JP3837535B2 - Biological sample culture and transport device for biological sample luminescence measuring device - Google Patents

Biological sample culture and transport device for biological sample luminescence measuring device Download PDF

Info

Publication number
JP3837535B2
JP3837535B2 JP2003060069A JP2003060069A JP3837535B2 JP 3837535 B2 JP3837535 B2 JP 3837535B2 JP 2003060069 A JP2003060069 A JP 2003060069A JP 2003060069 A JP2003060069 A JP 2003060069A JP 3837535 B2 JP3837535 B2 JP 3837535B2
Authority
JP
Japan
Prior art keywords
biological sample
culture
plant
plant biological
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003060069A
Other languages
Japanese (ja)
Other versions
JP2004267058A (en
Inventor
正寛 石浦
和久 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2003060069A priority Critical patent/JP3837535B2/en
Publication of JP2004267058A publication Critical patent/JP2004267058A/en
Application granted granted Critical
Publication of JP3837535B2 publication Critical patent/JP3837535B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生物試料発光測定装置用生物試料培養・搬送装置に関する。生物試料発光測定装置は、植物におけるゲノムワイドな遺伝子発現の研究、品種改良のための突然変異体を作製する際に好適に適用できる。
【0002】
【従来の技術】
従来、生物発光の測定には放射線測定に用いるシンチレーションカウンターが利用されており、生物試料を各穴に収納する複数の96穴プレートを測定装置のプレートセット部分に専用のガイドを用いて縦積みするスタッカー方式を採用している。この場合、スタッカーを2台用意し、一方には前述のように被験試料と何も入っていない透明プレートを交互に積み上げ、もう一方のスタッカープレートを入れず空のままにしておく。生育に光が必要な植物系生物試料からの発光を測定する際には、側面から光を照射することで透明プレートを挟んでいることによりできた隙間から被験プレートに光を照射する。
【0003】
測定は積み上げた一番下のプレートを抜き出して測定暗室に送り込んで行い、測定の終了したプレートはもう一方のスタッカーの一番下に移動させ、初めに積み上げていたスタッカーで新たに一番下となったプレートの測定を行っていた。全てのプレートの測定が終わったら、測定後のプレートが積み上げられていたスタッカーから測定前のプレートが積み上げられていたスタッカーに、プレートが下から順に戻されていき、測定前の状態に戻る。この一巡の動作を繰り返すことで測定を行っていた。近接した光源によっての温度が上昇してしまうので、積み上げられたプレートの固まりにファンで送風することでこの問題を多少緩和している。
【0004】
【発明が解決しようとする課題】
このやり方では、各プレートに照射される光量やプレート内の各穴に照射される光量は極めて不均一であり培養が不均一となり、測定結果に大きなばらつきが生じることが分かった。また、生育に必要な光量を確保するために試料に光源を近接させる必要性があるので、光源が発する熱のためにプレートに張り付けたシールの内部で被験材料に含まれる水分が結露して、測定結果を大きくばらつかせる原因となることが分かった。さらに、測定するプレート数が変わると単位時間あたりに測定する回数が変化するため、実験毎のデータの比較・検討が容易でないことも判明した。
【0005】
上記生物試料発光測定装置は生物に発光遺伝子を組み込んで生きたままの細胞で遺伝子発現の変動を連続的に測定する生物発光リアルタイム測定法に特に適合する。該リアルタイム測定法は、任意の鍵遺伝子の発現制御に関与する突然変異体の網羅的分離に極めて有効な実験法であり、ポストゲノム時代の網羅的ゲノム機能解析の切札である。しかしながら、生物発光リアルタイム測定法の長所を最大限に活用し、測定の大規模化に対応する機器の開発はなされていないのが現状であった。
【0006】
生物試料の発光の測定には一般にシンチレーションカウンターを利用するが、植物系生物材料では生育に光が必要なことから均一な生育培養条件下での測定が難しかった。
【0007】
従来技術の問題点を解決するために、本発明は多検体の生物試料を平板状のプレートで培養生育条件を均一とする培養部を採用し、搬送手段によって生物試料発光測定部に搬入することによって、信頼性のある測定結果を得ることが可能な発光測定を行わせる生物試料発光測定装置用生物試料培養・搬送装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る生物試料発光測定装置用生物試料培養・搬送装置は、各々複数の生物試料を収納する複数のプレートをセットし培養する培養部と、培養部にある生物試料収納プレートを生物試料発光測定装置の生物試料発光測定部に交互に搬送しセットしまた発光測定部にある生物試料を培養部に搬送し返送する搬送手段と、搬送手段の搬送動作を制御する制御コンピュータとからなり、該培養部は生物試料を均一な条件で培養することが可能なよう構成されていることを特徴とする。
【0009】
本発明に係る生物試料発光測定装置用生物試料培養・搬送装置は、培養部において均一な条件で培養した生物試料の生物試料収納プレートを、搬送手段によって生物試料発光測定装置の生物試料発光測定部に交互に搬送しセットし発光測定しまた発光測定部にある生物試料を培養部に搬送し返送するので、均一な条件で培養した生物試料について生物試料発光を正確に測定することが可能となる。なお、得られた測定結果は測定部コンピュータに入力され、測定結果の表示および解析が行われる。測定結果の表示および解析においては、測定部コンピュータから外部コンピュータに測定結果を一定時間後あるいはリアルタイムに送り測定結果の表示および解析を行わせることができる。
【0010】
以下に、本発明に係る生物試料発光測定装置用生物試料培養・搬送装置の好ましい態様を挙げる。特に矛盾がなければ、以下に挙げる好ましい態様を任意に組み合わせた態様も本発明の好ましい態様である。
【0011】
(1)培養部は複数の生物試料収納プレートを実質的に同一平面状に置いて生物試料を均一な条件で培養することが可能なよう構成されている。このようにすることによって、複数の生物試料収納プレートがお互いに緩衝し合うこと無く培養をすることが可能となり、また、培養部から生物試料収容プレートを搬出すること、および測定部から搬出した生物試料収容プレートを元の位置に戻すことも容易となる。
【0012】
(2)生物試料収納プレートは生物試料を収納する複数の穴部を有する穴プレート本体と、該穴プレートの上面に張られ穴部開口をシールするシートからなり、培養部にセットされた生物試料収納プレートの下面温度が穴プレートの上面のフィルム温度よりも低い温度となるよう培養部が構成され、それによってフィルムの穴部内側での結露を防いでいる。なお、搬送手段で測定装置のセット部に置かれたプレートは直ちに測定暗室に送り込まれるようになっているので、上記結露を防止したプレートは結露の無い状態で測定に付される。
【0013】
生物試料収納プレートは生物試料を収納する複数の穴部を有する穴プレート本体と、該穴プレートの上面に張られ穴部開口をシールするシートとからなる生物試料収納プレートは、96穴プレート等として周知であり市販されているが、培養部にセットされた生物試料収納プレートの下面温度が穴プレートの上面のフィルム温度よりも低い温度となるよう培養部が構成されているので、フィルムの穴部内側での結露を確実に防止することができ、ひいては信頼性のある測定結果が得られる。
【0014】
上記目的のため、培養部に送風ファンを設け、それによって培養部の生物試料収納プレートセット部にセットされた生物試料収納プレートの下面温度が穴プレートの上面のフィルム温度よりも低い温度とし、フィルムの穴部内側での結露を防ぐことができる。
【0015】
(3)培養部において生物試料収納プレートごとに光源が設けられ、生物試料収納プレートごとに光源の光量を調整可能になっている。それぞれのプレートの培養位置を測定期間中常に同じ位置にすることができるので、例えば、上部に設置した光源の光量を調節することによってプレートごとに異なる光量で培養ができる。従来は測定装置のプレートセット部に縦積みされた状態でプレートが一枚測定される度にその位置が入れ替わるのでプレート毎に異なる光量を与えることはできなかった。
【0016】
(4)制御コンピュータによって測定プレートの数によらず一定時間間隔で各生物試料収納プレートの測定が可能となるよう制御する。従来の方法では前のプレートの測定が終了したら、すぐに次のプレートの測定を行うことを繰り返すだけのため、「(A)測定プレート数」や「(B)一試料の測定にかける測定時間」、「(C)測定位置に置いてからノイズの減衰を待つクエンチング時間」といったパラメータを少しでも変更すれば、測定が一巡するまでの時間間隔が変更されてしまう。従来技術でも試料の入っていないダミープレートを加えることで、時間の調整が可能である場合もあるが、(B)や(C)の場合などには、何回もの予備実験を繰り返さないと時間間隔の調整は難しい。なお、装置に設けられた制御コンピュータは(A)搬送部分の操作制御および(B)測定装置への測定開始命令を出すように設定することができる。
【0017】
(5)搬送部は剛性のベース部と、ベース部に一体として取り付けられている可撓性のある爪部と、爪部の先端に取り付けられている滑り止め特性を有する滑り止め部とからなるハンド部を有し、爪部で生物収納プレートを把持する。
【0018】
安定して装置を動作させるためには測定するプレートを落下させないことが重要であるが、プレートはプラスチック製であり、さほど頑丈なものではない。このため、ハンド部が掴む圧力が弱いとプレートを落下させてしまい、圧力が強いとプレートを破損させてしまう。またプレートごとに歪みがあり、微妙に形が違い、プレートを掴む爪先に可撓性がないと、掴むことができないプレートが出てくる。
【0019】
上記(5)の構成はこのような事情を考慮して考案したものである。ちなみに、ハンドの基部はステンレスの切削加工で形成することができ、ベース部を硬度が高く歪みのない加工精度の高い構成とすることができる。爪部には弾性の高いステンレスを用い、ベース部分にネジ等で固定する。従って、爪部は可撓性を有し板バネとして機能し、プレートの微妙な形の違いに追随し、プレートが破損しない程度の強さで掴む圧力を加える。多数回繰り返しプレートを把持するので、滑り止め部には硬質のシリコーンゴム等の耐摩耗性材料を有する材料を適宜選択して用いる。該硬質シリコーンゴムは重機器の振動緩和材等として用いられている材料である。
【0020】
本発明の生物試料発光測定装置用生物試料培養・搬送装置は上記構成としたので、特に生物発光リアルタイム測定法において用いることができる。生物発光リアルタイム測定法はポストゲノム時代の網羅的ゲノム機能解析の切札として、また突然変異体の網羅的分離において極めて有効な手法となってきているが、本発明はこのゲノム情報を基盤とするゲノム機能の網羅的解析を行うポストゲノム時代において大きな貢献をすることができる。
【0021】
【発明の実施の態様】
以下に、図面を参照して本発明をより具体的に詳細に説明する。但し、図示する実施態様は本発明を説明するためのもので、本発明を制限するものと解してはならない。
(1)生物試料
本発明において、発光測定を行うための生物試料としては、例えば、生物試料の発光測定のために、先ず生物発光遺伝子を組み込んだ生物試料を挙げることができる。該生物試料は遺伝子操作によって作出することができる。この組換え発光生物体のゲノム配列中には、遺伝子発現を制御するプロモーター領域の後ろに蛍のルシフェラーゼなどの発光遺伝子を繋いで組込んであり、プロモーターの転写活性を生物発光として生きたままの細胞でリアルタイムで測定することができる(図1A)。
【0022】
(2)生物試料収納プレート
生物試料収納プレートは、従来周知の96穴プレート等を用いることができ、上記組換え生物体等の生物試料を96穴プレートに入れて透明なシールで封じて測定用試料として用いる(図1B)。
【0023】
(3)生物試料発光測定装置
図2に示すように、生物試料発光測定装置1は、生物試料2(96穴プレート等)をセットし培養する培養部4、生物試料の発光測定部6、培養部6にある生物試料2を発光測定部6に搬送しセットしまた発光測定部6にある生物試料2を培養部4に搬送しセットする搬送手段8とからなる。本発明の生物試料発光測定装置用生物試料培養・搬送装置は、上記培養部6と搬送手段8とで構成されている。
【0024】
(3−1)培養部4は、植物等の生物試料を均一な条件で培養するよう設定されており、各生物試料収納プレートの穴には生物試料が収納され、培養部の上部の光源(図示せず)から光が均一に照射され一定の培養条件下に生物試料の培養が行なわれるようになっている。この場合、培養部において生物試料収納プレートごとに光源を設け、生物試料収納プレートごとに光源の光量を調整可能とすることもできる。また、培養部は複数の生物試料収納プレートを実質的に同一平面状に置いて生物試料を均一な条件で培養することが可能なよう構成されている。
【0025】
(3−2)搬送手段8は、培養部4と生物試料発光測定部6との間に延びる搬送レール10、搬送レール10に沿って培養部4と生物試料発光測定部6の間を移動する移送用アーム12とからなっており、移送用アームは図示しない制御コンピュータ(例えば、内蔵シーケンシャル・コントローラ)によってレールに沿って培養部4と測定部6との間をX方向に、また生物試料を取り上げまたセットする位置に移動するためY方向に、また生物試料を把持するためZ方向に移動可能となっている。図2には移送用アーム12が模式的に示されているが、より詳しくは図3に示す。すなわち、移送用アームは、剛性のベース部12aと、ベース部に一体として取り付けられている可撓性のある爪部12bと、爪部の先端に取り付けられている滑り止め特性を有する滑り止め部12cとからなるハンド部を有し、爪部で生物試料収納プレートを把持する。
【0026】
制御コンピュータは培養部4の培養条件、生物試料(例えば、プレート)の枚数、測定のサイクル数、測定タイミング等の制御も行う。培養部及び搬送部の操作は、例えば付属のタッチパネルで行なう。該シーケンシャル・コントローラには、下記のシンチレーションカウンターとの間で通信をし、生物試料2を発光測定部6に搬送しセットした後、測定部で測定を開始させる信号を送るプログラムが組み込まれている。
【0027】
(3−3)生物試料の発光測定部
生物試料の発光測定部6は、生物試料をセットする試料セット部14、試料セット部の生物試料からの発光を測定するシンチレーションカウンター等のセンサー16、センサーからの信号を受ける発光測定部コンピュータ18からなり、搬送部が生物試料2を発光測定部6に搬送しセットし、発光測定部コンピュータ18は、測定開始させる信号を受け取った後、所定のプログラムに沿って測定の開始・実行を制御する。測定は、例えば、1枚目の96穴プレートの1行目の1列目、2列目、・・・の位置の穴の生物試料について行ない、かつ2枚目、3枚目・・・の96穴プレートについても同様に測定が実施し、測定結果は外部コンピュータ20に送られる。なお、測定結果の出力は測定部コンピュータ18の任意のディレクトリーに行われる。例えば、測定部は測定部制御のためのWindows(登録商標) NTをOSとしたパソコンを内蔵し、測定開始の信号を受け取ったら付属の制御プログラムに従って測定を行い、結果の出力を任意のディレクトリーに行う。
【0028】
【実施例】
生物発光測定のために、先ず生物発光遺伝子を組み込んだ生物を遺伝子操作によって作出した。この組換え発光生物体のゲノム配列中に、遺伝子発現を制御するプロモーター領域の後ろに蛍のルシフェラーゼなどの発光遺伝子を繋いで組込んであり、プロモーターの転写活性を生物発光として生きたままの細胞でリアルタイムで測定することができる(図1A)。この組換え生物体を96穴プレートに入れて透明なシールで封じて実験サンプルとして用いた(図1B)。
【0029】
プレートを培養部の同一培養平面である平板状の試料台にセットして均一に培養し、測定条件を入力し、搬送手段のロボットアームが稼働してプレートのうち一つをシンチレーションカウンター側の測定室に送り込んだ。シンチレーションカウンターがすべての穴の試料の発光値を測定し、外部コンピュータにデータを転送する。外部コンピュータは測定データの解析と表示とをリアルタイムで行う。ロボットアームが測定後のプレートを培養台の元の位置に戻し、次のプレートの搬送に移る。この操作を一定のスケジュールに沿って全てのプレートに対して繰り返した(図2)。
【0030】
測定は本発明の培養・搬送装置を用いた20個のプレートと、従来の方法で培養・測定した10個のプレートに対して、それぞれ4日間ずつ行った。生物発光測定部であるシンチレーションカウンターが計数した各穴の生物発光強度(光量子数/秒)が得られた測定結果であり、それぞれの96穴プレートの各穴毎に示す生物発光値を4日間で平均化した値を計算し、この4日間の平均値を元に比較している。
【0031】
図4Aは、本発明の生物試料培養・搬送装置を用いた場合の生物試料をいれた96穴プレート(12行x8列)の各穴の生物試料からの相対発光強度(各番地の穴毎にプレート1〜20の発光値の平均値を計算し、それを全体の平均発光値で割った値)を示し、図4Bは従来の装置を用いた場合の生物試料を入れた96穴プレート(12行x8列)の各穴の生物試料からの相対発光強度(各番地の穴毎にプレート1〜10の発光値の平均値を計算し、それを全体の平均発光値で割った値)を示す。測定結果から、本発明の生物試料培養・搬送装置を用いた場合には、各プレートのそれぞれの穴の生物試料からの発光強度はほぼ均一になっていることが分かる。このことは、各プレートのそれぞれの穴の生物試料が均一に培養されたことを示す。
【0032】
図5Aと図5Bとは、それぞれ本発明の培養・搬送装置を用いた20個のプレートの生物試料からの発光強度を測定した場合と、従来の方法で培養・測定した10個のプレートの生物試料からの発光強度を測定した場合の相対発光強度(Relative Luminessence,SDは標準偏差)を示す。図5A及び図5Bから分かるように、本発明の生物試料発光測定装置用生物試料培養・搬送装置によれば、全てのプレートに渡って培養条件を均一にすることができる。
【0033】
図4A,図4B、図5Aおよび図5Bで示されたように、本発明の装置を使えば、測定する全プレートの全穴の試料から得られる結果の均一性と精度とが高まる。このことはあらゆる測定において有用であるが、とりわけ大規模測定においてわずかな差を検出する必要がある突然変異体の網羅的選別において有用である。
【図面の簡単な説明】
【図1】 図1Aは生物発光を行う生物発光遺伝子組換え生物(試料)の模式図であり、図1Bは測定に用いる生物を96穴プレートに植え込んだ測定試料の一部の写真である。
【図2】 生物発光法による遺伝子発現の測定の手順を説明するための生物試料発光測定装置の模式的説明図である。
【図3】 移送用アームの斜視図を示す。
【図4】 図4Aは、本発明の生物試料培養・搬送装置を用いた場合の生物試料をいれた96穴プレート(12行x8列)の各穴の生物試料からの相対発光強度を示し、図4Bは従来の装置を用いた場合の生物試料を入れた96穴プレート(12行x8列)の各穴の生物試料からの相対発光強度を示す。
【図5】 図5Aと図5Bとは、それぞれ本発明の培養・搬送装置を用いた20個のプレートの生物試料からの発光強度を測定した場合と、従来の方法で培養・測定した10個のプレートの生物試料からの発光強度を測定した場合の相対発光強度(Relative Luminessence,SDは標準偏差)を示す。
【符号の説明】
1 生物試料発光測定装置
2 生物試料(96プレート)
4 培養部
6 発光測定部
8 搬送手段
10 搬送レール
12 移送用アーム
12a ベース部
12b 爪部
12c 滑り止め部
18 コンピュータ
20 表示・解析コンピュー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a biological sample culture / conveyance device for a biological sample luminescence measuring apparatus. The biological sample luminescence measuring device can be suitably applied when researching genome-wide gene expression in plants and creating mutants for breed improvement.
[0002]
[Prior art]
Conventionally, scintillation counters used for radiation measurement have been used for measuring bioluminescence, and a plurality of 96-well plates for storing biological samples in each hole are vertically stacked using a dedicated guide on the plate set portion of the measuring apparatus. A stacker method is adopted. In this case, two stackers are prepared, and as described above, the test sample and the transparent plate containing nothing are alternately stacked as described above, and the other stacker plate is not left and is left empty. When measuring luminescence from a plant-based biological sample that requires light for growth, the test plate is irradiated with light from a gap formed by sandwiching the transparent plate by irradiating light from the side surface.
[0003]
The measurement is performed by extracting the bottom stacked plate and sending it to the measurement darkroom. The plate after measurement is moved to the bottom of the other stacker, and the bottom stacker is the first stacker. Measurement of the resulting plate was performed. When all the plates have been measured, the plates are returned in order from the bottom to the stacker on which the plate before measurement is stacked from the stacker on which the plate after measurement is stacked, and returns to the state before measurement. The measurement was performed by repeating this one-round operation. Since the temperature due to the adjacent light source rises, this problem is alleviated somewhat by blowing air with a fan to the stacked plates.
[0004]
[Problems to be solved by the invention]
In this manner, it has been found that the amount of light applied to each plate and the amount of light applied to each hole in the plate is extremely non-uniform, resulting in non-uniform culture and large variations in measurement results. In addition, since it is necessary to bring the light source close to the sample to ensure the amount of light necessary for growth, moisture contained in the test material is condensed inside the seal attached to the plate due to the heat generated by the light source, It has been found that this causes the measurement results to vary greatly. Furthermore, since the number of measurements per unit time changes when the number of plates to be measured changes, it has also been found that comparison and examination of data for each experiment is not easy.
[0005]
The biological sample luminescence measurement apparatus is particularly suitable for a bioluminescence real-time measurement method in which a luminescent gene is incorporated into an organism and gene expression fluctuations are continuously measured in living cells. The real-time measurement method is an extremely effective experimental method for exhaustive separation of mutants involved in the expression control of an arbitrary key gene, and is a trump card for comprehensive genome function analysis in the post-genome era. However, the current situation is that no device has been developed that makes full use of the advantages of the bioluminescence real-time measurement method and that can handle large-scale measurement.
[0006]
In general, scintillation counters are used to measure the luminescence of biological samples. However, since plant-based biological materials require light for growth, it is difficult to measure them under uniform growth culture conditions.
[0007]
In order to solve the problems of the prior art, the present invention employs a culture part that uniformizes the culture and growth conditions on a flat plate of a multi-specimen biological sample, and carries it into the biological sample luminescence measurement part by means of transport. An object of the present invention is to provide a biological sample culturing / conveying device for a biological sample luminescence measuring apparatus that performs luminescence measurement capable of obtaining a reliable measurement result.
[0008]
[Means for Solving the Problems]
A biological sample culturing / transporting device for a biological sample luminescence measuring apparatus according to the present invention includes a culture unit that sets and cultures a plurality of plates each storing a plurality of biological samples, and a biological sample storage plate in the culture unit emits a biological sample. A transport means for alternately transporting and setting the biological sample in the luminescence measurement section of the measurement apparatus and transporting the biological sample in the luminescence measurement section back to the culture section, and a control computer for controlling the transport operation of the transport means, The culture section is configured to be able to culture a biological sample under uniform conditions.
[0009]
The biological sample culturing / conveying device for a biological sample luminescence measuring device according to the present invention is a biological sample luminescence measuring unit of the biological sample luminescence measuring device by means of conveying biological sample storage plates of biological samples cultured under uniform conditions in the culturing unit. Since the biological sample in the luminescence measurement unit is transported and returned to the culture unit, it is possible to accurately measure the luminescence of the biological sample cultured under uniform conditions. . The obtained measurement result is input to the measurement unit computer, and the measurement result is displayed and analyzed. In the display and analysis of the measurement result, the measurement result can be sent from the measurement unit computer to the external computer after a predetermined time or in real time to display and analyze the measurement result.
[0010]
The preferred embodiments of the biological sample culturing / conveying device for a biological sample luminescence measuring device according to the present invention are listed below. If there is no particular contradiction, an embodiment obtained by arbitrarily combining the following preferred embodiments is also a preferred embodiment of the present invention.
[0011]
(1) The culture unit is configured so that a biological sample can be cultured under uniform conditions by placing a plurality of biological sample storage plates in substantially the same plane. By doing so, it becomes possible to culture without the multiple biological sample storage plates buffering each other, and the biological sample storage plate is transported out of the culture unit and the biological material transported out of the measurement unit It is also easy to return the sample storage plate to the original position.
[0012]
(2) The biological sample storage plate is composed of a hole plate body having a plurality of holes for storing the biological sample, and a sheet that is stretched on the upper surface of the hole plate and seals the opening of the hole, and is set in the culture unit The culture part is configured so that the lower surface temperature of the storage plate is lower than the film temperature of the upper surface of the hole plate, thereby preventing condensation inside the hole part of the film. In addition, since the plate placed on the set part of the measuring device by the conveying means is immediately sent to the measurement darkroom, the plate which prevents the condensation is subjected to measurement in a state without condensation.
[0013]
The biological sample storage plate is composed of a hole plate main body having a plurality of holes for storing biological samples and a sheet stretched on the upper surface of the hole plate and sealing the opening of the hole. Although well-known and commercially available, the culture part is configured so that the lower surface temperature of the biological sample storage plate set in the culture part is lower than the film temperature on the upper surface of the hole plate. Condensation on the inside can be reliably prevented, and as a result, a reliable measurement result can be obtained.
[0014]
For the above purpose, the culture section is provided with a blower fan, whereby the lower surface temperature of the biological sample storage plate set in the biological sample storage plate set section of the culture section is lower than the film temperature of the upper surface of the hole plate, Condensation on the inside of the hole can be prevented.
[0015]
(3) A light source is provided for each biological sample storage plate in the culture section, and the light amount of the light source can be adjusted for each biological sample storage plate. Since the culture position of each plate can always be the same during the measurement period, for example, by adjusting the light quantity of the light source installed on the upper part, the culture can be performed with different light quantity for each plate. Conventionally, the position is changed every time one plate is measured in a state of being vertically stacked on the plate set portion of the measuring apparatus, so that it is not possible to give a different amount of light for each plate.
[0016]
(4) The control computer performs control so that each biological sample storage plate can be measured at regular time intervals regardless of the number of measurement plates. In the conventional method, once the measurement of the previous plate is completed, the measurement of the next plate is repeated immediately. Therefore, “(A) Number of measurement plates” and “(B) Measurement time taken to measure one sample” ”,“ (C) Quenching time for waiting for noise attenuation after being placed at the measurement position ”, the time interval until the measurement is completed is changed. Even in the prior art, it may be possible to adjust the time by adding a dummy plate that does not contain a sample, but in the cases of (B) and (C), the time must be repeated many times. It is difficult to adjust the interval. Note that the control computer provided in the apparatus can be set to (A) control the operation of the transport portion and (B) issue a measurement start command to the measuring apparatus.
[0017]
(5) The transport unit includes a rigid base part, a flexible claw part integrally attached to the base part, and a non-slip part having a non-slip characteristic attached to the tip of the claw part. It has a hand part and holds the biological storage plate with the claw part.
[0018]
In order to operate the apparatus stably, it is important not to drop the plate to be measured, but the plate is made of plastic and is not so sturdy. For this reason, if the pressure which a hand part grasps is weak, a plate will be dropped, and if pressure is strong, a plate will be damaged. Each plate is distorted, has a slightly different shape, and if the toe that grips the plate is not flexible, a plate that cannot be gripped will come out.
[0019]
The configuration (5) is devised in consideration of such circumstances. Incidentally, the base portion of the hand can be formed by cutting stainless steel, and the base portion can have a high hardness and high processing accuracy without distortion. The claw part is made of highly elastic stainless steel and fixed to the base part with screws or the like. Therefore, the claw portion has flexibility and functions as a leaf spring, follows a subtle difference in the shape of the plate, and applies pressure to grip the plate with such a strength that the plate is not damaged. Since the plate is repeatedly held many times, a material having a wear-resistant material such as hard silicone rubber is appropriately selected and used for the anti-slip portion. The hard silicone rubber is a material used as a vibration reducing material for heavy equipment.
[0020]
Since the biological sample culturing / transporting device for a biological sample luminescence measuring device of the present invention has the above-described configuration, it can be used particularly in a bioluminescent real-time measuring method. The bioluminescence real-time measurement method has become an extremely effective technique as a trump card for comprehensive genome function analysis in the post-genome era and in the comprehensive separation of mutants. The present invention is a genome based on this genome information. It can make a significant contribution in the post-genomic era, where comprehensive analysis of functions is performed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. However, the illustrated embodiment is for explaining the present invention and should not be construed as limiting the present invention.
(1) Biological Sample In the present invention, examples of the biological sample for performing luminescence measurement include a biological sample in which a bioluminescent gene is first incorporated for luminescence measurement of the biological sample. The biological sample can be generated by genetic manipulation. In the genome sequence of this recombinant luminescent organism, a luminescent gene such as firefly luciferase is incorporated after the promoter region that controls gene expression, and the transcriptional activity of the promoter remains alive as bioluminescence. It can be measured in cells in real time (FIG. 1A).
[0022]
(2) Biological sample storage plate As the biological sample storage plate, a conventionally known 96-well plate or the like can be used, and the biological sample such as the above-mentioned recombinant organism is placed in a 96-well plate and sealed with a transparent seal for measurement. Used as a sample (FIG. 1B).
[0023]
(3) Biological Sample Luminescence Measuring Device As shown in FIG. 2, the biological sample luminescence measuring device 1 includes a culture unit 4 for setting and culturing a biological sample 2 (96-well plate or the like), a luminescence measuring unit 6 for biological samples, and a culture. The biological sample 2 in the unit 6 is transported and set to the luminescence measuring unit 6, and the biological sample 2 in the luminescence measuring unit 6 is transported and set to the culture unit 4. The biological sample culturing / conveying apparatus for a biological sample luminescence measuring apparatus according to the present invention includes the culture unit 6 and the conveying means 8.
[0024]
(3-1) The culture unit 4 is set to culture a biological sample such as a plant under uniform conditions. The biological sample is stored in a hole of each biological sample storage plate, and a light source ( (Not shown) is uniformly irradiated with light, and the biological sample is cultured under certain culture conditions. In this case, a light source may be provided for each biological sample storage plate in the culture unit, and the light amount of the light source may be adjusted for each biological sample storage plate. In addition, the culture unit is configured to be able to culture a biological sample under uniform conditions by placing a plurality of biological sample storage plates in substantially the same plane.
[0025]
(3-2) The transport unit 8 moves between the culture unit 4 and the biological sample luminescence measurement unit 6 along the transport rail 10 extending between the culture unit 4 and the biological sample luminescence measurement unit 6. The transfer arm 12 is composed of a transfer computer 12 (for example, a built-in sequential controller) that transfers a biological sample in the X direction between the culture unit 4 and the measurement unit 6 along the rail. It can be moved in the Y direction to move to the picking and setting position, and in the Z direction to hold the biological sample. Although the transfer arm 12 is schematically shown in FIG. 2, it is shown in more detail in FIG. That is, the transfer arm includes a rigid base portion 12a, a flexible claw portion 12b attached integrally to the base portion, and a non-slip portion having a non-slip characteristic attached to the tip of the claw portion. The biological sample storage plate is gripped by the claw portion.
[0026]
The control computer also controls the culture conditions of the culture unit 4, the number of biological samples (for example, plates), the number of measurement cycles, and the measurement timing. Operation of a culture part and a conveyance part is performed with an attached touch panel, for example. The sequential controller incorporates a program that communicates with the following scintillation counter, sends the biological sample 2 to the luminescence measuring unit 6 and sets a signal, and then sends a signal for starting measurement at the measuring unit. .
[0027]
(3-3) Biological Sample Luminescence Measurement Unit The biological sample luminescence measurement unit 6 includes a sample setting unit 14 for setting a biological sample, a sensor 16 such as a scintillation counter for measuring luminescence from the biological sample in the sample setting unit, and a sensor. The luminescence measuring unit computer 18 receives a signal from the luminescence measuring unit computer 18, and the conveyance unit conveys and sets the biological sample 2 to the luminescence measuring unit 6, and the luminescence measuring unit computer 18 receives a signal for starting measurement and then executes a predetermined program. Control the start and execution of the measurement along. For example, the measurement is performed on the biological sample in the hole at the position of the first column, the second column,... Of the first 96-well plate, and the second, third,. Measurement is similarly performed on the 96-well plate, and the measurement result is sent to the external computer 20. The output of the measurement result is performed in an arbitrary directory of the measurement unit computer 18. For example, the measurement unit has a built-in personal computer with Windows (registered trademark) NT as the OS for controlling the measurement unit. When a measurement start signal is received, the measurement unit performs measurement according to the attached control program and outputs the result to an arbitrary directory. Do.
[0028]
【Example】
In order to measure bioluminescence, an organism into which a bioluminescence gene was incorporated was first created by genetic manipulation. In the genome sequence of this recombinant luminescent organism, a luminescent gene such as firefly luciferase is linked after the promoter region that controls gene expression, and the cells remain alive with bioluminescence as the transcriptional activity of the promoter. Can be measured in real time (FIG. 1A). This recombinant organism was placed in a 96-well plate, sealed with a transparent seal, and used as an experimental sample (FIG. 1B).
[0029]
Place the plate on a flat sample stage, which is the same culture plane of the culture unit, incubate uniformly, enter the measurement conditions, operate the robot arm of the transport means, and measure one of the plates on the scintillation counter side I sent it to the room. A scintillation counter measures the luminescence values of the samples in all holes and transfers the data to an external computer. The external computer analyzes and displays the measurement data in real time. The robot arm returns the plate after measurement to the original position on the culture table, and moves to the next plate. This operation was repeated for all the plates according to a fixed schedule (FIG. 2).
[0030]
The measurement was performed for 4 days each on 20 plates using the culture / conveyance apparatus of the present invention and 10 plates cultured and measured by a conventional method. The bioluminescence intensity (number of photons / second) of each hole counted by the scintillation counter, which is a bioluminescence measuring unit, was obtained, and the bioluminescence value shown for each hole of each 96-well plate was measured over 4 days. The averaged value is calculated and compared based on the average value over the four days.
[0031]
FIG. 4A shows the relative luminescence intensity from the biological sample in each hole of the 96-well plate (12 rows × 8 columns) containing the biological sample when the biological sample culturing / transporting device of the present invention is used (for each hole in each address). FIG. 4B shows a 96-well plate (12) containing a biological sample when a conventional apparatus is used. The relative luminescence intensity from the biological sample in each hole (row x column 8) (the value obtained by calculating the average value of the luminescence values of the plates 1 to 10 for each hole of the address and dividing it by the average luminescence value) . From the measurement results, it is understood that when the biological sample culture / conveyance device of the present invention is used, the luminescence intensity from the biological sample in each hole of each plate is almost uniform. This indicates that the biological sample in each hole of each plate was uniformly cultured.
[0032]
FIG. 5A and FIG. 5B show the case where the luminescence intensity from the biological sample of 20 plates using the culture / conveyance device of the present invention is measured, respectively, and the case of 10 plates of culture / measurement by the conventional method. The relative luminescence intensity when measuring the luminescence intensity from the sample (relative luminescence, SD is a standard deviation) is shown. As can be seen from FIG. 5A and FIG. 5B, according to the biological sample culture / conveyance device for a biological sample luminescence measuring apparatus of the present invention, the culture conditions can be made uniform across all plates.
[0033]
As shown in FIGS. 4A, 4B, 5A and 5B, the apparatus of the present invention increases the uniformity and accuracy of results obtained from samples of all holes of all plates to be measured. This is useful in any measurement, but is particularly useful in the exhaustive selection of mutants that need to detect small differences in large scale measurements.
[Brief description of the drawings]
FIG. 1A is a schematic view of a bioluminescent genetically modified organism (sample) that performs bioluminescence, and FIG. 1B is a photograph of a part of a measurement sample in which an organism used for measurement is implanted in a 96-well plate.
FIG. 2 is a schematic explanatory diagram of a biological sample luminescence measuring apparatus for explaining a procedure for measuring gene expression by a bioluminescence method.
FIG. 3 shows a perspective view of a transfer arm.
FIG. 4A shows relative luminescence intensity from a biological sample in each hole of a 96-well plate (12 rows × 8 columns) containing a biological sample when the biological sample culture / transport device of the present invention is used; FIG. 4B shows the relative luminescence intensity from the biological sample in each hole of the 96-well plate (12 rows × 8 columns) containing the biological sample when a conventional apparatus is used.
FIGS. 5A and 5B show the case where the luminescence intensity from the biological sample of 20 plates using the culture / conveyance device of the present invention is measured, and 10 samples cultured and measured by the conventional method, respectively. The relative luminescence intensity (relative luminescence, SD is the standard deviation) when the luminescence intensity from the biological sample on the plate is measured.
[Explanation of symbols]
1 Biological Sample Luminescence Measuring Device 2 Biological Sample (96 plates)
4 Incubation Unit 6 Luminescence Measurement Unit 8 Conveying Means 10 Conveying Rail 12 Transfer Arm 12a Base 12b Claw 12c Non-slip 18 Computer 20 Display / Analysis Computer

Claims (7)

植物系生物試料発光測定装置用植物系生物試料培養・搬送装置であって、該植物系生物試料培養・搬送装置は、各々複数の植物系生物試料を収納する複数のプレートをセットし培養する培養部と、前記植物系生物試料の発光を測定する生物試料発光測定部と、該培養部にある植物系生物試料収納プレートを把持することによって、植物系生物試料発光測定装置の生物試料発光測定部に交互に搬送しセットし、また該生物試料発光測定部にある植物系生物試料を該培養部に搬送し返送する搬送手段と、該搬送手段の搬送動作を制御する制御コンピュータとからなり、該培養部に複数の植物系生物試料収納プレートが実質的に同一平面状に置かれ、該培養部に該植物系生物試料収納プレートごとに光源が設けられている植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。A plant-based biological sample luminometer for plant biological sample culture and transfer apparatus, the plant biological sample culturing and conveying apparatus sets a plurality of plates respectively accommodating a plurality of plant biological sample incubated culture A biological sample luminescence measuring unit for measuring the luminescence of the plant biological sample, and a biological sample luminescence measuring unit of the plant biological sample luminescence measuring device by gripping the plant biological sample storage plate in the culture unit And conveying means for alternately conveying and setting the plant biological sample in the biological sample luminescence measuring section to the culturing section, and a control computer for controlling the conveying operation of the conveying means, a plurality of plant biological sample holding plate is located substantially coplanar in the culture unit, a light source for each plant based biological sample holding plate to the culture section is provided, plant biological sample luminescence measurement置用plant biological sample culture and transfer apparatus. 前記植物系生物試料収納プレートは植物系生物試料を収納する複数の穴部を有する穴プレート本体と、該穴プレートの上面に張られ穴部開口をシールするシートからなり、前記培養部にセットされた植物系生物試料収納プレートの下面温度が穴プレートの上面のフィルム温度よりも低い温度となるよう前記培養部が構成され、それによってフィルムの穴部内側での結露を防いでいる、請求項1記載植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。The plant biological sample storage plate includes a hole plate main body having a plurality of holes for storing plant biological samples, and a sheet that is stretched on the upper surface of the hole plate and seals the opening of the hole, and is set in the culture unit. underside temperature of the plant biological sample holding plate is constructed is the culture part to be a lower temperature than the film temperature of the upper surface of the well plate, thereby preventing dew condensation in the holes inside the film, according to claim 1 plant biological sample luminometer for plant biological sample culture and transfer apparatus according. 前記培養部に送風ファンが設けられており、それによって該培養部の植物系生物試料収納プレートセット部にセットされた植物系生物試料収納プレートの下面温度が穴プレートの上面のフィルム温度よりも低い温度とされフィルムの穴部内側での結露を防いでいる、請求項記載の植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。Wherein is blowing fan is provided in the culture unit, whereby less than the film temperature of the upper surface the lower surface temperature is well plate of the set plant biological sample holding plate in the plant biological sample holding plate setting part of the culture part temperature and is thereby preventing dew condensation in the holes inside the film, according to claim 2 plant biological sample luminometer for plant biological sample culture and transfer apparatus according. 前記制御コンピュータによってそれぞれ決められた位置に植物系生物試料収納プレートが設置されることで、前記光源の光量を植物系生物試料収納プレートごとに変化可能に制御している、請求項1乃至のいずれか1項に記載の植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。 By plant biological sample holding plate is placed in a position that is determined respectively by the control computer, the amount of light of the light source is changed can be controlled for each plant biological sample holding plate, according to claim 1 to 3 plant biological sample luminometer for plant biological sample culture and transfer apparatus according to any one. 前記制御コンピュータによって、前記培養部の培養条件を制御している、請求項1乃至のいずれか1項に記載の植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。The plant-based biological sample culturing / conveying device for a plant-based biological sample luminescence measuring apparatus according to any one of claims 1 to 4 , wherein the control condition of the culture unit is controlled by the control computer. 前記制御コンピュータによって測定プレートの数によらず一定時間間隔で各植物系生物試料収納プレートの測定が可能となるよう制御している、請求項1乃至のいずれか1項に記載の植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。Is controlled so that it is possible to measure each plant biological sample holding plate at a fixed time interval regardless of the number of measurement plate by the control computer, plant organism according to any one of claims 1 to 5 Plant-based biological sample culture and transport device for sample luminescence measuring device. 搬送手段は剛性のベース部と、該ベース部に一体として取り付けられている可撓性のある爪部と、該爪部の先端に取り付けられている滑り止め特性を有する滑り止め部とからなるハンド部を有し、該爪部で植物系生物試料収納プレートを把持する、請求項1乃至のいずれか1項に記載の植物系生物試料発光測定装置用植物系生物試料培養・搬送装置。The conveying means is a hand comprising a rigid base portion, a flexible claw portion integrally attached to the base portion, and a non-slip portion having a non-slip characteristic attached to the tip of the claw portion. has a part, to grip the plant biological sample holding plate with claw portion, plant biological sample luminometer for plant biological sample culture and transfer apparatus according to any one of claims 1 to 6.
JP2003060069A 2003-03-06 2003-03-06 Biological sample culture and transport device for biological sample luminescence measuring device Expired - Lifetime JP3837535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003060069A JP3837535B2 (en) 2003-03-06 2003-03-06 Biological sample culture and transport device for biological sample luminescence measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003060069A JP3837535B2 (en) 2003-03-06 2003-03-06 Biological sample culture and transport device for biological sample luminescence measuring device

Publications (2)

Publication Number Publication Date
JP2004267058A JP2004267058A (en) 2004-09-30
JP3837535B2 true JP3837535B2 (en) 2006-10-25

Family

ID=33122723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003060069A Expired - Lifetime JP3837535B2 (en) 2003-03-06 2003-03-06 Biological sample culture and transport device for biological sample luminescence measuring device

Country Status (1)

Country Link
JP (1) JP3837535B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509430B2 (en) * 2010-03-25 2014-06-04 国立大学法人名古屋大学 Luminescence measuring device that speeds up measurement processing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29720432U1 (en) * 1997-11-19 1999-03-25 Mwg Biotech Gmbh robot
US6271022B1 (en) * 1999-03-12 2001-08-07 Biolog, Inc. Device for incubating and monitoring multiwell assays

Also Published As

Publication number Publication date
JP2004267058A (en) 2004-09-30

Similar Documents

Publication Publication Date Title
Rieux et al. Improved calibration of the human mitochondrial clock using ancient genomes
US10294508B2 (en) Method and apparatus for identification of bacteria
Oaks et al. Evidence for climate-driven diversification? A caution for interpreting ABC inferences of simultaneous historical events
JP6151663B2 (en) Cultivation system
US10712356B2 (en) Apparatus and method for picking biological sample
US11035845B2 (en) Observation apparatus, observation method, observation system, program, and cell manufacturing method
CA2866899C (en) Method and system for detection of microbial growth in a specimen container
US20190347798A1 (en) Culturing assistance device, observation device and program
JP2020519287A (en) Incubator, system and method for monitored cell growth
JP2015520382A5 (en)
JP3837535B2 (en) Biological sample culture and transport device for biological sample luminescence measuring device
CN107460119A (en) A kind of equipment and monitoring method for monitoring bacterial growth
Wilkinson Parameter inference for stochastic kinetic models of bacterial gene regulation: a Bayesian approach to systems biology
US20160139109A1 (en) A Method of Determining or Predicting a Characteristic of a Cell
WO2018190907A1 (en) Apparatus and method for picking biological sample
JP6343874B2 (en) Observation apparatus, observation method, observation system, program thereof, and cell manufacturing method
Poschet et al. Sensitivity analysis of microbial growth parameter distributions with respect to data quality and quantity by using Monte Carlo analysis
JP2020204570A (en) Hatching egg inspection device, method for specification, and specification program
Chung et al. New design of a quasi-monolithic detector module with DOI capability for small animal pet
US9803170B2 (en) Infrared signal monitoring for cell cultures
CN1584579A (en) Method and apparatus for detecting microbe by piezoelectric quartz crystal sensor
CN103592326A (en) Nuclear magnetic resonance multichannel detection system used for rapidly sorting oil-containing seeds
JP2018000010A (en) Culture management system
US7199378B2 (en) Method for measuring and analyzing bioluminescence and device for measuring and analyzing bioluminescence
Isenberg et al. Automated methods and data handling in bacteriology

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Ref document number: 3837535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term