JP3837667B2 - Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation - Google Patents

Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation Download PDF

Info

Publication number
JP3837667B2
JP3837667B2 JP2003002524A JP2003002524A JP3837667B2 JP 3837667 B2 JP3837667 B2 JP 3837667B2 JP 2003002524 A JP2003002524 A JP 2003002524A JP 2003002524 A JP2003002524 A JP 2003002524A JP 3837667 B2 JP3837667 B2 JP 3837667B2
Authority
JP
Japan
Prior art keywords
epoxy resin
alkali metal
ppm
resin
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003002524A
Other languages
Japanese (ja)
Other versions
JP2004211028A (en
Inventor
幸夫 中村
成剛 宅和
秀安 朝蔭
慶崇 潘
亮 平塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohto Kasei Co Ltd
Original Assignee
Tohto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohto Kasei Co Ltd filed Critical Tohto Kasei Co Ltd
Priority to JP2003002524A priority Critical patent/JP3837667B2/en
Publication of JP2004211028A publication Critical patent/JP2004211028A/en
Application granted granted Critical
Publication of JP3837667B2 publication Critical patent/JP3837667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する利用分野】
本発明は、主として半導体封止用をはじめとした電気絶縁材料等の電気電子産業用に好適な低加水分解性塩素分となるエポキシ樹脂の精製方法及び、該精製エポキシ樹脂を使用した半導体封止用エポキシ樹脂組成物に関する。
【0002】
【従来の技術】
多価フェノール類とエピハロヒドリンとをアルカリ金属水酸化物の存在下で反応させてグリシジルエーテル化して製造されたエポキシ樹脂は、硬化剤により架橋させた場合、大きな架橋密度を有する硬化樹脂となり、優れた特性を示すものである。特にノボラック型エポキシ樹脂は1分子中に2〜8個のフェノール核を持ったノボラック樹脂が使用されており、分子中に平均2〜8個のグリシジル基を有しており、ビスフェノールA型エポキシ樹脂に比べてより大きな架橋密度を与える硬化樹脂となり、優れた耐薬品性、耐湿性、耐熱性を有するものであり、これらの特性により様々な分野で多く使用されている。
【0003】
エポキシ樹脂には無機ハロゲンイオンや分子中に存在する加水分解性ハロゲン化物が含まれる。それらの不純物ハロゲン化物の内、無機ハロゲンイオンと一部の易加水分解性ハロゲンは従来の技術で容易に低減する事が出来るが、その他の難加水分解性有機ハロゲンを低減させる事は非常に困難であった。特に電気・電子産業分野で使用されるエポキシ樹脂硬化物は高温・多湿下等の過酷な条件に曝されるとハロゲンイオンとして塩素イオンが遊離生成される。この遊離生成する塩素イオンの量は、プレッシャークッカーテストによる抽出塩素イオン濃度と関係するものであり、エポキシ樹脂の加水分解性塩素分に由来するものである。(以後、プレッシャークッカーテストをPCTという。)半導体封止材に使用する高純度エポキシ樹脂は、加水分解性塩素分が420ppm以下である事と全塩素分が1000ppm以下である事が望まれており、更には、PCTによる抽出塩素イオン量が500ppm以下となることが強く望まれていた。
【0004】
この様な背景から、加水分解性塩素を低減するために様々な製造方法が提案されている。例えば、特許第3044412号公報では多価フェノールとエピクロルヒドリン及び、直鎖状エーテル化合物と固形アルカリ水酸化物を一括投入し系内水分を0.1%〜4.0%の範囲で反応する第1工程とエピクロルヒドリンの存在下副生アルカリ金属ハロゲン化物を水洗または、濾過により除去したのち、エピクロルヒドリンを回収し粗エポキシ樹脂を得る第2工程と第2工程で得られた粗エポキシ樹脂中の加水分解性塩素分に対して1.0〜4.0モル倍量のアルカリ金属水酸化物を20%水溶液以下で100℃以下で再反応精製する第3工程を経て高純度エポキシ樹脂を得る方法が開示されている。
【0005】
しかしながら、第3工程での精製反応において前述の加水分解性塩素分が420ppm以下に低下せず、逆に上昇してしまう結果をもたらす事があった。これは、第2工程で得られた樹脂の加水分解性塩素分が安定しない事と、第3工程のアルカリ金属水酸化物の水溶液濃度が低いため脱ハロゲン化が進まない為と考えられた。
【0006】
また、多価フェノールをエピハロヒドリンと直鎖エーテルの存在下においてアルカリ金属水酸化物水溶液で製造した粗エポキシ樹脂をケトン類等の溶媒に溶解した後、副生アルカリ金属ハロゲン化物を水洗により除去し、再反応精製する方法においてもこの加水分解性塩素分が前述の420ppm以下で安定して得られなかった。また、420ppm以下となった場合はエポキシ当量の増大と樹脂の高分子化重合が起きてしまう事が避けられなかった。
【0007】
【発明が解決しようとする課題】
本発明は、加水分解性塩素分が420ppm以下であるようなエポキシ樹脂を安定して得られるような精製方法について種々検討した。即ち、本発明者らはo−クレゾールのボラック樹脂をエピクロルヒドリンと直鎖状エーテル化合物とアルカリ金属水酸化物とで製造された粗エポキシ樹脂の再反応精製条件の追及において選択的に加水分解性塩素分とPCTによる抽出塩素イオン濃度を下げる条件として、アルカリ金属水酸化物の種類と樹脂溶液中のアルカリ金属水溶液濃度に着目し、これらを適切な組合せにより安定的に加水分解性塩素分が420ppm以下であり、かつPCTによる抽出塩素イオン濃度が500ppm以下であるような精製方法を見出し、本発明を完成したもので、本発明の目的は、加水分解性塩素分が安定的に420ppm以下であり、PCTの抽出水中のハロゲンイオン不純物が安定的に500ppm以下となるエポキシ樹脂の精製方法であり、更には、180℃×20時間のPCTによる抽出塩素イオン量が500重量ppm以下である高純度エポキシ樹脂を提供するものである。
【0008】
【課題を解決するための手段】
本発明の要旨は、o−クレゾールノボラック樹脂とエピクロルヒドリンと直鎖状エーテル化合物とアルカリ金属水酸化物からエポキシ化反応によって得られた加水分解性塩素分を600〜7,000重量ppm含有する粗o−クレゾールノボラックエポキシ樹脂をメチルイソブチルケトンまたは、トルエンに溶解せしめo−クレゾールノボラックエポキシ樹脂溶液中の無機塩素イオン濃度を100ppm以下となるように水洗し、該樹脂溶液全体中のアルカリ金属水酸化物の水溶液濃度が22〜32重量%の範囲になるように水分量を調整した後、樹脂量に対して0.5〜5.0重量%のアルカリ金属水酸化物を添加し、常圧下に80〜95℃で反応せしめて、エポキシ当量が200g/eq未満であり、加水分解性塩素が420ppm以下であり、且つ180℃×20時間のプレッシャークッカーテストによる抽出塩素イオン量が500重量ppm以下である高純度o−クレゾールノボラックエポキシ樹脂を得ることを特徴とするエポキシ樹脂の精製方法である。
【0009】
そして、粗エポキシ樹脂中の加水分解性塩素は600〜7,000ppm、好ましくは600〜1,000ppm含有する。
本発明における加水分解性塩素分とは、エポキシ樹脂をジオキサンに溶解し、1N−水酸化カリウムのエタノール溶液を添加して120℃の油浴で30分間還流反応させ、遊離した塩素量を酢酸酸性下で0.01N−硝酸銀溶液で電位差滴定装置により測定し、これを試料重量で除した値である。また、本発明のプレッシャークッカーテストによる抽出塩素イオン濃度とは、エポキシ樹脂と純水をそれぞれ精秤してテフロン製の容器に採り、そのテフロン容器を金属製の外容器の中に入れ密封し180℃×20時間かけて加熱加圧抽出し室温まで放置した後に、抽出水中の塩素イオン濃度(重量ppm)をイオンクロマトグラフィーにより測定するものである。
【0010】
すなわち、本発明は、o−クレゾールノボラック樹脂とエピクロルヒドリンをアルカリ金属水酸化物の存在下に反応させてエピクロルヒドリンを回収分離した後の粗エポキシ樹脂をメチルイソブチルケトンまたは、トルエンに溶解せしめ濾過または、水洗してアルカリ金属塩素化物を除去し、更にもう一度水洗をし、樹脂溶液中の無機塩素イオン濃度を100ppm以下とせしめ、樹脂溶液全体中のアルカリ金属水酸化物の水溶液濃度を22%〜32%の範囲になるように水分量を調整した後、樹脂量に対して0.5重量%〜5.0重量%のアルカリ金属水酸化物を添加し反応温度を80℃〜95℃の範囲で反応することにより、加水分解性塩素分が安定的に420ppm以下であり、かつ、PCTによる抽出塩素イオン分が500ppm以下であるエポキシ樹脂を得る事ができるものである。この場合に、アルカリ金属水酸化物は固形の状態および水溶液の状態のいずれも用いることができる。
【0011】
そして、本発明は次のエポキシ樹脂の精製工程を含むものである。
o−クレゾールノボラック樹脂とエピクロルヒドリン及び、直鎖エーテル化合物の存在下、アルカリ金属水酸化物により還流脱水で反応させた後、エピクロルヒドリンおよび直鎖エーテル化合物を回収分離した後の粗エポキシ樹脂をメチルイソブチルケトンまたは、トルエンに溶解せしめ乾式濾過または、水洗でアルカリ金属塩素化物を除去し、更に水洗し水溶性不純物を除去し、樹脂溶液中の無機塩素イオン濃度を100ppm以下として、樹脂溶液中のアルカリ水溶液濃度として22%〜32%の範囲に入るように水を添加もしくは脱水により水分量を調整した後、樹脂に対して0.5重量%〜5重量%の固形アルカリ金属水酸化物またはアルカリ金属水酸化物水溶液を投入し常圧下で80〜95℃の範囲で所定時間、精製処理をおこなう工程。
上記、精製処理を行った後、水洗し、更に過剰なアルカリ金属水酸化物をリン酸、リン酸一ナトリウム、シュウ酸等で中和処理し、再水洗分液後濾過し、温度が150℃〜200℃で減圧度が10torr以下で溶媒を除去して低加水分解性塩素含有量のエポキシ樹脂を得る工程。
【0012】
【発明の実施の形態】
本発明における粗エポキシ樹脂はo−クレゾールノボラック樹脂とエピクロルヒドリンと直鎖状エーテル化合物とアルカリ金属水酸化物でエポキシ化反応して得られる
【0013】
本発明に使用されるエピハロヒドリンとしてはエピクロルヒドリンが好ましい。また、直鎖状エーテル類としては、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジエチルエーテル、エチレングリコールジプロピルエーテル、ジエチレングリコールジプロピルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジブチルエーテル、等が挙げられるが、工業的にエチレングリコールジメチルエーテル及び、ジエチレングリコールジメチルエーテルが特に好ましい。
【0014】
本発明に使用されるアルカリ金属水酸化物としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等が挙げられるが、特に水酸化ナトリウムと水酸化カリウムが好ましく、これらのアルカリ金属水酸化物は、固形ないし水溶液濃度22%以上の範囲で使用され、アルカリ金属水酸化物を併用することができ、また、単独で使用しても良い。
【0015】
粗エポキシ樹脂を得る為に、原料ノボラック樹脂をエピクロルヒドリンと直鎖状エーテルを混合した溶液に溶解するが、この時のエピクロルヒドリンは原料ノボラックのフェノール性水酸基1モルに対して2〜10倍モル量の範囲で使用される。10倍量を越えて使用する事は該エピクロルヒドリンの過度の損失と直鎖状エーテルの損失を招く為好ましくない。直鎖状エーテルの量はエピクロルヒドリンに対して5重量部〜40重量部の範囲で使用される。
【0016】
この様にして原料ノボラック樹脂を溶解した溶液にアルカリ金属水酸化物を常圧若しくは減圧下で添加してエポキシ化反応を実施する。この時のアルカリ金属水酸化物は原料ノボラックのフェノール性水酸基に対して0.90〜1.10モルの範囲で使用される。固形アルカリ金属水酸化物を使用する場合は、常圧で添加し、アルカリ金属水酸化物水溶液で使用する場合は、減圧下添加する。反応は30℃から70℃の範囲で行われ、アルカリ金属水酸化物水溶液を滴下中にはエピクロルヒドリンと水とを蒸発凝縮し、分離槽を通して水分は系外へ取り出し、エビクロルヒドリンは反応系内に戻される。反応終了後、該反応液からエピクロルヒドリンと直鎖状エーテルを蒸留により取り出し次の反応に使用される。蒸留後の反応液を樹脂濃度として20%〜60%になる量の有機溶剤に溶解し、粗エポキシ樹脂溶液を得る。粗エポキシ樹脂の加水分解性ハロゲンは600〜7,000重量ppmが好ましく、より好ましくは600から1,000ppmである。
【0017】
精製反応に用いる有機溶剤としては特にメチルイソブチルケトンが好ましい。この粗エポキシ樹脂溶液には、粗エポキシ樹脂とアルカリ金属ハロゲン化物が存在する。このアルカリ金属ハロゲン化物は濾過若しくは水洗により除去する。この時に濾過だけではエピクロルヒドリンの誘導体であるグリセリン等の有機物が残存するため水洗がより好ましい。この様にして得られた粗エポキシ樹脂の溶液(以下、樹脂溶液とする。)を更に樹脂溶液中の塩素イオン濃度が100ppm以下となる様に水洗を実施するが50ppm以下がより好ましい。次にこの樹脂溶液中のアルカリ金属水酸化物水溶液濃度が22%〜32%になる様に、水の添加もしくは脱水により調整を行う。脱水条件は常圧下で85℃〜105℃の範囲で行う。脱水が終了後、80℃〜90℃に冷却し、固形アルカリ金属水酸化物または、アルカリ金属水酸化物水溶液を粗エポキシ樹脂に対して0.5wt%〜5wt%の範囲で添加して常圧下80℃〜95℃で再反応精製処理をする。この時の粗エポキシ樹脂に対するアルカリ金属水酸化物の量が0.5wt%以下では再反応精製処理が十分でなく加水分解性塩素分の低減が少なく、また、5wt%以上で有れば樹脂の高分子化が起こり、樹脂の粘度の増大とエポキシ当量の増大を招き、目的とする品質が得られなくなる。
【0018】
アルカリ金属水酸化物の種類として、特に水酸化カリウムが特に好ましく、再反応精製処理時間は、前述の条件で1時間〜3時間の間で行われる。水酸化カリウムは一括または分割で投入することができ、また連続的に分割投入することができる。その後水洗処理により、余剰の水酸化カリウムを除去するが、樹脂溶液のpHが6〜4になるようにリン酸、リン酸ナトリウム、シュウ酸、酢酸、炭酸等を添加して中和を行い更に水洗を繰り返した後、濾過してケトン溶媒を減圧蒸留により回収し、目的とした高純度エポキシ樹脂が得られる。
【0019】
本願発明の高純度エポキシ樹脂は、加水分解性塩素分が420ppm以下であり、かつ180℃×20時間のPCTの抽出塩素イオン濃度が500ppm以下に低減されたものであり電気及び電子産業用の封止材に好適に使用される。
【0020】
【実施例】
以下、本発明を実施例をもって詳細に説明するが、これらに限定されるものではない。尚、以下の説明においてのエポキシ当量、加水分解性塩素分及び、PCTによる抽出塩素イオン濃度はそれぞれ以下の方法で測定した。
【0021】
エポキシ当量
所定量の試料を所定量のジオキサンに溶解し0.2N−塩酸のジオキサン溶液を加えて15分間撹拌反応させた後、クレゾール・レッドを指示薬として0.1N−水酸化ナトリウムのメタノール溶液で滴定してブランクとの滴定量の差から塩酸と反応したエポキシ当量を求め、これで試料量を除した値をエポキシ当量(g/eq)とした。
【0022】
加水分解性塩素分
所定量の試料を所定量のジオキサンに溶解し、1N−水酸化カリウムのエタノール溶液を添加し120℃のオイルバス中で30分間還流反応させ、生成した塩化カリウムを酢酸酸性下で0.01N−硝酸銀溶液で電位差滴定装置により測定し、これを試料量で除した塩素分換算値を加水分解性塩素分(ppm)とした。
【0023】
プレッシャークッカーテストによる抽出塩素イオン濃度
試料約5gと純水約50gをそれぞれ精秤してテフロン製の所定の容器に採り、そのテフロン容器を金属製の外容器の中に入れ密封し180℃×20時間かけて加熱抽出し、室温まで下げてから抽出水をイオンクロマトグラフにかけて、抽出水中の塩素イオン濃度(重量ppm)を測定し、これを樹脂当たりの塩素イオンとして算出する。
【0024】
以下本発明を実施例を挙げて詳細に説明する。
実施例1
四つ口セパラブルフラスコに軟化点が98℃でフェノール性水酸基当量が120g/eqのo−クレゾールノボラックを160重量部、エピクロルヒドリン555重量部とジエチレングリコールジメチルエーテル140重量部を反応容器に入れ、撹拌溶解させた。均一に溶解後80mmHgの減圧下54℃に保ち、48.5%水酸化ナトリウム水溶液108重量部を4時間かけて滴下し、この滴下中に還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器へ戻し、水は系外に除いて反応した。
【0025】
反応終了後、反応液からエピクロルヒドリンとジエチレングリコールジメチルエーテルを減圧下で蒸留により留去させて粗エポキシ樹脂と塩化ナトリウムの混合物を得た。次いでこの一部をサンプリングしメチルイソブチルケトンに溶解し、濾過により塩化ナトリウムを除去しメチルイソブチルケトンを蒸留により除去した。得られた粗エポキシ樹脂のエポキシ当量は、197g/eq、加水分解性塩素分は、610ppmであった。
【0026】
次に、粗エポキシ樹脂混合物300重量部をメチルイソブチルケトン530重量部に溶解し、ついで塩化ナトリウムが25重量%になる量の温水を加え分液により、塩化ナトリウムと不溶解ポリマーを除去した。分液後の樹脂溶液層に68重量部の温水を加えて水洗した。水洗分液後の樹脂溶液中の塩素イオン濃度は17ppmであった。この樹脂溶液を加熱昇温し還流脱水により、共沸で留出してくる水を系外に除いて95℃迄昇温した後、85℃迄冷却し、固形KOH(純度95.5%)を4.0重量部投入して再反応精製処理を2時間実施した。この時のKOH水溶液としての濃度は、26.3%であった。再反応精製処理後の樹脂溶液に68重量部の温水を加えて水洗した。水洗分液後10%リン酸ソーダ水を3重量部と温水68重量部を加えて中和し、静置分液した。中和分液水のpHが6〜7であることを確認し、更に樹脂溶液を温水68重量部で水洗し、水洗分液水のpHが6〜7であることを確認した。分液後の樹脂溶液を濾過してメチルイソブチルケトンを蒸留により留去してo−クレゾールノボラックエポキシ樹脂を得た。得られた樹脂のエポキシ当量は、198g/eqで有り、加水分解性塩素分は360ppmで有り、PCTによる抽出塩素イオン濃度は430ppmであった。
【0027】
実施例2〜4及び、比較例1〜3
再反応精製処理を表1に示す条件で行った他は、実施例1と同様にしてo−クレゾールノボラックエポキシ樹脂を得た。得られた樹脂のエポキシ当量、加水分解性塩素分及び、PCTによる抽出塩素イオン濃度を表1に併せて記載する。
【0028】
【表1】

Figure 0003837667
【0029】
実施例5
軟化点が98℃でフェノール性水酸基当量が120g/eqのo−クレゾールノボラックを0重量部、エピクロルヒドリン555重量部とジエチレングリコールジメチルエーテル140重量部を反応容器に入れ、撹拌溶解させた。均一に溶解後、固形KOHを30重量部添加した後、80mmHgの減圧下54℃に保ち3時間反応させた。次いで48.5%水酸化ナトリウム水溶液64重量部を4時間かけて滴下し、この滴下中にエピクロルヒドリンと水の共沸により還流留出した水とエピクロルヒドリンを分離槽で分離しエピクロルヒドリンは反応容器へ戻し、水は系外に除いて反応した。反応終了後、反応液からエピクロルヒドリンとジエチレングリコールジメチルエーテルを減圧下で蒸留により留去させて粗エポキシ樹脂と塩化アルカリ金属の混合物を得た。
【0030】
この一部をサンプリングし、メチルイソブチルケトンに溶解し、濾過により塩化アルカリ金属を除去しメチルイソブチルケトンを蒸留により除去した。得られた粗エポキシ樹脂のエポキシ当量は、197g/eq、加水分解性塩素分は、810ppmであった。この粗エポキシ樹脂混合物を実施例1と同様の再反応精製処理を行って得られたエポキシ樹脂のエポキシ当量は198g/eq、加水分解性塩素分は405ppmであり、PCTによる抽出塩素イオン濃度は410ppmであった。
【0031】
実施例6〜7及び、比較例4〜6
実施例5と同様の主反応条件で得た粗エポキシ樹脂を用いて、再反応精製処理を表2に示す条件で行った他は、実施例1と同様にしてo−クレゾールノボラックエポキシ樹脂を得た。得られた樹脂のエポキシ当量、加水分解性塩素分及び、PCTによる抽出塩素イオン濃度を実施例5とともに表2に併せて記載する。
【0032】
【表2】
Figure 0003837667
【0033】
【発明の効果】
上記の表1及び2の結果から明らかなように、本発明のエポキシ樹脂の精製方法により、PCT塩素イオン濃度が500ppm、エポキシ当量が200g/eq未満であり、加水分解性塩素分が420ppm以下とすることが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention mainly relates to a method for purifying an epoxy resin having a low hydrolyzable chlorine content suitable for use in the electrical and electronic industries such as electrical insulation materials including semiconductor encapsulation, and semiconductor encapsulation using the purified epoxy resin The present invention relates to an epoxy resin composition.
[0002]
[Prior art]
Epoxy resin produced by reacting polyphenols with epihalohydrin in the presence of an alkali metal hydroxide to glycidyl ether, when cured with a curing agent, becomes a cured resin having a large crosslinking density and is excellent. It shows the characteristics. In particular, the novolak type epoxy resin is a novolak resin having 2 to 8 phenolic nuclei in one molecule, and has an average of 2 to 8 glycidyl groups in the molecule, and is a bisphenol A type epoxy resin. Compared to the above, it becomes a cured resin that gives a higher crosslink density, and has excellent chemical resistance, moisture resistance, and heat resistance, and is widely used in various fields due to these characteristics.
[0003]
Epoxy resins include inorganic halogen ions and hydrolyzable halides present in the molecule. Among these impurity halides, inorganic halogen ions and some easily hydrolyzable halogens can be easily reduced by conventional techniques, but it is very difficult to reduce other hardly hydrolyzable organic halogens. Met. In particular, cured epoxy resins used in the electric and electronic industries are free to produce chlorine ions as halogen ions when exposed to severe conditions such as high temperature and humidity. The amount of chlorine ions generated free is related to the extracted chlorine ion concentration by the pressure cooker test, and is derived from the hydrolyzable chlorine content of the epoxy resin. (Hereinafter, the pressure cooker test is referred to as PCT.) High purity epoxy resins used for semiconductor encapsulants are desired to have a hydrolyzable chlorine content of 420 ppm or less and a total chlorine content of 1000 ppm or less. Furthermore, it has been strongly desired that the amount of chlorine ions extracted by PCT be 500 ppm or less.
[0004]
From such a background, various production methods have been proposed to reduce hydrolyzable chlorine. For example, in Japanese Patent No. 3044412, a polyhydric phenol, epichlorohydrin, a linear ether compound, and a solid alkali hydroxide are collectively added, and the moisture in the system is reacted in the range of 0.1% to 4.0%. After removing the by-product alkali metal halide in the presence of the step and epichlorohydrin by water or filtration, the hydrolyzability in the crude epoxy resin obtained in the second step and the second step of recovering the epichlorohydrin and obtaining the crude epoxy resin Disclosed is a method for obtaining a high-purity epoxy resin through a third step in which an alkali metal hydroxide in an amount of 1.0 to 4.0 mol times the chlorine content is re-reacted and purified at 100 ° C. or lower with a 20% aqueous solution or lower. ing.
[0005]
However, in the refining reaction in the third step, the above-mentioned hydrolyzable chlorine content was not lowered to 420 ppm or less, and sometimes resulted in an increase. This was thought to be because the hydrolyzable chlorine content of the resin obtained in the second step was not stable and the dehalogenation did not proceed due to the low concentration of the alkali metal hydroxide solution in the third step.
[0006]
Further, after dissolving a crude epoxy resin produced with an aqueous alkali metal hydroxide solution in the presence of an epihalohydrin and a linear ether in a solvent such as ketones, the by-product alkali metal halide is removed by washing with water, Even in the method of re-reaction purification, this hydrolyzable chlorine content was not stably obtained at the aforementioned 420 ppm or less. Moreover, when it became 420 ppm or less, it was inevitable that the increase of an epoxy equivalent and the polymeric polymerization of resin occurred.
[0007]
[Problems to be solved by the invention]
In the present invention, various studies have been made on purification methods capable of stably obtaining an epoxy resin having a hydrolyzable chlorine content of 420 ppm or less. That is, the present inventors selectively used hydrolyzable chlorine in the pursuit of re-reaction purification conditions for a crude epoxy resin produced from epichlorohydrin, a linear ether compound, and an alkali metal hydroxide. As a condition for lowering the concentration of extracted chloride ions by PCT and PCT, paying attention to the type of alkali metal hydroxide and the concentration of aqueous alkali metal solution in the resin solution, the hydrolyzable chlorine content is 420 ppm or less stably by combining these appropriately And a purification method in which the extracted chloride ion concentration by PCT is 500 ppm or less was found, and the present invention was completed. The object of the present invention is that the hydrolyzable chlorine content is stably 420 ppm or less, This is a method for purifying an epoxy resin in which halogen ion impurities in PCT extraction water are stably 500 ppm or less. Are those extracted chlorine ion content in PCT of 180 ° C. × 20 hours to provide a high-purity epoxy resin which is 500 ppm by weight or less.
[0008]
[Means for Solving the Problems]
The gist of the present invention is that crude o containing 600 to 7,000 ppm by weight of hydrolyzable chlorine obtained by epoxidation reaction from o-cresol novolak resin, epichlorohydrin, linear ether compound and alkali metal hydroxide. - cresol novolac epoxy resin of methyl isobutyl ketone, or, by dissolving in toluene, the inorganic chloride ion concentration in the crude o- cresol novolac epoxy resin solution was washed with water so as to 100ppm or less, an alkali metal hydroxide in the whole the resin solution After adjusting the amount of water so that the concentration of the aqueous solution of the product is in the range of 22 to 32% by weight, 0.5 to 5.0% by weight of alkali metal hydroxide is added to the amount of the resin, and under normal pressure Reacting at 80-95 ° C., epoxy equivalent is less than 200 g / eq, hydrolyzable chlorine is 420 ppm This is a method for purifying an epoxy resin, characterized in that a high-purity o-cresol novolac epoxy resin having an extracted chlorine ion amount of 500 ppm by weight or less by a pressure cooker test at 180 ° C. for 20 hours is obtained.
[0009]
And the hydrolyzable chlorine in a rough | crude epoxy resin contains 600-7,000 ppm, Preferably it contains 600-1,000 ppm.
The hydrolyzable chlorine content in the present invention means that an epoxy resin is dissolved in dioxane, 1N-potassium hydroxide ethanol solution is added and refluxed in an oil bath at 120 ° C. for 30 minutes. It is the value which measured by the potentiometric titration apparatus with 0.01N-silver nitrate solution below, and remove | divided this by the sample weight. Further, the extracted chlorine ion concentration by the pressure cooker test of the present invention is that the epoxy resin and pure water are weighed accurately and placed in a Teflon container, and the Teflon container is put in a metal outer container and sealed. After extracting by heating and pressurizing over 20 hours at room temperature and leaving to room temperature, the concentration of chlorine ions (weight ppm) in the extracted water is measured by ion chromatography.
[0010]
That is, the present invention relates to the reaction of an o-cresol novolak resin and epichlorohydrin in the presence of an alkali metal hydroxide to recover and separate epichlorohydrin, and the crude epoxy resin is dissolved in methyl isobutyl ketone or toluene and filtered or washed with water. Then, the alkali metal chloride is removed, and further washed with water, the inorganic chloride ion concentration in the resin solution is set to 100 ppm or less, and the aqueous solution concentration of the alkali metal hydroxide in the entire resin solution is 22% to 32%. After adjusting the amount of water so that it falls within the range, 0.5 wt% to 5.0 wt% of an alkali metal hydroxide is added to the amount of resin and the reaction temperature is reacted in the range of 80 ° C to 95 ° C. Therefore, the hydrolyzable chlorine content is stably 420 ppm or less, and the extracted chlorine ion content by PCT is 500 ppm or less. The epoxy resin below can be obtained. In this case, the alkali metal hydroxide can be used in a solid state or an aqueous solution state.
[0011]
And this invention includes the refinement | purification process of the following epoxy resin.
After reacting by reflux dehydration with an alkali metal hydroxide in the presence of o-cresol novolak resin , epichlorohydrin and a linear ether compound, the crude epoxy resin after recovering and separating epichlorohydrin and the linear ether compound is methyl isobutyl ketone. Or, it is dissolved in toluene and dry filtered or washed with water to remove alkali metal chlorinated products, then washed with water to remove water-soluble impurities, and the concentration of inorganic chlorine ions in the resin solution is set to 100 ppm or less, and the concentration of alkaline aqueous solution in the resin solution After adding water or adjusting the amount of water by dehydration so as to fall within the range of 22% to 32%, 0.5% to 5% by weight of solid alkali metal hydroxide or alkali metal hydroxide with respect to the resin Aqueous solution is added and purified at a normal pressure in the range of 80 to 95 ° C for a predetermined time. Process.
After performing the above purification treatment, washing with water, neutralizing excess alkali metal hydroxide with phosphoric acid, monosodium phosphate, oxalic acid, etc., re-washing and filtering, the temperature is 150 ° C. A step of obtaining an epoxy resin having a low hydrolyzable chlorine content by removing the solvent at a reduced pressure of 10 torr or less at ˜200 ° C.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The crude epoxy resin in the present invention is obtained by epoxidation reaction with o-cresol novolac resin , epichlorohydrin, linear ether compound and alkali metal hydroxide .
[0013]
The epihalohydrin used in the present invention is preferably epichlorohydrin. Examples of linear ethers include ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol diethyl ether, ethylene glycol dipropyl ether, diethylene glycol dipropyl ether, ethylene glycol dibutyl ether, diethylene glycol dibutyl ether, and the like. However, industrially preferred are ethylene glycol dimethyl ether and diethylene glycol dimethyl ether.
[0014]
Examples of the alkali metal hydroxide used in the present invention include sodium hydroxide, potassium hydroxide, calcium hydroxide and the like, and sodium hydroxide and potassium hydroxide are particularly preferable, and these alkali metal hydroxides. Is used in a solid or aqueous solution concentration range of 22% or more, and an alkali metal hydroxide can be used in combination, or may be used alone.
[0015]
In order to obtain a crude epoxy resin, the raw novolak resin is dissolved in a solution in which epichlorohydrin and linear ether are mixed. The epichlorohydrin at this time is 2 to 10 times the amount of the phenolic hydroxyl group of the raw novolak. Used in range. It is not preferable to use more than 10 times because it causes excessive loss of the epichlorohydrin and loss of linear ether. The amount of linear ether is used in the range of 5 to 40 parts by weight with respect to epichlorohydrin.
[0016]
In this way, the epoxidation reaction is carried out by adding an alkali metal hydroxide to the solution in which the starting novolak resin is dissolved under normal pressure or reduced pressure. At this time, the alkali metal hydroxide is used in a range of 0.90 to 1.10 mol with respect to the phenolic hydroxyl group of the starting novolak. When a solid alkali metal hydroxide is used, it is added at normal pressure, and when it is used as an aqueous alkali metal hydroxide solution, it is added under reduced pressure. The reaction is carried out in the range of 30 ° C. to 70 ° C., and epichlorohydrin and water are evaporated and condensed while the aqueous alkali metal hydroxide solution is dropped, and water is taken out of the system through the separation tank, and shrimp chlorohydrin is used in the reaction system. Returned in. After completion of the reaction, epichlorohydrin and linear ether are removed from the reaction solution by distillation and used for the next reaction. The reaction solution after distillation is dissolved in an organic solvent in an amount of 20% to 60% as a resin concentration to obtain a crude epoxy resin solution. The hydrolyzable halogen of the crude epoxy resin is preferably 600 to 7,000 ppm by weight, more preferably 600 to 1,000 ppm.
[0017]
As the organic solvent used for the purification reaction, methyl isobutyl ketone is particularly preferable. This crude epoxy resin solution contains a crude epoxy resin and an alkali metal halide. The alkali metal halide is removed by filtration or washing with water. At this time, washing with water is more preferable because organic substances such as glycerin, which is a derivative of epichlorohydrin, remain by filtration alone. The crude epoxy resin solution thus obtained (hereinafter referred to as a resin solution) is further washed with water so that the chlorine ion concentration in the resin solution is 100 ppm or less, but 50 ppm or less is more preferable. Next, adjustment is performed by adding water or dehydrating so that the concentration of the alkali metal hydroxide aqueous solution in the resin solution is 22% to 32%. Dehydration conditions are performed in the range of 85 ° C to 105 ° C under normal pressure. After dehydration is completed, the mixture is cooled to 80 ° C. to 90 ° C., and a solid alkali metal hydroxide or an aqueous solution of alkali metal hydroxide is added in a range of 0.5 wt% to 5 wt% with respect to the crude epoxy resin, and is under normal pressure. Re-reaction purification treatment is performed at 80 ° C to 95 ° C. If the amount of the alkali metal hydroxide relative to the crude epoxy resin at this time is 0.5 wt% or less, the re-reaction purification treatment is not sufficient and the reduction of hydrolyzable chlorine content is small. Polymerization occurs, causing an increase in the viscosity of the resin and an increase in epoxy equivalent, and the desired quality cannot be obtained.
[0018]
As the type of alkali metal hydroxide, potassium hydroxide is particularly preferable, and the re-reaction purification treatment time is performed between 1 hour and 3 hours under the above-described conditions. Potassium hydroxide can be added all at once or dividedly, or can be dividedly charged continuously. Thereafter, excess potassium hydroxide is removed by washing with water, but neutralization is performed by adding phosphoric acid, sodium phosphate, oxalic acid, acetic acid, carbonic acid, etc. so that the pH of the resin solution becomes 6-4. After repeated washing with water, the product is filtered and the ketone solvent is recovered by distillation under reduced pressure to obtain the intended high-purity epoxy resin.
[0019]
The high-purity epoxy resin of the present invention has a hydrolyzable chlorine content of 420 ppm or less and a PCT extraction chlorine ion concentration of 180 ° C. × 20 hours reduced to 500 ppm or less, and is sealed for the electrical and electronic industries. It is suitably used for a stopper.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, it is not limited to these. In the following description, the epoxy equivalent, hydrolyzable chlorine content, and extracted chlorine ion concentration by PCT were measured by the following methods, respectively.
[0021]
A sample with a predetermined amount of epoxy equivalent was dissolved in a predetermined amount of dioxane, a 0.2N-hydrochloric acid dioxane solution was added, and the mixture was allowed to react with stirring for 15 minutes. The epoxy equivalent reacted with hydrochloric acid was determined from the difference in titration with the blank, and the value obtained by dividing the sample amount by this was defined as the epoxy equivalent (g / eq).
[0022]
A sample with a predetermined amount of hydrolyzable chlorine is dissolved in a predetermined amount of dioxane, 1N-potassium hydroxide in ethanol is added, and the mixture is refluxed in an oil bath at 120 ° C. for 30 minutes. Was measured with a 0.01N silver nitrate solution by a potentiometric titration apparatus, and the chlorine equivalent value obtained by dividing this by the sample amount was defined as hydrolyzable chlorine content (ppm).
[0023]
Precisely weigh about 5 g of extracted chlorine ion concentration sample and about 50 g of pure water by pressure cooker test, put them in a predetermined container made of Teflon, put the Teflon container in a metal outer container and seal it at 180 ° C x 20 Heat extraction over time, lower the temperature to room temperature, apply the extracted water to an ion chromatograph, measure the chlorine ion concentration (weight ppm) in the extracted water, and calculate this as the chlorine ion per resin.
[0024]
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
In a four-necked separable flask, 160 parts by weight of o-cresol novolak having a softening point of 98 ° C. and a phenolic hydroxyl group equivalent of 120 g / eq, 555 parts by weight of epichlorohydrin and 140 parts by weight of diethylene glycol dimethyl ether are placed in a reaction vessel, and dissolved by stirring. It was. After uniform dissolution, the mixture was kept at 54 ° C. under a reduced pressure of 80 mmHg, and 108 parts by weight of 48.5% aqueous sodium hydroxide solution was added dropwise over 4 hours. Water and epichlorohydrin distilled off during the addition were separated in a separation tank, and epichlorohydrin was separated. Was returned to the reaction vessel, and water was removed from the system to react.
[0025]
After completion of the reaction, epichlorohydrin and diethylene glycol dimethyl ether were distilled off from the reaction solution by distillation under reduced pressure to obtain a mixture of a crude epoxy resin and sodium chloride. A portion of this was then sampled and dissolved in methyl isobutyl ketone, sodium chloride was removed by filtration and methyl isobutyl ketone was removed by distillation. The resulting crude epoxy resin had an epoxy equivalent of 197 g / eq and a hydrolyzable chlorine content of 610 ppm.
[0026]
Next, 300 parts by weight of the crude epoxy resin mixture was dissolved in 530 parts by weight of methyl isobutyl ketone, and then hot water was added in an amount such that sodium chloride was 25% by weight, and sodium chloride and insoluble polymer were removed by liquid separation. To the resin solution layer after the separation, 68 parts by weight of warm water was added and washed. The chlorine ion concentration in the resin solution after the water separation was 17 ppm. The resin solution was heated to a temperature and refluxed and dehydrated to remove water distilled off azeotropically from the system. The temperature was raised to 95 ° C. and then cooled to 85 ° C. to obtain solid KOH (purity 95.5%). 4.0 parts by weight of the reaction mixture was added to carry out the re-reaction purification process for 2 hours. At this time, the concentration of the aqueous KOH solution was 26.3%. 68 parts by weight of warm water was added to the resin solution after the re-reaction purification treatment and washed with water. After washing with water, 3 parts by weight of 10% sodium phosphate water and 68 parts by weight of warm water were added to neutralize, and the mixture was allowed to stand for separation. It was confirmed that the neutralized separated water had a pH of 6 to 7, and the resin solution was further washed with 68 parts by weight of warm water to confirm that the pH of the washed water was 6 to 7. The resin solution after the separation was filtered, and methyl isobutyl ketone was distilled off by distillation to obtain an o-cresol novolac epoxy resin. The epoxy equivalent of the obtained resin was 198 g / eq, the hydrolyzable chlorine content was 360 ppm, and the extracted chlorine ion concentration by PCT was 430 ppm.
[0027]
Examples 2 to 4 and Comparative Examples 1 to 3
An o-cresol novolac epoxy resin was obtained in the same manner as in Example 1 except that the re-reaction purification treatment was performed under the conditions shown in Table 1. The epoxy equivalent of the obtained resin, the hydrolyzable chlorine content, and the extracted chlorine ion concentration by PCT are listed together in Table 1.
[0028]
[Table 1]
Figure 0003837667
[0029]
Example 5
0 parts by weight of o-cresol novolak having a softening point of 98 ° C. and a phenolic hydroxyl group equivalent of 120 g / eq, 555 parts by weight of epichlorohydrin and 140 parts by weight of diethylene glycol dimethyl ether were placed in a reaction vessel and dissolved by stirring. After uniformly dissolving, 30 parts by weight of solid KOH was added, and the mixture was reacted at a reduced pressure of 80 mmHg at 54 ° C. for 3 hours. Next, 64 parts by weight of a 48.5% aqueous sodium hydroxide solution was added dropwise over 4 hours. During this addition, epichlorohydrin and epichlorohydrin were refluxed and distilled off by azeotropy of epichlorohydrin and water, and the epichlorohydrin was returned to the reaction vessel. The water reacted outside the system. After completion of the reaction, epichlorohydrin and diethylene glycol dimethyl ether were distilled off from the reaction solution by distillation under reduced pressure to obtain a mixture of a crude epoxy resin and an alkali metal chloride.
[0030]
A part of this was sampled, dissolved in methyl isobutyl ketone, alkali metal chloride was removed by filtration, and methyl isobutyl ketone was removed by distillation. The obtained crude epoxy resin had an epoxy equivalent of 197 g / eq and a hydrolyzable chlorine content of 810 ppm. The epoxy resin obtained by subjecting this crude epoxy resin mixture to the re-reaction purification treatment similar to that of Example 1 has an epoxy equivalent of 198 g / eq, a hydrolyzable chlorine content of 405 ppm, and an extracted chlorine ion concentration by PCT of 410 ppm. Met.
[0031]
Examples 6-7 and Comparative Examples 4-6
An o-cresol novolak epoxy resin was obtained in the same manner as in Example 1 except that the re-reaction purification treatment was performed under the conditions shown in Table 2 using the crude epoxy resin obtained under the same main reaction conditions as in Example 5. It was. The epoxy equivalent of the obtained resin, the hydrolyzable chlorine content, and the extracted chlorine ion concentration by PCT are shown together with Example 5 in Table 2.
[0032]
[Table 2]
Figure 0003837667
[0033]
【The invention's effect】
As is clear from the results of Tables 1 and 2 above, according to the method for purifying an epoxy resin of the present invention, the PCT chloride ion concentration is 500 ppm, the epoxy equivalent is less than 200 g / eq, and the hydrolyzable chlorine content is 420 ppm or less. It became possible to do.

Claims (3)

o−クレゾールノボラック樹脂とエピクロルヒドリンと直鎖状エーテル化合物とアルカリ金属水酸化物からエポキシ化反応によって得られた加水分解性塩素分を600〜7,000重量ppm含有する粗o−クレゾールノボラックエポキシ樹脂をメチルイソブチルケトンまたは、トルエンに溶解せしめo−クレゾールノボラックエポキシ樹脂溶液中の無機塩素イオン濃度を100ppm以下となるように水洗し、該樹脂溶液全体中のアルカリ金属水酸化物の水溶液濃度が22〜32重量%の範囲になるように水分量を調整した後、樹脂量に対して0.5〜5.0重量%のアルカリ金属水酸化物を添加し、常圧下に80〜95℃で反応せしめて、エポキシ当量が200g/eq未満であり、加水分解性塩素が420ppm以下であり、且つ180℃×20時間のプレッシャークッカーテストによる抽出塩素イオン量が500重量ppm以下である高純度o−クレゾールノボラックエポキシ樹脂を得ることを特徴とするエポキシ樹脂の精製方法。 A crude o-cresol novolak epoxy resin containing 600-7,000 ppm by weight hydrolyzable chlorine obtained by epoxidation reaction from an o-cresol novolac resin, epichlorohydrin, a linear ether compound and an alkali metal hydroxide. methyl isobutyl ketone or by dissolving in toluene, the inorganic chloride ion concentration in the crude o- cresol novolac epoxy resin solution was washed with water so as to 100ppm or less, the concentration of the aqueous solution of alkali metal hydroxide in the whole the resin solution 22 After adjusting the amount of water to be in the range of ~ 32% by weight, 0.5 to 5.0% by weight of alkali metal hydroxide is added to the amount of resin and reacted at 80 to 95 ° C under normal pressure. allowed, the epoxy equivalent is less than 200 g / eq, hydrolyzable chlorine is not more than 420 ppm, and Method of purifying the epoxy resin 80 extracted chlorine ion content by a pressure cooker test ° C. × 20 hours, characterized in that to obtain high-purity o- cresol novolac epoxy resin which is 500 ppm by weight or less. 請求項1に記載のアルカリ金属水酸化物が水酸化カリウムであることを特徴とする請求項1記載のエポキシ樹脂の精製方法。  The method for purifying an epoxy resin according to claim 1, wherein the alkali metal hydroxide according to claim 1 is potassium hydroxide. 請求項1〜のいずれか一つの精製方法により得られる高純度エポキシ樹脂を使用した半導体封止用エポキシ樹脂組成物及び半導体装置。Claim 1 The epoxy resin composition for semiconductor encapsulation and a semiconductor device using a high-purity epoxy resin obtained by any one of the purification process of 2.
JP2003002524A 2003-01-08 2003-01-08 Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation Expired - Fee Related JP3837667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003002524A JP3837667B2 (en) 2003-01-08 2003-01-08 Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003002524A JP3837667B2 (en) 2003-01-08 2003-01-08 Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JP2004211028A JP2004211028A (en) 2004-07-29
JP3837667B2 true JP3837667B2 (en) 2006-10-25

Family

ID=32820243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003002524A Expired - Fee Related JP3837667B2 (en) 2003-01-08 2003-01-08 Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP3837667B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6657385B2 (en) * 2015-09-22 2020-03-04 エメラルド・スペシャルティ・ポリマーズ・エルエルシーEmerald Specialty Polymers,Llc Epoxy-terminated butadiene and butadiene acrylonitrile copolymer
CN113185671B (en) * 2021-05-27 2022-09-16 复旦大学 Impurity removal and purification method for epoxy resin
CN114989396B (en) * 2022-07-20 2023-09-19 智仑超纯环氧树脂(西安)有限公司 Method for removing organochlorine impurities in epoxy resin through MOFs material
CN115073649B (en) * 2022-07-20 2023-10-27 智仑超纯环氧树脂(西安)有限公司 Chlorine removing agent and preparation method and application thereof
CN115093506B (en) * 2022-07-20 2023-10-24 智仑超纯环氧树脂(西安)有限公司 Epoxy resin chlorine removing agent, preparation method thereof and method for preparing low-chlorine epoxy resin by using epoxy resin chlorine removing agent
CN115386197A (en) * 2022-10-14 2022-11-25 山东海科创新研究院有限公司 O-cresol formaldehyde epoxy resin and preparation process thereof

Also Published As

Publication number Publication date
JP2004211028A (en) 2004-07-29

Similar Documents

Publication Publication Date Title
JP2656952B2 (en) Method for producing epoxy resin with low undesirable halogen content
JP2003516399A (en) Method for removing materials containing hydrolyzable halides and other high molecular weight materials from epihalohydrin derived epoxy resins
EP1298154B1 (en) Process for preparing epoxy resin
JP3837667B2 (en) Epoxy resin purification method and epoxy resin composition for semiconductor encapsulation
JP5130728B2 (en) Epoxy resin purification method
KR101558633B1 (en) Process for manufacturing liquid epoxy resins
JPS5973578A (en) Manufacture of glycidyl derivatives of compounds having at least one aromatic hydroxyl group or aromatic amine group
TWI813054B (en) Phenolin novolac resin and process for production thereof
JP2702515B2 (en) Purification method of epoxy resin
JP4846078B2 (en) Method for producing epoxy resin with low hydrolyzable chlorine content
JP6228081B2 (en) Method for producing dicyclopentadiene-modified phenolic resin, method for producing epoxy resin, and method for producing cured product
EP3122734B1 (en) Epoxy resin compositions
JP4675500B2 (en) Manufacturing method of high purity epoxy resin
JPH0517463A (en) Production of highly pure epoxy resin
JP4616947B2 (en) Method for producing epoxy resin and epoxy resin obtained by the method
KR101363137B1 (en) Method For Producing A Purified Epoxy Resin
JPS62187718A (en) Method for removal of chlorine from epoxy resin
JP4874494B2 (en) Production method of epoxy resin
JP4004787B2 (en) Phenol resin, epoxy resin, production method thereof, and resin composition for semiconductor encapsulant
JPH05331155A (en) Production of glycidyl ether
JPS5842867B2 (en) Method for producing glycidyl ethers
JPH089657B2 (en) Method for producing high-purity polyphenols
KR101783746B1 (en) Method for preparing highly pure liquid epoxy resin derived from bisphenol compound
JPH0223555B2 (en)
JPH0153895B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060613

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3837667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140811

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees