JP3838011B2 - Leakage recovery device in submersible construction method - Google Patents

Leakage recovery device in submersible construction method Download PDF

Info

Publication number
JP3838011B2
JP3838011B2 JP2000278644A JP2000278644A JP3838011B2 JP 3838011 B2 JP3838011 B2 JP 3838011B2 JP 2000278644 A JP2000278644 A JP 2000278644A JP 2000278644 A JP2000278644 A JP 2000278644A JP 3838011 B2 JP3838011 B2 JP 3838011B2
Authority
JP
Japan
Prior art keywords
caisson
pumping
pipe
leak
submerged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000278644A
Other languages
Japanese (ja)
Other versions
JP2002088770A (en
Inventor
潔 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2000278644A priority Critical patent/JP3838011B2/en
Publication of JP2002088770A publication Critical patent/JP2002088770A/en
Application granted granted Critical
Publication of JP3838011B2 publication Critical patent/JP3838011B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、潜函工法における漏気回収装置に関するものである。
【0002】
【従来の技術】
橋脚基礎構造などの構築に用いられる工法として、筒状のケーソン躯体を水底地盤中に沈設する潜函工法が知られている。この種の工法では、ケーソン本体の先端側内周に天井スラブを形成してケーソン作業室を隔成し、ケーソン本体の下端側に設けられた刃口部を地盤中に貫入させた状態で、ケーソン作業室内に圧気を供給しながら、その内部地盤を掘削してケーソン本体を地盤中に沈設する。
【0003】
この場合、ケーソン作業室内に供給された圧気は、その一部がケーソン本体の先端刃口部を通り抜けて、外方に漏気し、このような漏気をそのまま放置しておくと、地盤中の透水層を通って思わぬ場所に噴出して、隣接構造物に悪影響を及ぼすことになる。
【0004】
そこで、従来は、ケーソン本体の刃口部直上に漏気回収フィルタを設置して、刃口部に沿って上昇してくる漏気を取り込むとともに、ケーソン本体の外側周辺に地下水を低下させ、漏気を回収するブローホールを設置して、漏気問題に対処していた。
【0005】
しかしながら、このような従来の漏気回収装置には、以下に説明する技術的な課題があった。
【0006】
【発明が解決しようとする課題】
すなわち、上述した従来の漏気回収装置では、漏気回収フィルタは、ケーソン本体に沿って上昇してくる漏気を自然状態で取り込む構成なので、漏気の上昇力が大きい場合には、その回収が殆どできず、漏気の回収効率が低いという問題があった。
【0007】
ここで、漏気回収フィルタで回収できなかった漏気は、ブローホールで回収することになるが、この種のブローホールは、ケーソン本体の外周に数カ所程度設置するだけなので、地盤中を拡散する漏気を十分に回収することが難しい。
【0008】
さらに、ブローホールの使用は、地下水位の低下が大きくなるため、地盤沈下などが発生する恐れがあるので、市街地での適用に制限があった。
【0009】
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とすることろは、漏気回収効率が大幅に向上する潜函工法における漏気回収装置を提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、筒状のケーソン本体の先端に、地盤に貫入する刃口部を設けるとともに、前記ケーソン本体の先端側内周に天井スラブを形成して、前記刃口部の内周側にケーソン作業室を隔成し、前記刃口部を地盤中に貫入させた状態で、前記ケーソン作業室内に圧気を供給しながら、その内部地盤を掘削して前記ケーソン本体を地盤中に沈設する潜函工法における漏気回収装置において、前記ケーソン本体の刃口部直上外面に、周回形成された漏気回収フィルタと、一端が前記漏気回収フィルタと連通し、他端が前記ケーソン本体の上端に開口する揚水管路と、前記揚水管路の上端開口に連通設置される揚水手段とを備え、前記揚水管路内に、上端が大気に開放され、上下移動自在な地下水位調整管を設置した
このように構成した潜函工法における漏気回収装置によれば、ケーソン本体の刃口部直上外面に、周回形成された漏気回収フィルタと、一端が漏気回収フィルタと連通し、他端がケーソン本体の上端に開口する揚水管路と、揚水管路の上端開口に連通設置される揚水手段とを備えているので、揚水手段を駆動すると、漏気回収フィルタの周辺の地下水がフィルタ側に流れ、漏気回収フィルタの周辺には、フィルタ側に向けて流れる地下水流が形成される。
このような地下水流が創設されている領域に、ケーソン本体に沿って漏気が上昇してくると、漏気の上昇速度が大きくなっていても、地下水流の流れに帯同させて漏気を吸引,回収することができる。
また、揚水管路内に、上端が大気に開放され、上下移動自在な地下水位調整管を設置しているので、地下水位を任意に調整することができ、周辺地盤への影響を小さくすることができる。このような地下水位の調整には、例えば、ケーソン本体に地下水位を検知する固定式の液面センサーを設けて、地下水位を調整することも可能であるが、固定式の液面センサーでは、ケーソン本体が沈設されると、沈設に伴って地下水位と液面センサーとの相対的な位置関係が変化し、このような変化に追随することができない。ところが、上端が大気に開放され、上下移動自在な地下水位調整管を用いると、沈設に応じて、調整管を上方移動させることでこのような変化に対応することができる。
前記漏気回収フィルタは、前記ケーソン本体の外周面に、上下方向に所定の間隔を隔てて複数段設置することができる。
この構成によれば、漏気回収フィルタの設置状態に対応して、前述した地下水流の流れが複数段形成されるので、1段目を潜りぬけた漏気をその上方段の別の漏気回収フィルタで回収することができる。
前記揚水管路は、前記ケーソン本体を上下方向に貫通するように複数本設置され、各揚水管路の上端開口部を連通する揚水集積管を介して、前記揚水手段に連通接続することができる。
この構成によれば、複数本の揚水管路により効率よく漏気を回収することができる。
【0011】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、添付図面に基づいて詳細に説明する。図1から図6は、本発明にかかる潜函工法における漏気回収装置の一実施例を示している。
【0012】
これらの図に示した漏気回収装置10は、筒状のケーソン本体12の先端に地盤に貫入する刃口部14を設けるとともに、ケーソン本体12の先端側内周に天井スラブ16を形成して、刃口部14の内周側にケーソン作業室(潜函室)18を隔成し、刃口部14を地盤中に貫入させた状態で、ケーソン作業室18内に圧気を供給しながら、その内部地盤を掘削してケーソン本体12を地盤20中に沈設する潜函工法に適用した場合を示している。
【0013】
ケーソン本体12は、本実施例の場合には、水平断面が角形の閉塞した形状に形成されている。なお、図1に符号17および19で示した部分は、下端がケーソン作業室18に繋がるマンロックとマテリアルロックである。
【0014】
漏気回収装置10は、実質的に同一構成の一対の第1および第2漏気回収フィルタ22,24と、実質的に同一構成の8本の第1〜第8揚水管路26,27,28,29,30,31,32,33と、揚水手段34とを備えている。
【0015】
第1および第2漏気回収フィルタ22,24は、ケーソン本体12の刃口部14の直上に位置していて、第1漏気回収フィルタ22が下方にあって、その上方に所定の間隔を隔てて第2漏気回収フィルタ24が、相互に平行になるように2段状に配置されている。
【0016】
第1および第2漏気回収フィルタ22,24は、ケーソン本体12の外周面に沿って、これを周回するように形成されている。図4〜図6に、第1および第2漏気回収フィルタ22,24の詳細を示している。
【0017】
本実施例の第1および第2漏気回収フィルタ22,24は、コ字形断面のチャンネル材で構成されたホルダ22a,24aと、金網22b,24bと、天然繊維プレート22c,24cと、合成樹脂繊維材22d,24dとを備えている。
【0018】
ホルダ22a,24aは、開口部がケーソン本体12の表面側を向くように、ケーソン本体12の外周を周回するようにして、その内部に埋設されている。金網22b,24bは、ホルダ22a,24aの開口端に装着され、その内部側に装填される天然繊維プレート22c,24cと、合成樹脂繊維材22d,24dとの離脱を防止している。
【0019】
天然繊維プレート22c,24cは、例えば、天然椰子殻などを板状に成型して、比較的小さい固形分を分離するフィルタ機能を持たせている。合成樹脂繊維材22d,24dは、繊維同士をランダムに絡ませて、比較的大きい固形分を分離するフィルタ機能を持たせている。
【0020】
第1〜第8揚水管路26〜33は、図2に示すように、四角状断面に形成されたケーソン本体12の各隅部と、四辺の中間部とに配置され、下端側には、図4に第1揚水管路26を代表して示すように、一対の分岐管路26a,26bが連通するように設けられている。なお、このような一対の分岐管は、残りの各揚水管路27〜33にも設けられている。
【0021】
この分岐管路26a,26bは、上下方向に所定の間隔を隔てて配置されている第1および第2漏気回収フィルタ22,24の内部と個別に連通接続されている。
【0022】
また、第1〜第8揚水管路26〜33は、ケーソン本体12の長手軸方向に沿って、上方に延設され、上端がケーソン本体12の上端面に開口している。第1〜第8揚水管路26〜33の開口部には、揚水集積管36が連通接続され、この揚水集積管36には、揚水手段34(真空ポンプ)が連通接続されている。
【0023】
さらに、本実施例の場合には、第1揚水管路26内に、地下水位調整管38が設置されている。なお、この地下水位調整管38は、第1揚水管路26だけでなく、別の揚水管路内に設置しても良い。
【0024】
図3は、この地下水位調整管38の設置状態の詳細図であり、地下水位調整管38は、両端が開口した鋼管や塩ビパイプなどで構成され、上端が大気に開放された状態で、揚水集積管36を貫通して、第1揚水管路26内に上下移動自在に挿入されている。
【0025】
地下水位調整管38の下端は、自然地下水位W1よりも低い位置に設定される。この地下水位調整管38の下端と自然地下水位W1との間が、地下水位の低下量となる。
【0026】
この地下水位調整管38の調整機能について説明すると、揚水手段34(真空ポンプ)を作動させると、地下水は、第1および第2漏気回収フィルタ22,24と第1〜第8揚水管路26〜33とを介して、揚水手段34(真空ポンプ)側に吸引揚水されて、外部に排出される。
【0027】
この場合、地下水の外部排出に伴って、自然地下水位W1は、徐々に低下する。そして、水位が地下水位調整管38の下端の下方まで低下すると、地下水位調整管38の上端が大気に開放されているので、大気が第1揚水管路26に導入され、これにより管路26内における揚水手段34(真空ポンプ)の吸引力の作用が消失し、その結果、これ以後の揚水が停止される。
【0028】
一方、揚水が停止された後に、地下水位が地下水位調整管38の下端の上方まで回復すると、再び揚水が行われ、地下水のレベルは、地下水位調整管38の下端と自然地下水位W1との間保たれる。
【0029】
このような水位調整管38を用いると、地下水位を任意に調整することができるので、周辺地盤への影響を小さくすることができる。この場合、例えば、ケーソン本体12に地下水位を検知する固定式の液面センサーを設けて、地下水位を調整することも可能である。
【0030】
しかし、固定式の液面センサーでは、ケーソン本体12が沈設されると、沈設に伴って地下水位と液面センサーとの相対的な位置関係が変化し、このような変化に追随することができない。
【0031】
ところが、本実施例のように、上端が大気に開放され、上下移動自在な地下水位調整管38を用いると、沈設に応じて、調整管38を上方移動させることでこのような変化に対応することができ、潜函工法のケーソン本体12に好適な水位調整手段となる。
【0032】
以上のように構成された漏気回収装置10では、ケーソン本体12の刃口部14直上外面に、周回形成された漏気回収フィルタ22,24と、一端が漏気回収フィルタ22,24と連通し、他端がケーソン本体12の上端に開口する揚水管路26〜32と、揚水管路26〜32の上端開口に連通設置される揚水手段34とを備えているので、揚水手段34を駆動すると、図1に示すように、漏気回収フィルタ22,24の周辺の地下水がフィルタ側に流れ、漏気回収フィルタ22,24の周辺に、その方向に向かって流れる地下水流Wが形成される。
【0033】
このような地下水流Wが創設されている領域に、ケーソン本体12に沿って漏気Aが上昇してくると、漏気Aの上昇速度が大きくなっても、地下水流Wの流れに帯同させて漏気Aを、漏気回収フィルタ22,24の側に吸引,回収することができる。
【0034】
従って、従来の自然取り込み型の場合に比べて、漏気Aの回収効率を大幅に向上させることが可能になり、その結果、地盤沈下の恐れがあるブローホールを設置する必要もなくなる。
【0035】
また、本実施例の場合には、第1および第2漏気回収フィルタ22,24が、ケーソン本体12の外周面に、上下方向に所定の間隔を隔てて2段状に設置されているので、漏気回収フィルタ22,24の設置状態に対応して、前述した地下水流Wの流れが2段形成されるので、1段目を潜りぬけた漏気をその上方段の別の漏気回収フィルタ24で回収することができ、より一層漏気Aの回収効率が向上する。
【0036】
さらに、本実施例の場合には、揚水管路26〜32は、ケーソン本体12を上下方向に貫通するように複数本設置され、各揚水管路26〜32の上端開口部を連通する揚水集積管38を介して、揚水手段34に連通接続しているので、地下水流Wの形成領域を均一化して、複数本の揚水管路26〜32により効率よく漏気Aを回収することができる。
【0037】
なお、上記実施例では、ケーソン本体12の断面形状が角形のものに本発明の漏気回収装置を適用した場合を例示したが、ケーソン本体12の形状は、これに限定されることはない。
【0038】
また、上記実施例では、漏気回収フィルタをケーソン本体12の外周面に上下方向に所定の間隔を隔てて2段状に配置した場合を例示したが、本発明の実施は、これに限定されることはなく、1段ないしは3段以上であっても良い。
【0039】
【発明の効果】
以上、詳細に説明したように、本発明にかかる潜函工法における漏気回収装置によれば、漏気回収効率が大幅に向上する。
【図面の簡単な説明】
【図1】本発明にかかる潜函工法における漏気回収装置一実施例を示す側断面説明図である。
【図2】図1の平面説明図である。
【図3】図1のA部拡大図である。
【図4】図1の要部拡大図である。
【図5】図4のB部拡大図である。
【図6】図5の正面図である。
【符号の説明】
10 漏気回収装置
12 ケーソン本体
14 刃口部
16 天井スラブ
18 ケーソン作業室
20 地盤
22 第1漏気回収フィルタ
24 第2漏気回収フィルタ
26 第1揚水管路
34 揚水手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak recovery device in a submerged method.
[0002]
[Prior art]
As a construction method used for construction of a pier foundation structure and the like, a submerged construction method is known in which a cylindrical caisson frame is submerged in the bottom of the water. In this type of construction method, a ceiling slab is formed on the inner periphery of the tip end of the caisson body to separate the caisson working chamber, and the cutting edge provided on the lower end side of the caisson body is penetrated into the ground. While supplying pressurized air into the caisson working chamber, the ground is excavated and the caisson body is submerged in the ground.
[0003]
In this case, a part of the pressurized air supplied into the caisson working chamber passes through the tip edge of the caisson body and leaks outward, and if such a leak is left as it is, It will erupt to an unexpected place through the water permeable layer and adversely affect adjacent structures.
[0004]
Therefore, conventionally, an air leak recovery filter has been installed just above the blade edge of the caisson body to capture the air leak that rises along the blade edge, while lowering the groundwater around the outside of the caisson body, A blowhole was set up to recover the air and addressed the problem of air leakage.
[0005]
However, such a conventional air leakage recovery device has technical problems described below.
[0006]
[Problems to be solved by the invention]
That is, in the above-described conventional air leak recovery device, the air leak recovery filter is configured to capture the air leak that rises along the caisson main body in a natural state. However, there was a problem that the recovery efficiency of air leakage was low.
[0007]
Here, the air leak that could not be recovered by the air leak recovery filter will be recovered by the blow hole, but this kind of blow hole is only installed on the outer periphery of the caisson body, so it diffuses in the ground. It is difficult to fully collect leaks.
[0008]
In addition, the use of blowholes has been limited to use in urban areas, as groundwater level drops greatly, and land subsidence may occur.
[0009]
The present invention has been made in view of such conventional problems, and the object of the present invention is to provide an air leak recovery device in a submerged construction method in which the air leak recovery efficiency is greatly improved. is there.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a blade piercing portion that penetrates into the ground at the tip of a cylindrical caisson body, and forms a ceiling slab on the tip side inner periphery of the caisson body, A caisson working chamber is formed on the inner peripheral side of the mouth, and the caisson main body is excavated while supplying the pressurized air into the caisson working chamber while the blade mouth is inserted into the ground. In the leak recovery device in the submerged method, the leak recovery filter formed around the blade mouth portion of the caisson body, one end communicates with the leak recovery filter, and the other end A pumping pipe that opens at the upper end of the caisson main body, and pumping means that is installed in communication with the upper end opening of the pumping pipe, and the upper end of the pumping pipe is open to the atmosphere and is movable up and down. A position adjustment pipe was installed .
According to the leak recovery apparatus in the submersible method constructed in this way, the leak recovery filter formed around the blade mouth portion of the caisson main body, one end communicates with the leak recovery filter, and the other end is the caisson. Since it has a pumping pipe that opens to the upper end of the main body and a pumping means that communicates with the upper end opening of the pumping pipe, when the pumping means is driven, groundwater around the leak recovery filter flows to the filter side. A groundwater flow that flows toward the filter side is formed around the air leakage recovery filter.
When leaks rise along the caisson body in an area where such a groundwater flow has been established, even if the rise rate of the leak increases, the leak is caused to accompany the flow of the groundwater flow. Can be aspirated and collected.
In addition, since the upper end of the pumping pipe is open to the atmosphere and a groundwater level adjustment pipe that can move up and down is installed, the groundwater level can be adjusted arbitrarily and the impact on the surrounding ground should be reduced. Can do. For such adjustment of the groundwater level, for example, it is possible to adjust the groundwater level by providing a fixed liquid level sensor that detects the groundwater level in the caisson body, but in the fixed liquid level sensor, When the caisson body is submerged, the relative positional relationship between the groundwater level and the liquid level sensor changes with the subsidence, and such a change cannot be followed. However, when a groundwater level adjusting pipe whose upper end is open to the atmosphere and freely movable up and down is used, such a change can be dealt with by moving the adjusting pipe upward according to the settling.
The air leakage recovery filter can be installed in a plurality of stages on the outer peripheral surface of the caisson body with a predetermined interval in the vertical direction.
According to this configuration, since the flow of the groundwater flow described above is formed in a plurality of stages corresponding to the installation state of the air leakage recovery filter, the air leaking through the first stage is replaced with another air leak in the upper stage. It can be recovered with a recovery filter.
A plurality of the pumping pipes are installed so as to penetrate the caisson main body in the vertical direction, and can be connected to the pumping means via a pumping accumulation pipe that communicates with the upper end opening of each pumping pipe. .
According to this configuration, air leakage can be efficiently recovered by a plurality of pumping pipes.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings. FIG. 1 to FIG. 6 show an embodiment of a leak recovery device in the submerged method according to the present invention.
[0012]
The air leak recovery device 10 shown in these drawings is provided with a blade opening portion 14 penetrating into the ground at the tip of a cylindrical caisson body 12 and a ceiling slab 16 formed on the inner periphery of the tip side of the caisson body 12. A caisson working chamber (latent chamber) 18 is defined on the inner peripheral side of the blade opening 14, and while supplying the pressurized air into the caisson working chamber 18 with the blade opening 14 penetrating into the ground, The case where it applies to the submerged construction method which excavates an internal ground and sinks the caisson main body 12 in the ground 20 is shown.
[0013]
In the case of the present embodiment, the caisson body 12 is formed in a closed shape having a square horizontal cross section. In addition, the part shown by the codes | symbols 17 and 19 in FIG. 1 is the manlock and material lock which a lower end connects with the caisson working chamber 18. FIG.
[0014]
The air leak recovery device 10 includes a pair of first and second air leak recovery filters 22 and 24 having substantially the same configuration, and eight first to eighth pumping pipes 26 and 27 having substantially the same configuration. 28, 29, 30, 31, 32, 33 and pumping means 34 are provided.
[0015]
The first and second air leakage recovery filters 22 and 24 are located immediately above the blade opening portion 14 of the caisson main body 12, and the first air leakage recovery filter 22 is below, and a predetermined interval is provided above the first air leakage recovery filter 22. The second air leakage recovery filters 24 are arranged in two stages so as to be parallel to each other.
[0016]
The first and second air leak recovery filters 22 and 24 are formed along the outer peripheral surface of the caisson main body 12 so as to go around. 4 to 6 show details of the first and second air leakage recovery filters 22 and 24.
[0017]
The first and second air leakage recovery filters 22 and 24 of the present embodiment are made up of holders 22a and 24a, wire meshes 22b and 24b, natural fiber plates 22c and 24c, and synthetic resin. Fiber materials 22d and 24d are provided.
[0018]
The holders 22a and 24a are embedded in the caisson body 12 so that the opening faces the surface side of the caisson body 12 so as to go around the outer periphery of the caisson body 12. The metal meshes 22b and 24b are attached to the open ends of the holders 22a and 24a, and prevent the natural fiber plates 22c and 24c loaded on the inner side from the synthetic resin fiber materials 22d and 24d.
[0019]
The natural fiber plates 22c and 24c have, for example, a filter function of separating a relatively small solid content by molding natural coconut shells or the like into a plate shape. The synthetic resin fiber materials 22d and 24d are provided with a filter function that entangles fibers randomly and separates a relatively large solid content.
[0020]
As shown in FIG. 2, the first to eighth pumping pipes 26 to 33 are arranged at each corner of the caisson main body 12 formed in a square cross section and an intermediate part of the four sides, As representatively showing the first pumping pipe 26 in FIG. 4, a pair of branch pipes 26 a and 26 b are provided so as to communicate with each other. Such a pair of branch pipes is also provided in the remaining pumping pipes 27 to 33.
[0021]
The branch pipes 26a and 26b are individually connected to the insides of the first and second leak recovery filters 22 and 24 arranged at a predetermined interval in the vertical direction.
[0022]
The first to eighth pumping pipes 26 to 33 are extended upward along the longitudinal axis direction of the caisson body 12, and the upper ends thereof open to the upper end surface of the caisson body 12. A pumping accumulation pipe 36 is connected to the openings of the first to eighth pumping pipes 26 to 33, and a pumping means 34 (vacuum pump) is connected to the pumping accumulation pipe 36.
[0023]
Further, in the case of the present embodiment, a groundwater level adjustment pipe 38 is installed in the first pumping pipe 26. The groundwater level adjusting pipe 38 may be installed not only in the first pumping pipe 26 but also in another pumping pipe.
[0024]
FIG. 3 is a detailed view of the installation state of the groundwater level adjustment pipe 38. The groundwater level adjustment pipe 38 is composed of a steel pipe or a vinyl chloride pipe that is open at both ends, and the upper end is open to the atmosphere. It passes through the collecting pipe 36 and is inserted into the first pumping pipe 26 so as to be movable up and down.
[0025]
The lower end of the groundwater level adjustment pipe 38 is set at a position lower than the natural groundwater level W1. Between the lower end of the groundwater level adjustment pipe 38 and the natural groundwater level W1 is the amount of decrease in the groundwater level.
[0026]
The adjustment function of the groundwater level adjustment pipe 38 will be described. When the pumping means 34 (vacuum pump) is operated, the groundwater is supplied to the first and second air leakage recovery filters 22 and 24 and the first to eighth pumping pipes 26. To 33, the water is sucked and pumped to the pumping means 34 (vacuum pump) side and discharged to the outside.
[0027]
In this case, the natural groundwater level W1 gradually decreases with the external discharge of the groundwater. When the water level falls below the lower end of the underground water level adjustment pipe 38, the upper end of the underground water level adjustment pipe 38 is opened to the atmosphere, so that the atmosphere is introduced into the first pumping pipe 26, thereby the pipe 26 The action of the suction force of the pumping means 34 (vacuum pump) disappears, and as a result, the subsequent pumping is stopped.
[0028]
On the other hand, after the pumping is stopped, when the groundwater level recovers to above the lower end of the groundwater level adjustment pipe 38, the pumping is performed again, and the level of the groundwater is between the lower end of the groundwater level adjustment pipe 38 and the natural groundwater level W1. It is kept for a while.
[0029]
If such a water level adjustment pipe 38 is used, the groundwater level can be adjusted arbitrarily, so that the influence on the surrounding ground can be reduced. In this case, for example, it is possible to adjust the groundwater level by providing the caisson body 12 with a fixed liquid level sensor that detects the groundwater level.
[0030]
However, in the case of the fixed liquid level sensor, when the caisson body 12 is laid, the relative positional relationship between the groundwater level and the liquid level sensor changes along with the laying down, and such changes cannot be followed. .
[0031]
However, as in this embodiment, when a groundwater level adjustment pipe 38 whose upper end is open to the atmosphere and freely movable up and down is used, the adjustment pipe 38 is moved upward according to the settling to cope with such a change. Therefore, the water level adjusting means is suitable for the caisson body 12 of the submerged construction method.
[0032]
In the air leak recovery apparatus 10 configured as described above, the air leak recovery filters 22 and 24 formed around the blade mouth portion 14 of the caisson body 12 and one end communicated with the air leak recovery filters 22 and 24. In addition, since the pumping pipes 26 to 32 having the other end opened to the upper end of the caisson body 12 and the pumping means 34 connected to the upper end opening of the pumping pipes 26 to 32 are provided, the pumping means 34 is driven. Then, as shown in FIG. 1, the groundwater around the leak recovery filters 22 and 24 flows to the filter side, and a groundwater flow W flowing in the direction is formed around the leak recovery filters 22 and 24. .
[0033]
If the leak A rises along the caisson body 12 in the area where such a groundwater flow W is established, even if the rising speed of the leak A increases, it is made to follow the flow of the groundwater flow W. Thus, the air leakage A can be sucked and recovered to the air leakage recovery filters 22 and 24 side.
[0034]
Therefore, it is possible to significantly improve the recovery efficiency of the leakage air A as compared with the case of the conventional natural uptake type, and as a result, there is no need to install a blow hole that may cause ground subsidence.
[0035]
Further, in the case of the present embodiment, the first and second air leakage recovery filters 22 and 24 are arranged in two stages on the outer peripheral surface of the caisson body 12 with a predetermined interval in the vertical direction. Corresponding to the installation state of the air leak recovery filters 22 and 24, the above-described groundwater flow W is formed in two stages, so that the air leaking through the first stage is collected in another air leak in the upper stage. It can be recovered by the filter 24, and the recovery efficiency of the air leakage A is further improved.
[0036]
Furthermore, in the case of the present embodiment, a plurality of pumping pipes 26 to 32 are installed so as to penetrate the caisson main body 12 in the vertical direction, and the pumped water accumulation is made to communicate with the upper end openings of the pumping pipes 26 to 32. Since it connects with the pumping means 34 via the pipe 38, the formation area of the groundwater flow W can be equalize | homogenized and the air leak A can be efficiently collect | recovered by the multiple pumping pipe lines 26-32.
[0037]
In the above-described embodiment, the case where the leak recovery device of the present invention is applied to the case where the cross-sectional shape of the caisson body 12 is square is illustrated, but the shape of the caisson body 12 is not limited to this.
[0038]
Moreover, in the said Example, although the case where the air leak collection | recovery filter was arrange | positioned on the outer peripheral surface of the caisson main body 12 at predetermined intervals in the up-down direction was illustrated, implementation of this invention is limited to this. There may be one stage or three stages or more.
[0039]
【The invention's effect】
As described above in detail, according to the leak recovery device in the submerged method according to the present invention, the leak recovery efficiency is greatly improved.
[Brief description of the drawings]
FIG. 1 is an explanatory side sectional view showing an embodiment of a leak recovery device in a submerged method according to the present invention.
FIG. 2 is an explanatory plan view of FIG. 1;
FIG. 3 is an enlarged view of a portion A in FIG.
FIG. 4 is an enlarged view of a main part of FIG. 1;
FIG. 5 is an enlarged view of part B in FIG. 4;
6 is a front view of FIG. 5. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Leak recovery apparatus 12 Caisson main body 14 Cutting edge part 16 Ceiling slab 18 Caisson working room 20 Ground 22 1st leak recovery filter 24 2nd leak recovery filter 26 1st pumping line 34 Pumping means

Claims (3)

筒状のケーソン本体の先端に、地盤に貫入する刃口部を設けるとともに、
前記ケーソン本体の先端側内周に天井スラブを形成して、前記刃口部の内周側にケーソン作業室を隔成し、
前記刃口部を地盤中に貫入させた状態で、前記ケーソン作業室内に圧気を供給しながら、その内部地盤を掘削して前記ケーソン本体を地盤中に沈設する潜函工法における漏気回収装置において、
前記ケーソン本体の刃口部直上外面に、周回形成された漏気回収フィルタと、
一端が前記漏気回収フィルタと連通し、他端が前記ケーソン本体の上端に開口する揚水管路と、
前記揚水管路の上端開口に連通設置される揚水手段とを備え
前記揚水管路内に、上端が大気に開放され、上下移動自在な地下水位調整管を設置したことを特徴とする潜函工法における漏気回収装置。
At the tip of the cylindrical caisson body, there is a cutting edge that penetrates the ground,
Forming a ceiling slab on the inner periphery of the tip end side of the caisson body, separating the caisson working chamber on the inner periphery side of the blade edge part,
In the leak recovery device in the submerged construction method, the caisson working chamber is excavated and the caisson body is submerged in the ground while supplying the pressurized air into the caisson working chamber in a state in which the blade portion is inserted into the ground.
On the outer surface directly above the blade mouth portion of the caisson body, an air leakage recovery filter formed around,
One end communicates with the air leak recovery filter, and the other end opens at the upper end of the caisson body,
Pumping means connected to the upper end opening of the pumping pipe ,
An air leakage recovery apparatus in a submerged caulking method, wherein an underground water level adjustment pipe having an upper end open to the atmosphere and freely movable up and down is installed in the pumping pipe .
前記漏気回収フィルタは、前記ケーソン本体の外周面に、上下方向に所定の間隔を隔てて複数段設置したことを特徴とする請求項1記載の潜函工法における漏気回収装置。  2. The leak recovery apparatus in the submersible construction method according to claim 1, wherein the leak recovery filter is installed in a plurality of stages on the outer peripheral surface of the caisson main body at predetermined intervals in the vertical direction. 前記揚水管路は、前記ケーソン本体を上下方向に貫通するように複数本設置され、各揚水管路の上端開口部を連通する揚水集積管を介して、前記揚水手段に連通接続することを特徴とする請求項1または2項記載の潜函工法における漏気回収装置。A plurality of the pumping pipes are installed so as to penetrate the caisson main body in the vertical direction, and are connected to the pumping means through a pumping accumulation pipe that communicates with an upper end opening of each pumping pipe. The leak recovery apparatus in the submerged method according to claim 1 or 2.
JP2000278644A 2000-09-13 2000-09-13 Leakage recovery device in submersible construction method Expired - Fee Related JP3838011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000278644A JP3838011B2 (en) 2000-09-13 2000-09-13 Leakage recovery device in submersible construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000278644A JP3838011B2 (en) 2000-09-13 2000-09-13 Leakage recovery device in submersible construction method

Publications (2)

Publication Number Publication Date
JP2002088770A JP2002088770A (en) 2002-03-27
JP3838011B2 true JP3838011B2 (en) 2006-10-25

Family

ID=18763775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000278644A Expired - Fee Related JP3838011B2 (en) 2000-09-13 2000-09-13 Leakage recovery device in submersible construction method

Country Status (1)

Country Link
JP (1) JP3838011B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4527158B2 (en) * 2008-03-04 2010-08-18 大豊建設株式会社 Leakage recovery device in submersible construction method
CN101509250B (en) * 2009-03-27 2011-03-16 合肥工业大学 Seep guide apparatus for automatically removing water in soil
JP5368174B2 (en) * 2009-06-05 2013-12-18 大成建設株式会社 Caisson installation method and water level meter for caisson
JP5368186B2 (en) * 2009-06-24 2013-12-18 大成建設株式会社 Air leak detection device
CN110397093A (en) * 2019-07-08 2019-11-01 天津大学 A kind of negative pressure control apparatus and its application method of adjustable bucket foundation sinking rate
CN112267485A (en) * 2020-11-06 2021-01-26 上海渊丰地下工程技术有限公司 Novel well point dewatering device

Also Published As

Publication number Publication date
JP2002088770A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
CA2683616C (en) Dust-removal managing pit
US20030059258A1 (en) Under drainage method for building using perforated drain pipes
JP4252218B2 (en) Apparatus and method for partially drying a soil area containing liquid
CN210066791U (en) A precipitation combined system that is used for foundation ditch pressure release precipitation and dredges precipitation
JP6249582B1 (en) Open pit method
KR100616123B1 (en) Device for drain underground water and method for construction the same
CN110409420B (en) Underground continuous wall with pit facing surface and precipitation function
JP3838011B2 (en) Leakage recovery device in submersible construction method
JP5142348B2 (en) How to prevent ground liquefaction
CN106759797A (en) A kind of sunk type greenery patches rain processing system and its construction method
KR100719444B1 (en) Level of underground water lowering method and deep well point system thereof
CN110185051A (en) Deep narrow excavation water discharge method
JP3969269B2 (en) Deep well method
KR100964741B1 (en) Intake structure for preventing underground water pollution
JP2002242171A (en) Foundation improvement work by vacuum consolidation and working construction therefor
JP4376760B2 (en) Groundwater absorption device and groundwater absorption method
CN211036962U (en) Underground continuous wall with pit-facing surface and dewatering function
JP3886127B2 (en) How to install rainwater penetration pot
JP2003328344A (en) High lift wellpoint apparatus
CN111395304A (en) System and method for reinforcing deep soft foundation by combining vibration with vacuum preloading
JP4527158B2 (en) Leakage recovery device in submersible construction method
CN113832952B (en) Soft soil foundation reinforcing method
JP4210965B2 (en) Filling stabilization method by decompression
KR100556820B1 (en) chamber for uplift reduction processing, and it's construction method
JP3706368B2 (en) Method and apparatus for pumping up groundwater and returning it to the basement again

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees