JP3838286B2 - Direct acting contactless transmission equipment - Google Patents

Direct acting contactless transmission equipment Download PDF

Info

Publication number
JP3838286B2
JP3838286B2 JP01872897A JP1872897A JP3838286B2 JP 3838286 B2 JP3838286 B2 JP 3838286B2 JP 01872897 A JP01872897 A JP 01872897A JP 1872897 A JP1872897 A JP 1872897A JP 3838286 B2 JP3838286 B2 JP 3838286B2
Authority
JP
Japan
Prior art keywords
information transmission
winding
power transmission
transmission
primary winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01872897A
Other languages
Japanese (ja)
Other versions
JPH10225019A (en
Inventor
淳之 平井
靖彦 加来
篤男 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP01872897A priority Critical patent/JP3838286B2/en
Publication of JPH10225019A publication Critical patent/JPH10225019A/en
Application granted granted Critical
Publication of JP3838286B2 publication Critical patent/JP3838286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直線駆動されるテーブル側と固定側との間で無接触でパワー伝送及び情報伝送する直動型無接触伝送装置に関するものである。
【0002】
【従来の技術】
まず、直線軌道上に並置した複数のテーブルのすべてを軌道に沿って、それぞれ動かすための直動型力伝達装置として、2の従来例を挙げて説明する。本発明の無接触伝送装置はこれらの直動型力伝達装置に適用されるものである。
図3は可動巻線移動子のリニアモータによる直動型無接触伝送装置の構成を示す図である。これはリニアモータの原理を応用するもので、直線状磁石から成る直線固定子Sに沿って複数の可動巻線移動子Mc1、Mc2、・・・McNを移動可能に配置させ、テーブルTが各移動子Mc に固定されているものである。各移動子Mc の可動巻線に駆動電流を供給することによって、それぞれの移動子及びテーブルを単独で直線駆動するものである。
【0003】
図4は、直線固定ボールネジBSに電動機と連動した回転ナット移動子Rn1、Rn2、・・・RnNを螺合して配置させた直線移動機構を示す。、各移動子に搭載の電動機に駆動電流を供給することによって(後述する図6参照)、それぞれの移動子を回転させることなく固定ボールネジBSに沿って単独で直線駆動するように構成されている。
【0004】
これらの場合、個々の移動子(McあるいはRn)の駆動に必要なエネルギを供給するための電力伝送ケーブルや配線数を極力減らす、あるいは全く無くし、小型化することが望まれる。
次に、直動型力伝達装置において、ケーブルや配線数を極力減らした従来の無接触型電力伝送装置について説明する。
【0005】
図5は無接触型電力伝送装置の構成を示す図で、この技術は、テーブル移動軌道Lに並行に、しかも移動軌道全体をカバーできるように、高周波磁性でできた矩形コアCpを配置し、同コア全体に均一に一次巻線Wp1を施すものである。
一方、テーブル(あるいは移動子)と一体になって直線方向に移動する可動二次巻線Wp21、Wp22・・・Wp2Nを複数個(テーブル個数分)備え、これをコアCp内に挿通する。
【0006】
そして、矩形コアCpに巻いた一次巻線Wp1には直流成分を極力抑えた高周波電流(正弦波あるいは矩形状)を流すことによって、個々の可動二次巻線Wp2の両端に高周波電磁誘導により高周波電圧を生じさせることができる。
これによって、従来の様なケーブル配線およびその保護のためのケーブルベア、ダクト装置を使わない個々のテーブルへの無接触電力伝送を行なうことができる。
【0007】
図6はデバイステーブルの駆動系への電力変換供給機構を示す図である。同図に示すように、個々のテーブルT1、T2、・・・TNには、それぞれに、可動二次巻線Wp2Nに誘導される電圧を
1)リニアモータの場合(図3)は、可動巻線移動子Mcを励磁するための電流に変換するため、また
2)回転ナット移動子Rnを駆動する場合(図4)は、これを連動する電動機(サーボモータSvN)に供給する電流に変換するため
電力変換装置(ドライバD1、D2、・・・DN)を搭載している。
【0008】
さらに、従来の直動型無接触伝送装置においては、無接触電力伝送の外に、ケーブルや配線を用いることなく、電力変換装置をコントローラにて発生する位置制御指令、速度制御指令あるいは加速度制御指令に応じて駆動させるために、制御信号等のための無接触情報伝送機構が、同じように図示してないが別途設けらる場合がある。
【0009】
しかしながら、これらの直動型無接触伝送装置においては、巻線数や配線数が多くなり、さらに、パワー伝送のための高周波電磁界をつくる直導体と情報伝送のための直導体とが並行配置されているため、直導体周りに発生する電磁界が互いに大きく干渉し合うことのないように隔てることで装置の幅をより大きくせざるを得なかった。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記従来技術の問題点に鑑み、直動型無接触伝送装置において、パワー伝送のための高周波電磁界をつくる直導体と情報伝送のための直導体とが、互いに磁気的な干渉がないように巻線配置するとともに、それによって装置全体の幅が小さくできるものを提供することにある。
【0011】
【課題を解決するための手段】
本発明は、上記の課題を解決するために、直線経路上に複数並置され独立に直線駆動されるテーブル側と高周波磁性でできた矩形コアが取り付けられた固定側との間でパワー伝送及び情報伝送を電磁誘導によって行なう直動型無接触伝送装置において、
前記矩形コアの外周を取り巻くように巻かれた情報伝送一次巻線と、
前記矩形コア上に、前記情報伝送一次巻線の巻線軸方向と直交する方向に巻かれた電力伝送一次巻線と、
前記矩形コアの一辺に前記テーブルに固定された状態で配置され、前記矩形コアとの間で磁気回路を構成する、高周波磁性でできた複数のコの字状コアと、
前記コの字状コア上に巻かれた情報伝送二次巻線と、
前記電力伝送一次巻線、前記情報伝送一次巻線、および前記情報伝送二次巻線の周りで、前記コの字状コアおよび前記矩形コアを周回するように、かつ前記情報伝送二次巻線の巻線軸方向と直交する方向に巻かれた電力伝送二次巻線とを有するものである。
【0012】
【発明の実施の形態】
本発明の実施例について図面を参照して説明する。
図1は本発明の直動型無接触伝送装置の構成を示す正面図(A)、側面図(B)である。
同図に示すように、高周波磁性矩形コアCp上には、同矩形コアの外周を取り巻くように情報伝送一次巻線Wcが大きく巻かれるとともに、その巻線軸方向と直交する方向に電力伝送一次巻線Wpが小さく巻かれている。情報伝送一次巻線Wcは高周波変調器HMに接続され、コントローラCoとの間で双方向での情報信号が通信される。また、電力伝送一次巻線Wpは図示してない電源に接続されて電力供給を受ける。
【0013】
電力伝送一次巻線Wp、情報伝送一次巻線Wcが巻かれた矩形コアCpの一辺には、巻線Wp、Wcに接触することなく移動する「コの字」状の高周波磁性コアCc1、Cc2、・・・CcNが複数個(テーブル個数分)、移動方向に並べて備えられる。この各コ字状コアCc上にはそれぞれに、情報伝送二次巻線Wc2 が巻かれとともに、その巻線軸方向と直交する方向に電力伝送二次巻線Wp2が3巻線Wp、Wc及びWc2 の周りに巻かれている。
【0014】
また、それぞれのコ字状磁性コアCc1、Cc2、・・・CcNにはテーブル(図示してない)が一体に固定されている。
本実施例の作用について説明すると、情報伝送一次巻線Wcと情報伝送二次巻線Wc2、および矩形コアCpと「コの字」状コアCcで形成される磁気回路を経て、固定部と移動テーブル間に高周波電磁誘導による双方向高速情報伝送路が形成される。また、電力伝送についても、電力伝送一次巻線Wpと電力伝送二次巻線Wp2との間で電磁誘導による電力の授受が行なわれる。
【0015】
電力伝送および情報伝送を同時に行なっている場合でも、電力伝送と情報伝送の巻線の方向を直交させて伝送装置を構成することにより相互の電磁界も直交するので互いの磁界干渉もなしに2つの巻線相互を接近させることができ、それによって固定側およびテーブル側の双方を小型化でき、装置全体としても小型化が可能となる。また、ノイズの発生や磁束の漏れによる影響をお互いに受け合わない様な安定な無接触伝送装置が得られる。
【0016】
この場合の情報伝送一次巻線Wcおよび情報伝送二次巻線Wc2に供給する高周波電流も電力伝送の場合と同様に正負符号対象の電流である。
次に、これまで説明した無接触伝送装置の応用例について説明する。図2はデバイステーブル上のセンサ情報の無接触伝送の構成を示す図である。
同図に示すように、無接触電力伝送により移動テーブルT上に設けたセンサS、例えば、加速度検出センサSa、近接センサSp、着座確認センサSf、重量計測センサSw等への駆動パワを供給し、また、上述の無接触高速情報伝送により、これらセンサからの計測データを固定部にあるコントローラにデジタルフィードバックケーブルを一切使うことなく伝送することができる。これによって、
1)テーブル上の状態監視機能の強化充実
例えば、単一直線経路上に動く複数テーブルの相互距離監視、衝突防止
カートリッジ重量変化によるテーブル重量変化のリアルタイム監視
カートリッジの着座確認による安全確認
2)直線位置決め時、振動防止のためのサーボ閉ループ制御化
が可能となる。
【0017】
【発明の効果】
以上のように、本発明によれば、パワー伝送巻線高周波電磁界と高速情報伝送巻線による高周波電磁界がお互いに干渉しないようにパワー伝送巻線と情報伝送巻線とを直交配置させることによって、装置全体を小型化することができる。また、ノイズの発生や磁束の漏れによる影響をお互いに受けない安定な無接触伝送装置を得ることができる。
【0018】
本発明は、特に、テーブルが多数になり、かつ移動部の横幅に限界がある場合、パワ配線もさることながら、センサ類の配線数が膨大になり、ケーブルベアやダクトの配置問題に加えて、断線問題の発生が致命的になるのに対して、有効である。
【図面の簡単な説明】
【図1】(A)、(B)本発明の直動型無接触伝送装置の構成を示す正面図、側面図
【図2】デバイステーブル上のセンサ情報の無接触伝送の構成を示す図
【図3】可動巻線移動子のリニアモータによる直動型無接触伝送装置の構成を示す図
【図4】回転ナット型ボールネジによる直動型無接触伝送装置の構成を示す図
【図5】直動型無接触電力伝送装置の構成を示す図
【図6】デバイステーブルの駆動系への電力変換供給機構を示す図
【符号の説明】
Cc コの字状の高周波磁性コア
Cp 高周波磁性矩形コア
D 電力変換装置(ドライバ)
HM 高周波変調器
L テーブル移動軌道
Mc 可動巻線移動子
Rn 回転ナット移動子
T テーブル
Wc 情報伝送一次巻線
Wc2 情報伝送二次巻線
Wp 電力伝送一次巻線
Wp2 電力伝送二次巻線(可動二次巻線)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct-acting contactless transmission apparatus that performs power transmission and information transmission without contact between a linearly driven table side and a fixed side.
[0002]
[Prior art]
First, two conventional examples will be described as a direct-acting force transmission device for moving all of a plurality of tables juxtaposed on a straight track along the track. The contactless transmission device of the present invention is applied to these linear motion type force transmission devices.
FIG. 3 is a diagram showing a configuration of a direct-acting non-contact transmission device using a linear motor of a movable winding mover. This is an application of the principle of a linear motor. A plurality of movable winding movers Mc1, Mc2,... McN are movably arranged along a linear stator S composed of linear magnets. It is fixed to the movable element Mc. By supplying a driving current to the movable winding of each moving element Mc, each moving element and table are independently driven linearly.
[0003]
FIG. 4 shows a linear moving mechanism in which rotating nut moving elements Rn1, Rn2,... RnN interlocked with an electric motor are screwed to a linear fixed ball screw BS. By supplying a drive current to an electric motor mounted on each moving element (see FIG. 6 described later), each moving element is independently driven linearly along the fixed ball screw BS without rotating. .
[0004]
In these cases, it is desirable to reduce the number of power transmission cables and wires for supplying energy necessary for driving the individual moving elements (Mc or Rn) as much as possible, or to reduce the size and to reduce the size.
Next, a conventional contactless power transmission device in which the number of cables and wirings is reduced as much as possible in the direct acting force transmission device will be described.
[0005]
FIG. 5 is a diagram showing a configuration of a contactless power transmission device. This technique arranges a rectangular core Cp made of high-frequency magnetism in parallel with the table moving track L so as to cover the entire moving track, The primary winding Wp1 is uniformly applied to the entire core.
On the other hand, a plurality of movable secondary windings Wp21, Wp22,... Wp2N (as many as the number of tables) that move in a linear direction integrally with the table (or mover) are provided and inserted into the core Cp.
[0006]
Then, a high-frequency current (sine wave or rectangular shape) in which the direct current component is suppressed as much as possible is caused to flow through the primary winding Wp1 wound around the rectangular core Cp, thereby causing high-frequency electromagnetic induction at both ends of each movable secondary winding Wp2. A voltage can be generated.
As a result, it is possible to perform contactless power transmission to individual tables without using a conventional cable wiring and a cable bear and a duct device for protection thereof.
[0007]
FIG. 6 is a diagram showing a power conversion supply mechanism to the drive system of the device table. As shown in the figure, in each table T1, T2,... TN, the voltage induced in the movable secondary winding Wp2N is 1) In the case of a linear motor (FIG. 3), the movable winding In order to convert to a current for exciting the line mover Mc, and 2) When the rotary nut mover Rn is driven (FIG. 4), this is converted to a current to be supplied to the motor (servo motor SvN) to be interlocked. Therefore, power converters (drivers D1, D2,... DN) are mounted.
[0008]
Further, in the conventional direct-acting contactless transmission device, in addition to the contactless power transmission, a position control command, speed control command or acceleration control command generated by the controller without using cables or wiring is used. In order to drive according to the above, a non-contact information transmission mechanism for a control signal or the like may be provided separately although not shown in the same way.
[0009]
However, in these direct-acting contactless transmission devices, the number of windings and wiring increases, and a direct conductor that creates a high-frequency electromagnetic field for power transmission and a direct conductor for information transmission are arranged in parallel. Therefore, the width of the apparatus has to be increased by separating the electromagnetic fields generated around the direct conductor so as not to interfere with each other.
[0010]
[Problems to be solved by the invention]
In view of the above-described problems of the prior art, an object of the present invention is to provide a direct-acting contactless transmission apparatus in which a direct conductor that generates a high-frequency electromagnetic field for power transmission and a direct conductor for information transmission are magnetically connected to each other. An object of the present invention is to provide an arrangement in which windings are arranged so that there is no significant interference and thereby the width of the entire apparatus can be reduced.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides power transmission and information between a table side that is juxtaposed on a linear path and independently linearly driven, and a fixed side to which a rectangular core made of high-frequency magnetism is attached. In direct acting contactless transmission equipment that performs transmission by electromagnetic induction,
An information transmission primary winding wound around the outer periphery of the rectangular core;
On the rectangular core, a power transmission primary winding wound in a direction orthogonal to a winding axis direction of the information transmission primary winding,
A plurality of U-shaped cores made of high-frequency magnetism, arranged in a state fixed to the table on one side of the rectangular core, and constituting a magnetic circuit with the rectangular core;
An information transmission secondary winding wound on the U-shaped core;
The information transmission secondary winding is configured to circulate around the U-shaped core and the rectangular core around the power transmission primary winding, the information transmission primary winding, and the information transmission secondary winding. Power transmission secondary winding wound in a direction orthogonal to the winding axis direction .
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a front view (A) and a side view (B) showing the configuration of a direct acting contactless transmission apparatus of the present invention.
As shown in the figure, on the high-frequency magnetic rectangular core Cp, the information transmission primary winding Wc is largely wound so as to surround the outer periphery of the rectangular core, and the power transmission primary winding is perpendicular to the winding axis direction. The line Wp is wound small. The information transmission primary winding Wc is connected to the high frequency modulator HM, and bidirectional information signals are communicated with the controller Co. Further, the power transmission primary winding Wp is connected to a power source (not shown) to receive power supply.
[0013]
On one side of the rectangular core Cp around which the power transmission primary winding Wp and the information transmission primary winding Wc are wound, the “U” -shaped high-frequency magnetic cores Cc1, Cc2 move without contacting the windings Wp, Wc. ,... CcN are provided side by side in the moving direction (for the number of tables). On each U-shaped core Cc, an information transmission secondary winding Wc2 is wound, and a power transmission secondary winding Wp2 has three windings Wp, Wc and Wc2 in a direction orthogonal to the winding axis direction. It is wound around
[0014]
Further, a table (not shown) is integrally fixed to each of the U-shaped magnetic cores Cc1, Cc2,... CcN.
The operation of the present embodiment will be described. The fixed part and the movement are transferred through the magnetic circuit formed by the information transmission primary winding Wc, the information transmission secondary winding Wc2, and the rectangular core Cp and the “U” -shaped core Cc. A bidirectional high-speed information transmission path using high-frequency electromagnetic induction is formed between the tables. Also, for power transmission, power is transferred by electromagnetic induction between the power transmission primary winding Wp and the power transmission secondary winding Wp2.
[0015]
Even when power transmission and information transmission are performed at the same time, by constructing a transmission device by making the directions of windings of power transmission and information transmission orthogonal to each other, the mutual electromagnetic fields are also orthogonal, so there is no mutual magnetic field interference. The two windings can be brought close to each other, whereby both the fixed side and the table side can be miniaturized, and the entire apparatus can be miniaturized. In addition, a stable contactless transmission device is obtained in which the effects of noise generation and magnetic flux leakage are not received from each other.
[0016]
In this case, the high-frequency current supplied to the information transmission primary winding Wc and the information transmission secondary winding Wc2 is also the current of the sign object as in the case of power transmission.
Next, application examples of the contactless transmission apparatus described so far will be described. FIG. 2 is a diagram showing a configuration of contactless transmission of sensor information on the device table.
As shown in the figure, driving power is supplied to a sensor S provided on the moving table T by contactless power transmission, for example, an acceleration detection sensor Sa, a proximity sensor Sp, a seating confirmation sensor Sf, a weight measurement sensor Sw, and the like. In addition, by the above-described contactless high-speed information transmission, measurement data from these sensors can be transmitted to the controller in the fixed part without using any digital feedback cable. by this,
1) Enhancement of state monitoring function on the table For example, mutual distance monitoring of multiple tables moving on a single straight path, real-time monitoring of table weight change due to collision prevention cartridge weight change, safety confirmation by seating confirmation of cartridge 2) linear positioning Servo closed-loop control to prevent vibration is possible.
[0017]
【The invention's effect】
As described above, according to the present invention, the power transmission winding and the information transmission winding are arranged orthogonally so that the high-frequency electromagnetic field generated by the power transmission winding and the high-speed information transmission winding do not interfere with each other. Thus, the entire apparatus can be reduced in size. Further, it is possible to obtain a stable contactless transmission device that is not affected by noise generation or magnetic flux leakage.
[0018]
In particular, when the number of tables is large and the lateral width of the moving part is limited, the number of wirings of sensors becomes enormous in addition to power wiring, and in addition to the problem of arrangement of cable bears and ducts. This is effective against the occurrence of a disconnection problem.
[Brief description of the drawings]
1A and 1B are a front view and a side view showing a configuration of a direct-acting contactless transmission apparatus according to the present invention. FIG. 2 is a diagram showing a configuration of contactless transmission of sensor information on a device table. 3 is a diagram showing a configuration of a direct-acting contactless transmission device using a linear motor of a movable winding mover. FIG. 4 is a diagram showing a configuration of a direct-acting contactless transmission device using a rotating nut type ball screw. FIG. 6 is a diagram showing a configuration of a dynamic contactless power transmission apparatus. FIG. 6 is a diagram showing a power conversion supply mechanism to a drive system of a device table.
Cc U-shaped high-frequency magnetic core Cp High-frequency magnetic rectangular core D Power converter (driver)
HM High-frequency modulator L Table moving trajectory Mc Movable winding slider Rn Rotating nut moving element T Table Wc Information transmission primary winding Wc2 Information transmission secondary winding Wp Power transmission primary winding Wp2 Power transmission secondary winding (movable two Next winding)

Claims (1)

直線経路上に複数並置され独立に直線駆動されるテーブル側と高周波磁性でできた矩形コアが取り付けられた固定側との間でパワー伝送及び情報伝送を電磁誘導によって行なう直動型無接触伝送装置において、
前記矩形コアの外周を取り巻くように巻かれた情報伝送一次巻線と、
前記矩形コア上に、前記情報伝送一次巻線の巻線軸方向と直交する方向に巻かれた電力伝送一次巻線と、
前記矩形コアの一辺に前記テーブルに固定された状態で配置され、前記矩形コアとの間で磁気回路を構成する、高周波磁性でできた複数のコの字状コアと、
前記コの字状コア上に巻かれた情報伝送二次巻線と、
前記電力伝送一次巻線、前記情報伝送一次巻線、および前記情報伝送二次巻線の周りで、前記コの字状コアおよび前記矩形コアを周回するように、かつ前記情報伝送二次巻線の巻線軸方向と直交する方向に巻かれた電力伝送二次巻線とを有することを特徴とする直動型無接触伝送装置。
Direct-acting contactless transmission apparatus that performs power transmission and information transmission by electromagnetic induction between a table side that is juxtaposed on a straight path and driven linearly independently and a fixed side to which a rectangular core made of high-frequency magnetism is attached In
An information transmission primary winding wound around the outer periphery of the rectangular core;
On the rectangular core, a power transmission primary winding wound in a direction orthogonal to a winding axis direction of the information transmission primary winding,
A plurality of U-shaped cores made of high-frequency magnetism, arranged in a state fixed to the table on one side of the rectangular core, and constituting a magnetic circuit with the rectangular core;
An information transmission secondary winding wound on the U-shaped core;
The information transmission secondary winding is configured to circulate around the U-shaped core and the rectangular core around the power transmission primary winding, the information transmission primary winding, and the information transmission secondary winding. And a power transmission secondary winding wound in a direction orthogonal to the winding axis direction of the linear motion type non-contact transmission device.
JP01872897A 1997-01-31 1997-01-31 Direct acting contactless transmission equipment Expired - Fee Related JP3838286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01872897A JP3838286B2 (en) 1997-01-31 1997-01-31 Direct acting contactless transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01872897A JP3838286B2 (en) 1997-01-31 1997-01-31 Direct acting contactless transmission equipment

Publications (2)

Publication Number Publication Date
JPH10225019A JPH10225019A (en) 1998-08-21
JP3838286B2 true JP3838286B2 (en) 2006-10-25

Family

ID=11979739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01872897A Expired - Fee Related JP3838286B2 (en) 1997-01-31 1997-01-31 Direct acting contactless transmission equipment

Country Status (1)

Country Link
JP (1) JP3838286B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060185809A1 (en) * 2005-02-23 2006-08-24 Abb. Actuator system for use in control of a sheet or web forming process
DE102009003846A1 (en) * 2009-04-29 2010-11-04 Weidmüller Interface GmbH & Co. KG System for the contactless energy and data supply of bus subscriber modules
CN106208415B (en) * 2016-08-09 2018-06-19 西安电子科技大学 ICPT based on magnetic biasing modulation wirelessly takes can communicating integral emitter

Also Published As

Publication number Publication date
JPH10225019A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US9906113B2 (en) Linear actuator
US5023495A (en) Moving-magnet type linear d.c. brushless motor having plural moving elements
KR100392308B1 (en) An integrated apparatus of permanent magnet excited synchronous motor and non-contact power feed device
CN103141017B (en) Linear motor
US9362045B2 (en) System having primary conductor and movable component for inductive movement along primary conductor
CN109906546B (en) Linear motor and power electronic converter for controlling linear motor
US20220085700A1 (en) Track connection module for linear motor tracks
US6091167A (en) Double coil actuator
ES2097983T3 (en) ELECTRIC MOTOR STEP BY STEP.
US7786685B2 (en) Linear motor and method for operating a linear motor
KR20210054730A (en) Linear motor and transfer system using the same
JP3838286B2 (en) Direct acting contactless transmission equipment
JP3724516B2 (en) Contactless motion transmission device
JP6864844B2 (en) Lateral magnetic flux linear motor
EP1204196A2 (en) Joint driving apparatus
KR20230161343A (en) Linear motor and transport system
KR101798548B1 (en) Linear motor
WO2020253847A1 (en) Motor and device comprising the motor
US8013562B2 (en) Driving mechanism having position encoder for two-dimensional positioning
KR100331232B1 (en) Linear motion apparatus having brushless linear motor
Zhang et al. Optimal matching design of length and width of rectangular ironless coils for magnetically levitated planar motors
JP5863361B2 (en) Actuator
KR100326145B1 (en) A non-contact power feed system of traverse flux machine
JP2019187213A (en) Cylindrical linear motor
JP3817724B2 (en) XY table device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees