41,42に下端を保持されたセラミック発熱体1,外筒3は、相対移動により必ずしも同軸状ではないが、以下の本発明方法により、セラミック発熱体1,外筒3は同軸状に保持され、相互に連結される。
【0022】
まず治具40の保持溝41,42にセラミック発熱体1及び外筒3の下端を保持した状態で、前記ガイド溝3aの上端縁と接するように、コイル状ロウ材45を配置する。このコイル状ロウ材45は、その巻き数を設定することにより、セラミック発熱体1と外筒3間に形成される周隙s内に最適量のロウ材45を充填し得ることとなり、しかも、溶融すると、そのガイド溝3aの下端から順次s内に流下するから、取扱が容易である。このため、この種周隙sに供給するロウ材として好適に用いられ得ることとなる。
【0023】
そしてかかる手段にあって、コイル状ロウ材45を加熱し溶融すると、保持溝41,42に保持されたセラミック発熱体1と外筒3間の周隙sには溶融したロウ材が流下し、充填された後、冷却に伴って、外筒3はセラミック発熱体に固着される。このロウ材45の供給過程にあって、ガイド溝3aに滞留したロウ材45により、セラミック発熱体1は保持され、このため、ロウ材45が周隙sへ流下するに際して、供給圧により、偏圧力が作用しても、ガイド溝3a内のロウ材45に保持されて、セラミック発熱体1と外筒3とは同軸に保持される。さらに、径大のガイド溝3aで溶融したロウ材を確実に案内して外側に溢れ出すことはない。而して、図4で示すロウ材の固結状態にあって、セラミック発熱体1と外筒3とは同軸状に保持されることとなる。
【0024】
図5は、セラミック発熱体1の上端を治具40の発熱体保持溝41に装着したものであり、この構成にあっても、同様であり、説明を省略する。尚、ガイド溝3aを上下いずれにも形成しているから、外筒3の嵌着に際してその作業上の方向性が無く、しかも治具40に対しても方向性が無いから、いずれを保持溝41,42に嵌着しても良い。または、周隙sへの充填を確実とするために、図3の位置として、周隙s内の中程にロウ材を供給した後、反転して図5の位置として、他端側からロウ材45を嵌着し、溶融流下させるようにしても良い。
【0025】
図6は、セラミック発熱体と外筒との同軸度と通電耐久性との関係を示すものである。この図6で明らかなように、同軸度が0.14〜0.18の試料8〜10にあっては、20000サイクルの通電耐久試験後に、外筒の端面にクラックを生じ、また同軸度0.2以上の試料11〜13にあっては、より少ない15000サイクル以下で外筒の端面割れを生じた。これに対し、同軸度が0.12以下の試料1〜7にあっては、20000サイクルの通電耐久試験後も外筒にクラック等を生ぜず、この実験結果より同軸度を0.12以下に設定することが望まれることが知得され、外端のロウ材供給側端部の内周にガイド溝3aを形成した本発明に係るグロープラグは、同軸度を0.12以下に容易にできること、さらにはガイド溝を形成しない従来構成のグロープラグにあっては、同軸度が0.25までばらつき、歩留まりが極めて悪いことを確認した。ここで、同軸度とは、セラミック発熱体1と外筒30の夫々の中心線のズレを示し、たとえば0.02の場合は、0.02mmの偏差があることとなる。さらに通電耐久性は、14ボルトで、1400度の加熱を1分ごとに、オン,オフを繰り返して、これを1サイクルとして、これを3500,10000,15000,20000サイクル繰り返したものである。
【0026】
【発明の効果】
本発明は、セラミック発熱体を、外筒を外嵌して金属ハウジングに保持したディーゼルエンジン用グロープラグにあって、外筒のロウ材の供給側端部の内周に、筒内径よりも径大のガイド溝を形成し、該ガイド溝内にロウ材を充填したものであるから、その接合過程で、ガイド溝内に充填されたロウ材による保持作用によって、セラミック発熱体と外筒とが可及的同軸状となり、通電耐久性が向上する。
【0027】
さらに、本発明は、ガイド溝に、加熱溶融したロウ材を一旦、滞留させた上で、外筒と発熱体の周面との周隙に流入したものであり、このため、治具の保持溝にクリアランスがあっても、前記ロウ材の供給工程にあって、ガイド溝に滞留したロウ材により、セラミック発熱体は保持され、このため、ロウ材の周隙sへの流下に際して、圧力が作用しても、ガイド溝内のロウ材に保持されて、セラミック発熱体と外筒とは同軸に保持される。セラミック発熱体と外筒とは同軸状に保持され、このため、通電耐久性が向上することとなる。さらに、径大のガイド溝によりロウ材が外側に溢れ出すことは一切なく、工程中の後処理が面倒でなく、ロウ材の浪費を防止できる。
【図面の簡単な説明】
【図1】本発明に係るグロープラグ20の左半分を断面とした側面図である。
【図2】本発明に係るセラミック発熱体1の縦断面図である。
【図3】治具40にセラミック発熱体1,外筒3を支持した状態のコイル状ロウ材45の供給工程を示す縦断側面図である。
【図4】周隙sにコイル状ロウ材45を充填した状態のセラミック発熱体1と外筒3の連結状態を示す縦断側面図である。
【図5】治具40にセラミック発熱体1,外筒3を支持した他の状態のコイル状ロウ材45の供給工程を示す縦断側面図である。
【図6】セラミック発熱体1と外筒3の同軸度と、耐久性の関係を示す図表である。
【図7】従来構成のセラミック発熱体1と外筒3の連結工程を示す縦断側面図である。
【符号の説明】
1 セラミック発熱体
3 外筒
3a ガイド溝
4 金属ハウジング
10 発熱部材
13 セラミック基体
20 グロープラグ
40 治具
41,42 保持溝
45 ロウ材
s 周隙
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glow plug using a ceramic heating element in which a heating member is embedded in a ceramic base made of a ceramic sintered body.
[0002]
[Prior art]
A ceramic heating element in which a heating member is embedded in a ceramic base made of a ceramic sintered body is held in a cylindrical metal housing via an outer cylinder, and used for a diesel engine or the like in which the tip of the ceramic heating element protrudes Various types of glow plugs have been proposed.
[0003]
[Problems to be solved by the invention]
In the above-mentioned glow plug, a ceramic outer cylinder is externally fitted to a ceramic heating element in which a heating member is embedded in a ceramic base, and the outer cylinder is attached by a brazing material supplied between the peripheral surface of the heating element. A configuration is proposed in which the ceramic heating element is bonded and held in a cylindrical metal housing, and the tip of the ceramic heating element protrudes from the metal housing.
[0004]
FIG. 7 shows a joining means for the ceramic heating element a and the outer cylinder b. Here, the inner diameter of the outer cylinder b is made larger than the outer diameter of the ceramic heating element a, and a gap s for supplying the brazing material is formed between the outer cylinder b and the ceramic heating element a. In order to supply the brazing material to the circumferential space s, as shown in the figure, the ceramic heating element a and the outer cylinder b are positioned by the holding groove e of the jig d, so that the circumferential space s is concentric. A uniform cylindrical shape is formed, and a coil-shaped brazing material f is fitted over the outer cylinder b. The brazing material f is melted and flows down into the circumferential space s, thereby solidifying the brazing material f. The heating element a and the outer cylinder b are joined.
[0005]
By the way, the holding groove e of the jig d generates a clearance with a slightly larger diameter than the outer diameter of the ceramic heating element a and the outer cylinder b in which the lower ends are fitted. The body a and the outer cylinder b may be relatively displaced and not concentric, and the circumferential space s may not be a uniform ring. In this biased state, when the brazing material f is supplied to the circumferential space s and solidified, the ceramic heating element a and the outer cylinder b are positioned in the eccentric state, and the coaxiality is lowered. Even if the ceramic heating element a and the outer cylinder b are positioned coaxially, when the brazing material melts and flows down, it may be displaced due to the supply pressure.
[0006]
When the ceramic heating element a and the outer cylinder b are fixed non-coaxially in this way, cracks are likely to occur at the end face of the outer cylinder of the ceramic during repeated energization due to a local increase in residual stress of brazing. In addition, when a new thermal stress is induced by unevenness in heat drawing and energized repeatedly in the same manner, a crack may occur in the end surface portion of the outer cylinder b. That is, in a ceramic heating element used in a glow plug of a diesel engine, the tip of the heating element is strongly affected by high-temperature and high-pressure gas during combustion and exhaust, while being rapidly cooled during intake, etc. Sometimes, it is placed in a heat cycle atmosphere with a severe temperature difference and is exposed to severe temperature shocks. If the above-mentioned coaxiality is low, cracking of the outer cylinder occurs as described above for such thermal shocks. It will be easy.
[0007]
Further, as another problem of the conventional configuration, the melted brazing material f sometimes overflows and flows down to the outside of the outer cylinder b, and the outer cylinder b becomes dirty and the post-processing is troublesome. Wasteful consumption will increase.
[0008]
An object of the present invention is to provide a glow plug for a diesel engine and a method for joining an outer cylinder of a ceramic heating element, which can solve the above-mentioned problems, such as improving the coaxiality between the ceramic heating element and the outer cylinder. It is.
[0009]
[Means for Solving the Problems]
According to the present invention, a ceramic heating element in which a heating member is embedded in a ceramic base is formed in a cylindrical metal housing between an inner peripheral surface of the ceramic heating element and the ceramic heating element and penetrating in the axial direction. In a glow plug that is held by an outer cylinder that is pre-fitted and fixed by the supplied brazing material, and the tip of the ceramic heating element protrudes from the metal housing, at least the brazing material supply side end of the outer cylinder A glow plug having a built-in ceramic heating element, characterized in that a guide groove having a diameter larger than the inner diameter of the cylinder is formed on the inner periphery .
[0010]
Thus, in the structure in which the large-diameter guide groove is formed in the outer cylinder, the ceramic heating element and the outer cylinder are made possible by the holding action by the brazing material temporarily stopped in the guide groove during the joining process. Is coaxial.
Further, the present invention is characterized in that the guide groove is formed at both ends of the inner periphery of the outer cylinder. Furthermore, the present invention is characterized in that the coaxiality between the ceramic heating element and the outer cylinder is 0.12 or less.
[0011]
Furthermore, the present invention forms a guide groove having a diameter larger than the inner diameter of the cylinder on the inner periphery of the supply side end of the brazing material of the outer cylinder, and positions the ceramic heating element and the outer cylinder with a jig, Further, a coil-shaped brazing material externally fitted to the ceramic heating element is disposed above the guide groove, the brazing material is heated and melted, and the melted material is passed from the guide groove to the gap between the outer cylinder and the peripheral surface of the heating element. This is a method for joining an outer cylinder of a ceramic heating element in which the brazing material is solidified after being introduced into the steel.
[0012]
In such a means, when the brazing material is heated and melted, the molten brazing is surely guided without leaking to the outside in the guide groove having a large diameter, flows into the circumferential space s, and is externally removed as it cools. The cylinder is fixed to the ceramic heating element. In this brazing material supply process, the ceramic heating element is held by the brazing material staying in the guide groove. Therefore, even if the supply pressure acts upon the brazing material flowing down to the circumferential space s, the guide The ceramic heating element and the outer cylinder are held coaxially by being held by the brazing material in the groove. Thus, in the solidified state of the brazing material, the ceramic heating element and the outer cylinder are held coaxially, thereby improving the durability.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the glow plug 20 of the present invention will be described with reference to FIG.
The glow plug 20 includes a ceramic heating element 1 provided at one end thereof, a metal outer cylinder 3 that covers the outer peripheral surface of the ceramic heating element 1 so that the tip 2 of the ceramic heating element 1 protrudes, and further the outer cylinder 3. A cylindrical metal housing 4 or the like covering from the outside is provided, and the ceramic heating element 1 and the outer cylinder 3 and the outer cylinder 3 and the metal housing 4 are respectively joined by brazing. The present invention relates to brazing joining of the ceramic heating element 1 and the outer cylinder 3, which will be described later.
[0014]
One end of a coupling member 5 having both ends formed in a coil spring shape by a metal wire is fitted to the rear end portion of the ceramic heating element 1 from the outside, and the other end side is a metal inserted into the metal housing 4. The inner end portion of the shaft 6 is fitted. The outer end portion side of the metal shaft 6 extends to the outside of the metal housing 4, and a nut 7 is screwed into a screw portion 6 a formed on the outer peripheral surface of the metal shaft 6. 6 is fixed to the metal housing 4. An insulating bush 8 is fitted between the nut 7 and the metal housing 4. A screw portion 5 a for fixing the glow plug 20 to an engine block (not shown) is formed on the outer peripheral surface of the metal housing 4.
[0015]
As shown in FIG. 2, the ceramic heating element 1 includes a direction changing portion 10a that extends from one base end portion and changes its direction at the tip end portion to reach the other base end portion, and each base end portion of the direction changing portion 10a. And a heat generating member 10 made of a substantially U-shaped ceramic resistance material having two straight portions 10b extending in the same direction, and the leading ends of the lead wires 11 and 12 are embedded at both ends thereof, and heat is generated. The entire member 10 and the lead wires 11 and 12 are embedded in a rod-shaped ceramic base 13 having a circular cross section. The heat generating member 10 is disposed so that the direction changing portion 10 a is located on the end side of the ceramic base 13. The heat generating member 10 is formed into the above-described shape by injection molding.
[0016]
The ceramic substrate 13 is a sintering aid powder made of, for example, Si 3 N 4 powder, rare earth oxide such as Y 2 O 3 , Er 2 O 3 , Yb 2 O 3 , CaO, MgO, or alkaline earth metal oxide. Is added and mixed in the range of 3 to 15% by weight and sintered.
[0017]
Further, the ceramic resistance material forming the heating member 10 is made of at least one silicide, carbide, or nitride selected from W, Ta, Nb, Ni, Mo, Zr, Hf, V, and Cr as a conductive material. It is made of a mixture of silicon nitride as an insulating material. On the other hand, the lead wires 11 and 12 are made of metal wires such as W, W-Re, Mo, Pt, niobium, nichrome, and tantalum.
[0018]
In FIG. 2, the ceramic base 13 and the outer cylinder 3 are joined by brazing by means of the present invention which will be described later, and the lead wire 12 is electrically connected to the outer cylinder 3 through these joints. Further, the coupling member 5 is also brazed to a region including the exposed portion 11 a of the lead wire 11. By comprising in this way, it supplies with electricity with respect to the heat generating member 10 via the metal shaft 6 (refer FIG. 1), the coupling member 5, and the lead wire 11 from the power supply which is not shown in figure, Furthermore, the lead wire 12, the outer cylinder 3, It is grounded through the metal housing 4 and an engine block (not shown).
[0019]
The glow plug 20 having such a structure is screwed to the engine block by screwing the screw portion 5a, and the tip of the ceramic heating element 1 is exposed in a pre-combustion chamber or combustion chamber (not shown) of the diesel engine. Mounted.
[0020]
Next, an example of a method for joining the ceramic heating element 1 and the outer cylinder 3 according to the main part of the present invention will be described.
FIG. 3 shows a state in which the ceramic heating element 1 and the outer cylinder 3 are held on the jig 40, and the lower end of the ceramic heating element 1 is held. Here, a guide groove 3 a having a diameter larger than the inner diameter of the cylinder is formed at the end of the outer cylinder 3 on the supply side of the brazing material. In addition to the stepped groove as shown, this guide groove 3a can also be formed by rounding (R surface) or slope (C surface) by chamfering, both of which are larger in diameter than the inner diameter of the outer cylinder, In addition, it is only necessary that the molten brazing material is reliably guided into the circumferential space s between the ceramic heating element and the outer cylinder without leaking from the outside. Further, the guide groove 3 a is also formed at the lower end in order to eliminate the directionality of the outer cylinder 3 and facilitate the fitting operation to the jig 40. The jig 40 includes a heating element holding groove 41 having substantially the same diameter as the ceramic heating element 1, and an outer cylinder holding groove having substantially the same diameter as the outer cylinder 3 concentrically coupled to the heating element holding groove 41. 42. The ceramic heating element 1 and the outer cylinder 3 are held substantially concentrically by the holding grooves 41 and 42, and the exposed length of the ceramic heating element 1 is defined by the heating element holding groove 41.
[0021]
By the way, in order to facilitate the insertion of the ceramic heating element 1 and the outer cylinder 3 in the holding grooves 41 and 42, a clearance is generated with a small diameter. For this reason, the ceramic heating element 1 and the outer cylinder 3 held at the lower ends in the heating element holding grooves 41 and 42 are not necessarily coaxial due to relative movement. 3 are held coaxially and connected to each other.
[0022]
First, in a state where the ceramic heating element 1 and the lower end of the outer cylinder 3 are held in the holding grooves 41 and 42 of the jig 40, the coil-shaped brazing material 45 is disposed so as to contact the upper end edge of the guide groove 3a. The coil-shaped brazing material 45 can be filled with an optimal amount of brazing material 45 in the circumferential space s formed between the ceramic heating element 1 and the outer cylinder 3 by setting the number of turns. When melted, it flows down into s sequentially from the lower end of the guide groove 3a, so that handling is easy. For this reason, it can be suitably used as a brazing material to be supplied to the seed circumferential space s.
[0023]
In such means, when the coiled brazing material 45 is heated and melted, the melted brazing material flows down into the gap s between the ceramic heating element 1 and the outer cylinder 3 held in the holding grooves 41 and 42, After filling, the outer cylinder 3 is fixed to the ceramic heating element with cooling. In the process of supplying the brazing material 45, the ceramic heating element 1 is held by the brazing material 45 staying in the guide groove 3a. Therefore, when the brazing material 45 flows down to the circumferential space s, the ceramic heating element 1 is biased by the supply pressure. Even if pressure is applied, the ceramic heating element 1 and the outer cylinder 3 are held coaxially by being held by the brazing material 45 in the guide groove 3a. Further, the molten brazing material is reliably guided by the large diameter guide groove 3a and does not overflow to the outside. Thus, in the solidified state of the brazing material shown in FIG. 4, the ceramic heating element 1 and the outer cylinder 3 are held coaxially.
[0024]
FIG. 5 shows the case where the upper end of the ceramic heating element 1 is mounted in the heating element holding groove 41 of the jig 40, and this configuration is the same and will not be described. Since the guide groove 3a is formed on both the upper and lower sides, there is no work direction when the outer cylinder 3 is fitted, and there is no direction with respect to the jig 40. You may fit in 41 and 42. Alternatively, in order to ensure the filling of the circumferential space s, the brazing material is supplied in the middle of the circumferential space s as the position shown in FIG. The material 45 may be fitted and melted down.
[0025]
FIG. 6 shows the relationship between the coaxiality between the ceramic heating element and the outer cylinder and the energization durability. As is apparent from FIG. 6, in the samples 8 to 10 having a coaxiality of 0.14 to 0.18, after the endurance test of 20000 cycles, a crack occurred on the end face of the outer cylinder, and the coaxiality was 0. In the samples 11 to 13 of 2 or more, the end face crack of the outer cylinder occurred in less than 15000 cycles. On the other hand, in the samples 1 to 7 having a coaxiality of 0.12 or less, no cracks or the like are generated in the outer cylinder even after the 20000 cycle energization endurance test. It is known that setting is desired, and the glow plug according to the present invention in which the guide groove 3a is formed in the inner periphery of the outer end of the brazing material supply side can easily have a coaxiality of 0.12 or less. Furthermore, it was confirmed that in a conventional glow plug having no guide groove, the coaxiality varies up to 0.25 and the yield is extremely poor. Here, the coaxiality indicates a deviation between the center lines of the ceramic heating element 1 and the outer cylinder 30. For example, in the case of 0.02, there is a deviation of 0.02 mm. Furthermore, the current-carrying durability was 14 volts, and heating at 1400 degrees was repeated on and off every minute, and this was regarded as one cycle, and this was repeated for 3500, 10000, 15000, and 20000 cycles.
[0026]
【The invention's effect】
The present invention relates to a diesel engine glow plug in which a ceramic heating element is externally fitted and held in a metal housing, and has a diameter larger than the cylinder inner diameter at the inner periphery of the brazing material supply side end of the outer cylinder. Since a large guide groove is formed and the brazing material is filled in the guide groove, the ceramic heating element and the outer cylinder are separated by the holding action of the brazing material filled in the guide groove during the joining process. It becomes as coaxial as possible, and the current-carrying durability is improved.
[0027]
Furthermore, in the present invention, the heat-melted brazing material is once retained in the guide groove, and then flows into the clearance between the outer cylinder and the peripheral surface of the heating element. Even if there is a clearance in the groove, the ceramic heating element is held by the brazing material staying in the guide groove in the brazing material supply process, and therefore, when the brazing material flows down to the circumferential space s, the pressure is reduced. Even if it acts, it is held by the brazing material in the guide groove, and the ceramic heating element and the outer cylinder are held coaxially. The ceramic heating element and the outer cylinder are held coaxially, so that the energization durability is improved. Further, the brazing material does not overflow to the outside due to the large-diameter guide groove, post-processing in the process is not troublesome, and waste of the brazing material can be prevented.
[Brief description of the drawings]
FIG. 1 is a side view of a cross section of a left half of a glow plug 20 according to the present invention.
FIG. 2 is a longitudinal sectional view of a ceramic heating element 1 according to the present invention.
FIG. 3 is a longitudinal side view showing a supplying process of a coil-shaped brazing material 45 in a state where a ceramic heating element 1 and an outer cylinder 3 are supported on a jig 40;
FIG. 4 is a longitudinal side view showing a connected state of the ceramic heating element 1 and the outer cylinder 3 in a state where a coil-shaped brazing material 45 is filled in the circumferential space s.
FIG. 5 is a longitudinal side view showing a supplying process of the coil-shaped brazing material 45 in another state in which the ceramic heating element 1 and the outer cylinder 3 are supported on the jig 40;
FIG. 6 is a chart showing the relationship between the coaxiality of the ceramic heating element 1 and the outer cylinder 3 and the durability.
FIG. 7 is a longitudinal side view showing a connecting process of a ceramic heating element 1 and an outer cylinder 3 of a conventional configuration.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic heating element 3 Outer cylinder 3a Guide groove 4 Metal housing 10 Heat generating member 13 Ceramic base body 20 Glow plug 40 Jig 41,42 Holding groove 45 Brazing material s Circumferential

Claims (4)

セラミック基体に発熱部材を埋設してなるセラミック発熱体を、筒状の金属ハウジングに、自身の内周面と前記セラミック発熱体との間に形成され軸方向に貫通した周隙に供給されたロウ材によりあらかじめ外嵌固着した外筒を介して保持して、該セラミック発熱体の先端部を金属ハウジングから突出したグロープラグにおいて、
少なくとも前記外筒のロウ材の供給側端部の内周に、筒内径よりも径大のガイド溝が形成されていることを特徴とするセラミック発熱体を内蔵するグロープラグ。
A ceramic heating element, in which a heating member is embedded in a ceramic base, is supplied to a cylindrical metal housing formed in a space between the inner peripheral surface of the ceramic heating element and the ceramic heating element and penetrating in the axial direction. In the glow plug that holds the tip of the ceramic heating element from the metal housing by holding it through an outer cylinder that is pre-fitted and fixed by a material ,
A glow plug having a built-in ceramic heating element, wherein a guide groove having a diameter larger than the inner diameter of the cylinder is formed at least on the inner circumference of the supply side end of the brazing material of the outer cylinder.
前記ガイド溝は前記外筒の内周の両端部に形成されていることを特徴とする請求項1記載のグロープラグ。  The glow plug according to claim 1, wherein the guide groove is formed at both ends of the inner periphery of the outer cylinder. 前記セラミック発熱体と外筒との同軸度が0.12以下であることを特徴とする請求項1または2記載のセラミック発熱体を内蔵するグロープラグ。 3. The glow plug with a built-in ceramic heating element according to claim 1, wherein the coaxiality of the ceramic heating element and the outer cylinder is 0.12 or less. セラミック基体に発熱部材を埋設してなるセラミック発熱体を、筒状の金属ハウジングに、該セラミック発熱体にあらかじめ外嵌固着した外筒を介して保持して、該セラミック発熱体の先端部を金属ハウジングから突出したグロープラグにおいて、
前記外筒のロウ材の供給側端部の内周に、筒内径よりも径大のガイド溝を形成するとともに、セラミック発熱体と外筒とを治具により位置決めし、さらにセラミック発熱体に外嵌したコイル状ロウ材を前記ガイド溝の上方に配し、該ロウ材を加熱溶融させ、その溶融物をガイド溝から、外筒と発熱体の周面との周隙に流入させた後に、該ロウ材を固化したことを特徴とするグロープラグのセラミック発熱体の外筒接合方法。
A ceramic heating element in which a heating member is embedded in a ceramic base is held in a cylindrical metal housing via an outer cylinder that is pre-fitted and fixed to the ceramic heating element, and the tip of the ceramic heating element is made of metal. In the glow plug protruding from the housing,
A guide groove having a diameter larger than the inner diameter of the cylinder is formed on the inner periphery of the supply side end of the brazing material of the outer cylinder, the ceramic heating element and the outer cylinder are positioned by a jig, and the ceramic heating element is externally attached. The coiled brazing material fitted is arranged above the guide groove, the brazing material is heated and melted, and the melt is poured from the guide groove into the circumferential space between the outer cylinder and the peripheral surface of the heating element. A method for joining an outer cylinder of a ceramic heating element of a glow plug, wherein the brazing material is solidified.
JP2000018768A 2000-01-27 2000-01-27 Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element Expired - Fee Related JP3839209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000018768A JP3839209B2 (en) 2000-01-27 2000-01-27 Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000018768A JP3839209B2 (en) 2000-01-27 2000-01-27 Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element

Publications (2)

Publication Number Publication Date
JP2001208348A JP2001208348A (en) 2001-08-03
JP3839209B2 true JP3839209B2 (en) 2006-11-01

Family

ID=18545565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000018768A Expired - Fee Related JP3839209B2 (en) 2000-01-27 2000-01-27 Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element

Country Status (1)

Country Link
JP (1) JP3839209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050435B4 (en) * 2005-10-19 2011-04-14 Man Diesel & Turbo Se Gas engine and ignition device for a gas engine

Also Published As

Publication number Publication date
JP2001208348A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
US7223942B2 (en) Ceramic heater, glow plug, and ceramic heater manufacturing method
EP1768456B1 (en) Ceramic heater, and glow plug using the same
EP1734304B1 (en) Ceramic heater and manufacturing method thereof, and glow plug using ceramic heater
JP2004251613A (en) Glow plug and manufacturing method of glow plug
EP2608629B1 (en) Ceramic heater and manufacturing method therefor, and heating apparatus
EP1248045A2 (en) Ceramic heater and it's manufacturing method, glow plug and ion current detecting device
US20080302777A1 (en) Glow plug and method of manufacturing the same
JP2000356343A (en) Ceramic heater type glow plug
JP2000130754A (en) Ceramic glow plug
JP3839209B2 (en) Glow plug incorporating a ceramic heating element and method for joining an outer cylinder of the ceramic heating element
JP3655499B2 (en) Ceramic heater type glow plug and manufacturing method thereof
JP4562315B2 (en) Ceramic heater, ceramic heater manufacturing method, and glow plug
JP4126854B2 (en) Glow plug
JP2001052845A (en) Ceramic heater
JP2004061041A (en) Ceramic glow plug
JP4560249B2 (en) Glow plug
JP4434516B2 (en) Glow plug
JP2002364841A (en) Glow plug
JP2004327424A (en) Heater
JP2000130752A (en) Glow plug
JPH0935854A (en) Ceramic heater
JP4651227B2 (en) Glow plug
JP2002124363A (en) Ceramic heater
JP2002299010A (en) Ceramic heater and method of manufacturing the same
JP4596684B2 (en) Glow plug

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees