JP3837487B2 - Methanol reforming catalyst - Google Patents

Methanol reforming catalyst Download PDF

Info

Publication number
JP3837487B2
JP3837487B2 JP2001349051A JP2001349051A JP3837487B2 JP 3837487 B2 JP3837487 B2 JP 3837487B2 JP 2001349051 A JP2001349051 A JP 2001349051A JP 2001349051 A JP2001349051 A JP 2001349051A JP 3837487 B2 JP3837487 B2 JP 3837487B2
Authority
JP
Japan
Prior art keywords
catalyst
oxide
weight
hours
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001349051A
Other languages
Japanese (ja)
Other versions
JP2003144931A (en
Inventor
昌弘 斉藤
和久 村田
功 高原
仁 稲葉
直樹 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001349051A priority Critical patent/JP3837487B2/en
Publication of JP2003144931A publication Critical patent/JP2003144931A/en
Application granted granted Critical
Publication of JP3837487B2 publication Critical patent/JP3837487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、メタノールを触媒上で水蒸気と反応させて水素を製造する、いわゆるメタノール改質反応に使用する触媒に関するものである。
【0002】
【従来の技術】
最近、燃料電池用の燃料として水素が重要視され、水素製造法の一つとしてメタノールからの水素製造が注目されている。
従来、メタノールを触媒上で水蒸気と反応させて水素を製造する、いわゆるメタノール改質反応は、例えば、銅/亜鉛/アルミニウムの酸化物からなる触媒あるいは貴金属系触媒を用いて、220℃程度の温度で容易に進行することが知られている(触媒、第37巻、320頁〜326頁(1995))。
【0003】
しかし、実用的な触媒としては、高活性であるともに、長時間の耐久性にも優れた触媒が必要とされている。
【0004】
そのため、銅/亜鉛/アルミニウムの酸化物からなる触媒に種々の化合物を添加して、触媒の性能を改善する試みは、これまで数多く行われてきている。
例えば、特開2001−46872においては、La,Ca,Ga,Zr,Ce,Cr,BaおよびMgの添加が有効であると報告されている。しかしながら、この公開特許公報においては、4成分触媒の性能は開示されているが、5成分以上の多成分触媒の性能は開示されていない。さらに、長時間の反応における触媒活性の安定性については、全く記述が無い。とくに、触媒活性の低下の原因の一つとみられているメタノール改質反応中の極微量の副生成物である酢酸共存下での反応における触媒活性の安定性については、全く述べられていない。
【0005】
【発明が解決しようとする課題】
本発明は、メタノールを水蒸気と反応させて水素を製造するに際し、高活性で、とくに長時間の耐久性にも優れた触媒を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明者は、銅/亜鉛/アルミニウムの酸化物からなる触媒の性能に及ぼす種々の添加物の影響を検討した結果、意外にも酸化ジルコニウムおよび酸化セリウムを添加した触媒により、その課題を解決し得ることを見い出した。
【0007】
即ち、本発明によれば、第一に、酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウムおよび酸化セリウムを必須成分とすることを特徴とするメタノールを水蒸気で改質して水素を製造する際に用いられるメタノール改質用触媒が提供される。
第二に、第一の発明において、更に酸化ガリウムを含有することを特徴とするメタノール改質用触媒が提供される。
第三に、第一又は第二の発明において、触媒は480〜690℃での焼成処理を受けていることを特徴とするメタノール改質用触媒が提供される。
第四に、第一乃至第三の何れかの発明において、酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウムおよび酸化セリウムを必須成分とし、酸化ガリウムを任意成分とする金属酸化物で構成された触媒であって、触媒全体を100重量%とするとき、各酸化物の含有量が、上記の順に20〜60重量%、10〜50重量%、2〜10重量%、10〜40重量%、2〜10重量%、0〜10重量%であることを特徴とするメタノール改質用触媒が提供される。
【0008】
【発明の実施の形態】
以下本発明を詳細に説明する。
【0009】
本発明に係る、水蒸気で改質して水素を製造する際に用いられるメタノール改質用触媒成分は、酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウムおよび酸化セリウムを必須成分とするものであるが、触媒の更なる活性の向上などのために、酸化ガリウムを添加することは有効である。また、本発明の趣旨を損なわない範囲で、他の物質を含んでいても良い。
【0010】
本発明の触媒の特徴は、高い活性を示すとともに、優れた耐久性、即ち、その高い触媒活性が長期にわたって維持されることにある。
これは、添加した酸化ジルコニウムおよび酸化セリウムの作用によるものである。酸化ジルコニウムおよび酸化セリウムの作用の内容が完全には明らかになっているわけではないが、酸化ジルコニウムは、触媒構造の安定化を改善できるものと、また、酸化セリウムは、セリウムの価数が四価から三価との間を容易に往来できることにより、反応中の触媒表面を活性状態に保持できるものと推察している。なお、セリウムと同じく希土類元素の一つであるランタンの酸化物を添加しても、酸化ランタン中のランタンの価数が三価のまま変化しないため、触媒の性能は改善されない(後記の比較例5参照)。
【0011】
各触媒成分の割合は、特に限定されないが、触媒全体を100重量%とするとき、酸化銅が20〜60重量%(好ましくは30〜50重量%)、酸化亜鉛が10〜50重量%(好ましくは20〜40重量%)、酸化アルミニウムが2〜10重量%(好ましくは4〜8重量%)、酸化ジルコニウムが10〜40重量%(好ましくは20〜30重量%)、酸化セリウムが2〜10重量%(好ましくは4〜8重量%)、酸化ガリウムなどの任意成分0〜10重量%(好ましくは2〜8重量%)とされる。このような量的範囲において、組成を目的反応に応じて適切に定めることにより、その反応に適した触媒性能を得ることができる。
【0012】
本発明の銅系触媒は、480〜690℃での焼成処理を受けていることが好ましい。焼成温度が480℃未満では、耐久性が不足する。焼成温度が690℃を越えるときも、触媒活性の点でマイナスとなる。このように焼成処理温度は好ましくは480〜690℃の範囲から選ばれるが、触媒の性能上の観点から、上記範囲の中でも高目の520〜680℃とすることが望ましい。特に好ましい範囲は、より高目の560〜670℃である。
【0013】
本発明の触媒は、公知の共沈法あるいはそれに準ずる方法により容易に製造される。その1例を説明すると、次の通りである。
先ず、銅、亜鉛、アルミニウム、ジルコニウム、セリウムの必須成分、および好ましくはガリウムなどの任意成分の硝酸塩、硫酸塩などを水に溶解した混合水溶液を調製する。一方、炭酸ナトリウム、炭酸水素ナトリウムなどを水に溶解し、沈殿剤水溶液とする。これらの二つの溶液を混合することにより、共沈殿物が生成する。これを、ろ過、洗浄したものを、所定の温度で乾燥、焼成することにより、酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化セリウムおよび好ましくは酸化ガリウムからなる本発明の触媒が製造される。
【0014】
さらに、本発明の触媒は、共沈法で調製した触媒前駆体にセリウム化合物を添加することによっても製造される。製造された触媒は、上記の共沈法で製造された触媒に比べて、触媒活性は少し低下するものの、触媒活性の安定性は向上する。その1例を説明すると、次の通りである。
先ず、銅、亜鉛、アルミニウム、ジルコニウムの必須成分、および好ましくはガリウムなどの任意成分の硝酸塩、硫酸塩などを水に溶解した混合水溶液を調製する。一方、炭酸ナトリウム、炭酸水素ナトリウムなどを水に溶解し、沈殿剤水溶液とする。これらの二つの溶液を混合することにより、共沈殿物が生成する。これを、ろ過、洗浄した触媒前駆体に、セリウムの硝酸塩などを水に溶解した水溶液を添加し、良く混合した後、所定の温度で乾燥、焼成することにより、酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化セリウムおよび好ましくは酸化ガリウムからなる本発明の触媒が製造される。
【0015】
必須触媒成分である酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム及び酸化セリウム、さらに、酸化ガリウムなどの任意の金属酸化物を調製するための原料としては、水溶性の硝酸塩、硫酸塩、オキシ硝酸塩、オキシ塩化物などを適宜用いることができる。
【0016】
上記の触媒製造過程において、触媒成分を含む沈殿物を調製するための沈殿剤としては、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウムなどの塩基性化合物を用いることができる。沈殿物の洗浄、ろ過、乾燥は、公知の方法で行うことができる。
【0017】
乾燥後の沈殿物は、480℃〜690℃(好ましくは、520〜680℃)で酸素雰囲気下(通常は空気中)で焼成処理することにより、上述の金属成分は酸化物の形態となる。
【0018】
このようにして得た触媒は、そのままで、あるいは適当な方法により造粒または打錠成型して用いる。触媒の粒子径や形状は、反応方式、反応器の形状によって任意に選択できる。
【0019】
上記のようにして得られた本発明のメタノール改質用触媒は、使用に先立って、水素などにより、200℃〜450℃で触媒中の酸化銅成分を還元したほうが良い。
【0020】
本発明による触媒は、固定床でのメタノール改質反応においても、流動床でのメタノール改質反応においても有用である。
【0021】
本発明による触媒を用いてメタノールを改質する際の反応条件は、概ね、水蒸気/メタノール=1〜5(モル比)、反応温度は150〜350℃、反応圧力は0.1〜2MPaの範囲が適している。また、反応の熱バランスを保つなどの目的のため、反応原料に、少量の酸素などの酸化剤を加えても良い。
【0022】
【実施例】
以下、実施例をあげて本発明の特徴とするところをより一層明確にする。
【0023】
実施例1
硝酸銅三水和物34.3g、硝酸亜鉛六水和物24.7g、硝酸アルミニウム九水和物8.3g、オキシ硝酸ジルコニウム二水和物12.2gおよび硝酸セリウム六水和物3.1gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム36.7gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅43.3重量%、酸化亜鉛26.0重量%、酸化アルミニウム4.3重量%、酸化ジルコニウム21.6重量%および酸化セリウム(CeO)4.8重量%であった。
【0024】
得られた触媒0.3mlを反応管に充填し、ヘリウムと水素の混合ガス(ヘリウム90容量%、水素10容量%)を用いて、300℃で、2時間還元処理を行った後、600ppmの酢酸を含有する水/メタノールのモル比1.5の反応原料を3.9g/時の流速で、ヘリウムをキャリアーガス(He流速=5l/時)として触媒層に通して、圧力0.6MPa、温度300℃の条件下でメタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間、800時間および1000時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間および1000時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
【0025】
実施例2
硝酸銅三水和物34.0g、硝酸亜鉛六水和物24.5g、硝酸アルミニウム九水和物8.2g、オキシ硝酸ジルコニウム二水和物9.7g、硝酸ガリウム水和物4.0gおよび硝酸セリウム六水和物3.1gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム37.4gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅43.3重量%、酸化亜鉛26.0重量%、酸化アルミニウム4.3重量%、酸化ジルコニウム17.3重量%、酸化ガリウム4.3重量%および酸化セリウム(CeO)4.8重量%およびであった。
【0026】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、実施例1の触媒に、更に酸化ガリウムを添加した触媒は、触媒活性が向上することが明らかである。
【0027】
実施例3
硝酸銅三水和物34.8g、硝酸亜鉛六水和物25.1g、硝酸アルミニウム九水和物8.4g、オキシ硝酸ジルコニウム二水和物9.9gおよび硝酸ガリウム水和物4.1gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム37.0gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、350℃で2時間焼成して触媒前駆体を得た。この触媒前駆体1.9gに、酢酸セリウム一水和物を0.19gを蒸留水10mlに溶解した水溶液を含浸させた後、110℃で乾燥し、空気中、600℃で2時間焼成して触媒を得た。触媒の組成は、酸化銅43.2重量%、酸化亜鉛25.9重量%、酸化アルミニウム4.3重量%、酸化ジルコニウム17.3重量%、酸化ガリウム4.3重量%および酸化セリウム(CeO)5.0重量%であった。
【0028】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
【0029】
実施例4
実施例3と同様にして得た触媒前駆体1.8gに、酢酸セリウム一水和物を0.39gを蒸留水10mlに溶解した水溶液を含浸させた後、110℃で乾燥し、空気中、600℃で2時間焼成して触媒を得た。触媒の組成は、酸化銅40.9重量%、酸化亜鉛24.5重量%、酸化アルミニウム4.1重量%、酸化ジルコニウム16.4重量%、酸化ガリウム4.1重量%および酸化セリウム(CeO)10.0重量%であった。
【0030】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
実施例3および4の結果から、先に触媒前駆体を調製し、その後、セリウム化合物を添加することにより触媒を製造した場合、触媒活性は少し低下するものの、触媒活性は安定になることが明らかである。
【0031】
比較例1
硝酸銅三水和物32.5g、硝酸亜鉛六水和物43.0gおよび硝酸アルミニウム九水和物7.9gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム36.2gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅45.5重量%、酸化亜鉛50.0重量%、酸化アルミニウム4.5重量%であった。
【0032】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、酸化ジルコニウムおよび酸化セリウムを添加していない触媒は、酸化ジルコニウムおよび酸化セリウムを添加した触媒(実施例1)に比べて、触媒活性および触媒活性の安定性が著しく低いことが明らかである。
【0033】
比較例2
硝酸銅三水和物33.2g、硝酸亜鉛六水和物39.9g、硝酸アルミニウム九水和物8.0gおよび硝酸セリウム六水和物2.9gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム36.7gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅45.4重量%、酸化亜鉛45.3重量%、酸化アルミニウム4.5重量%および酸化セリウム(CeO)4.8重量%であった。
【0034】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、酸化ジルコニウムを添加していない触媒は、酸化ジルコニウムを添加した触媒(実施例1)に比べて、触媒活性の安定性が著しく低いことが明らかである。
【0035】
比較例3
硝酸銅三水和物35.1g、硝酸亜鉛六水和物25.3g、硝酸アルミニウム九水和物8.5gおよびオキシ硝酸ジルコニウム二水和物12.5gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム36.3gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅45.5重量%、酸化亜鉛27.3重量%、酸化アルミニウム4.5重量%および酸化ジルコニウム22.7重量%であった。
【0036】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、酸化セリウムを添加していない触媒は、酸化セリウムを添加した触媒(実施例1)に比べて、触媒活性の安定性が少し低いことが明らかである。
【0037】
比較例4
硝酸銅三水和物34.8g、硝酸亜鉛六水和物25.1g、硝酸アルミニウム九水和物8.4g、オキシ硝酸ジルコニウム二水和物9.9gおよび硝酸ガリウム水和物4.1gを蒸留水に溶解し、300mlの水溶液を調製し、A液とした。一方、無水炭酸ナトリウム37.0gを蒸留水に溶解し、300mlの水溶液を調製し、B液とした。A液およびB液を、それぞれ、8ml/分の速度で良く攪拌した800mlの室温の蒸留水に、同時に滴下して沈殿物を得た。この沈殿物を室温にて3日間熟成させた後、ろ過、洗浄を行い、沈殿物中のナトリウムを除去した。その後、沈殿物を110℃で乾燥し、空気中、600℃で2時間焼成して、触媒を得た。この触媒の組成は、酸化銅45.5重量%、酸化亜鉛27.3重量%、酸化アルミニウム4.5重量%、酸化ジルコニウム18.2重量%および酸化ガリウム4.5重量%であった。
【0038】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、酸化セリウムを添加していない触媒は、酸化セリウムを添加した触媒(実施例2)に比べて、触媒活性の安定性が低いことが明らかである。
【0039】
比較例5
実施例3と同様にして得た触媒前駆体1.8gに、酢酸ランタン水和物を0.42gを蒸留水10mlに溶解した水溶液を含浸させた後、110℃で乾燥し、空気中、600℃で2時間焼成して触媒を得た。触媒の組成は、酸化銅40.9重量%、酸化亜鉛24.5重量%、酸化アルミニウム4.1重量%、酸化ジルコニウム16.4重量%、酸化ガリウム4.1重量%および酸化ランタン10.0重量%であった。
【0040】
得られた触媒0.3mlを反応管に充填し、実施例1と同様にして、メタノール改質反応を行った。
反応生成ガスをガスクロマトグラフにより分析し、水素空時収量を調べた。反応経過時間48時間および800時間における水素空時収量、並びに触媒活性安定性(反応経過時間800時間における水素空時収量/反応経過時間48時間における水素空時収量)を表1に示す。水素以外の生成物は、主にCOとCOであった。
この結果から、酸化ランタンを添加した触媒は、触媒活性の安定性が改善されないことが明らかである。
【0041】
表1

Figure 0003837487
【0042】
【発明の効果】
本発明のメタノール改質用触媒は、優れた耐久性、即ち、その高い触媒活性が長期にわたって維持されるので、工業的に極めて有利な触媒活性安定性の高い触媒である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst used in a so-called methanol reforming reaction in which methanol is reacted with water vapor on a catalyst to produce hydrogen.
[0002]
[Prior art]
Recently, hydrogen is regarded as important as a fuel for fuel cells, and hydrogen production from methanol is attracting attention as one of hydrogen production methods.
Conventionally, the so-called methanol reforming reaction in which methanol is reacted with water vapor on a catalyst to produce hydrogen is performed at a temperature of about 220 ° C. using, for example, a catalyst comprising a copper / zinc / aluminum oxide or a noble metal catalyst. (Catalyst, 37, 320-326 (1995)).
[0003]
However, as a practical catalyst, a catalyst that is highly active and excellent in durability for a long time is required.
[0004]
Therefore, many attempts have been made so far to improve the performance of the catalyst by adding various compounds to the catalyst made of copper / zinc / aluminum oxide.
For example, JP-A-2001-46872 reports that addition of La, Ca, Ga, Zr, Ce, Cr, Ba, and Mg is effective. However, in this published patent publication, the performance of a four-component catalyst is disclosed, but the performance of a multi-component catalyst having five or more components is not disclosed. Furthermore, there is no description about the stability of the catalyst activity in the long-time reaction. In particular, there is no mention of the stability of the catalytic activity in the reaction in the presence of acetic acid, which is an extremely small by-product during the methanol reforming reaction, which is considered to be one of the causes of the decrease in the catalytic activity.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a catalyst that is highly active and particularly excellent in durability for a long time when hydrogen is produced by reacting methanol with water vapor.
[0006]
[Means for Solving the Problems]
As a result of studying the influence of various additives on the performance of a copper / zinc / aluminum oxide catalyst, the present inventors have unexpectedly solved the problem with a catalyst to which zirconium oxide and cerium oxide are added. Found out to get.
[0007]
That is, according to the present invention, firstly, when hydrogen is produced by reforming methanol with steam, which contains copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide as essential components. The methanol reforming catalyst used is provided.
Secondly, in the first invention, there is provided a methanol reforming catalyst characterized by further containing gallium oxide.
Third, in the first or second invention, there is provided a methanol reforming catalyst characterized in that the catalyst is subjected to a calcination treatment at 480 to 690 ° C.
Fourth, in any one of the first to third inventions, the catalyst is composed of a metal oxide containing copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide as essential components and gallium oxide as an optional component. When the total catalyst is 100% by weight, the content of each oxide is 20 to 60% by weight, 10 to 50% by weight, 2 to 10% by weight, 10 to 40% by weight, 2% in the above order. A methanol reforming catalyst is provided, characterized in that the catalyst content is from 10 to 10% by weight and from 0 to 10% by weight.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
[0009]
The methanol reforming catalyst component used when producing hydrogen by reforming with steam according to the present invention comprises copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide as essential components. In order to further improve the activity of the catalyst, it is effective to add gallium oxide. In addition, other substances may be included within the range not impairing the gist of the present invention.
[0010]
The catalyst of the present invention is characterized by high activity and excellent durability, that is, its high catalytic activity is maintained over a long period of time.
This is due to the action of added zirconium oxide and cerium oxide. Although the details of the action of zirconium oxide and cerium oxide are not completely clear, zirconium oxide can improve the stabilization of the catalyst structure, and cerium oxide has a cerium valence of four. It is presumed that the surface of the catalyst during the reaction can be maintained in an active state by being able to easily go between valence and trivalence. In addition, even if lanthanum oxide, which is one of the rare earth elements like cerium, is added, the lanthanum valence in the lanthanum oxide remains trivalent, so the performance of the catalyst is not improved (Comparative Example described later) 5).
[0011]
The ratio of each catalyst component is not particularly limited, but when the total catalyst is 100% by weight, copper oxide is 20 to 60% by weight (preferably 30 to 50% by weight), and zinc oxide is 10 to 50% by weight (preferably Is 20 to 40% by weight), aluminum oxide is 2 to 10% by weight (preferably 4 to 8% by weight), zirconium oxide is 10 to 40% by weight (preferably 20 to 30% by weight), and cerium oxide is 2 to 10% by weight. It may be 0% by weight (preferably 4-8% by weight) and 0-10% by weight (preferably 2-8% by weight) of optional components such as gallium oxide. In such a quantitative range, the catalyst performance suitable for the reaction can be obtained by appropriately determining the composition according to the target reaction.
[0012]
The copper catalyst of the present invention is preferably subjected to a calcination treatment at 480 to 690 ° C. When the firing temperature is less than 480 ° C., the durability is insufficient. Even when the calcination temperature exceeds 690 ° C., it is negative in terms of catalyst activity. Thus, the calcination temperature is preferably selected from the range of 480 to 690 ° C., but from the viewpoint of the performance of the catalyst, it is desirable to set the higher 520 to 680 ° C. in the above range. A particularly preferred range is the higher 560-670 ° C.
[0013]
The catalyst of the present invention is easily produced by a known coprecipitation method or a method analogous thereto. One example is described as follows.
First, a mixed aqueous solution in which essential components of copper, zinc, aluminum, zirconium, cerium, and preferably nitrates, sulfates, and the like of optional components such as gallium are dissolved in water is prepared. On the other hand, sodium carbonate, sodium hydrogen carbonate or the like is dissolved in water to obtain a precipitant aqueous solution. By mixing these two solutions, a coprecipitate is formed. The catalyst after filtration and washing is dried and calcined at a predetermined temperature to produce the catalyst of the present invention comprising copper oxide, zinc oxide, aluminum oxide, zirconium oxide, cerium oxide, and preferably gallium oxide. .
[0014]
Furthermore, the catalyst of the present invention can also be produced by adding a cerium compound to a catalyst precursor prepared by a coprecipitation method. The produced catalyst has a slightly lower catalytic activity than the catalyst produced by the coprecipitation method, but the stability of the catalytic activity is improved. One example is described as follows.
First, a mixed aqueous solution in which essential components such as copper, zinc, aluminum, and zirconium, and optional nitrates such as gallium, sulfates, and the like are dissolved in water is prepared. On the other hand, sodium carbonate, sodium hydrogen carbonate or the like is dissolved in water to obtain a precipitant aqueous solution. By mixing these two solutions, a coprecipitate is formed. This is filtered and washed to the catalyst precursor, an aqueous solution in which cerium nitrate is dissolved in water is added and mixed well, and then dried and fired at a predetermined temperature to obtain copper oxide, zinc oxide, and aluminum oxide. , A catalyst of the invention consisting of zirconium oxide, cerium oxide and preferably gallium oxide.
[0015]
As raw materials for preparing any metal oxide such as copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide, which are essential catalyst components, and gallium oxide, water-soluble nitrates, sulfates, oxynitrates In addition, oxychloride can be used as appropriate.
[0016]
In the above catalyst production process, a basic compound such as sodium carbonate, sodium hydrogen carbonate, sodium hydroxide can be used as a precipitant for preparing a precipitate containing a catalyst component. Washing, filtration and drying of the precipitate can be performed by known methods.
[0017]
The precipitate after drying is fired at 480 ° C. to 690 ° C. (preferably 520 to 680 ° C.) in an oxygen atmosphere (usually in air), whereby the above-described metal component is in the form of an oxide.
[0018]
The catalyst thus obtained is used as it is or after being granulated or tableted by an appropriate method. The particle diameter and shape of the catalyst can be arbitrarily selected depending on the reaction system and the shape of the reactor.
[0019]
In the methanol reforming catalyst of the present invention obtained as described above, it is better to reduce the copper oxide component in the catalyst at 200 ° C. to 450 ° C. with hydrogen or the like prior to use.
[0020]
The catalyst according to the present invention is useful in both a methanol reforming reaction in a fixed bed and a methanol reforming reaction in a fluidized bed.
[0021]
The reaction conditions for reforming methanol using the catalyst according to the present invention are generally steam / methanol = 1 to 5 (molar ratio), reaction temperature is 150 to 350 ° C., and reaction pressure is 0.1 to 2 MPa. Is suitable. In addition, for the purpose of maintaining the heat balance of the reaction, a small amount of an oxidizing agent such as oxygen may be added to the reaction raw material.
[0022]
【Example】
Hereinafter, the features of the present invention will be further clarified by giving examples.
[0023]
Example 1
Copper nitrate trihydrate 34.3 g, zinc nitrate hexahydrate 24.7 g, aluminum nitrate nonahydrate 8.3 g, zirconium oxynitrate dihydrate 12.2 g and cerium nitrate hexahydrate 3.1 g Was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 36.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 43.3% by weight of copper oxide, 26.0% by weight of zinc oxide, 4.3% by weight of aluminum oxide, 21.6% by weight of zirconium oxide and 4.8% by weight of cerium oxide (CeO 2 ). there were.
[0024]
After 0.3 ml of the obtained catalyst was filled in a reaction tube and subjected to reduction treatment at 300 ° C. for 2 hours using a mixed gas of helium and hydrogen (90% by volume of helium, 10% by volume of hydrogen), 600 ppm A reaction raw material containing acetic acid in a water / methanol molar ratio of 1.5 was passed through the catalyst layer at a flow rate of 3.9 g / hr and helium as a carrier gas (He flow rate = 5 l / hr), a pressure of 0.6 MPa, A methanol reforming reaction was performed under the condition of a temperature of 300 ° C.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. The hydrogen space time yield at 48 hours, 800 hours and 1000 hours of reaction elapsed time, and the catalytic activity stability (hydrogen space time yield at 800 hours and 1000 hours of reaction time / hydrogen space time yield at 48 hours of reaction time) are shown. It is shown in 1. Products other than hydrogen were mainly CO 2 and CO.
[0025]
Example 2
Copper nitrate trihydrate 34.0 g, zinc nitrate hexahydrate 24.5 g, aluminum nitrate nonahydrate 8.2 g, zirconium oxynitrate dihydrate 9.7 g, gallium nitrate hydrate 4.0 g and Cerium nitrate hexahydrate (3.1 g) was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 37.4 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was as follows: copper oxide 43.3% by weight, zinc oxide 26.0% by weight, aluminum oxide 4.3% by weight, zirconium oxide 17.3% by weight, gallium oxide 4.3% by weight and cerium oxide (CeO 2 ) 4.8 wt% and.
[0026]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst activity of the catalyst obtained by further adding gallium oxide to the catalyst of Example 1 is improved.
[0027]
Example 3
Copper nitrate trihydrate 34.8g, zinc nitrate hexahydrate 25.1g, aluminum nitrate nonahydrate 8.4g, zirconium oxynitrate dihydrate 9.9g and gallium nitrate hydrate 4.1g It melt | dissolved in distilled water and 300 ml aqueous solution was prepared and it was set as the A liquid. On the other hand, 37.0 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 350 ° C. for 2 hours to obtain a catalyst precursor. After 1.9 g of this catalyst precursor was impregnated with an aqueous solution in which 0.19 g of cerium acetate monohydrate was dissolved in 10 ml of distilled water, it was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours. A catalyst was obtained. The composition of the catalyst was 43.2% by weight of copper oxide, 25.9% by weight of zinc oxide, 4.3% by weight of aluminum oxide, 17.3% by weight of zirconium oxide, 4.3% by weight of gallium oxide and cerium oxide (CeO 2 ) 5.0% by weight.
[0028]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
[0029]
Example 4
The catalyst precursor obtained in the same manner as in Example 3 was impregnated with an aqueous solution obtained by dissolving 0.39 g of cerium acetate monohydrate in 10 ml of distilled water, and then dried at 110 ° C. The catalyst was obtained by calcination at 600 ° C. for 2 hours. The composition of the catalyst, copper oxide 40.9 wt%, zinc oxide 24.5% by weight of aluminum oxide 4.1 wt%, zirconium oxide 16.4 wt%, gallium oxide 4.1 wt% and cerium oxide (CeO 2 ) 10.0% by weight.
[0030]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From the results of Examples 3 and 4, it is clear that when the catalyst precursor is prepared first and then the catalyst is produced by adding a cerium compound, the catalyst activity is slightly reduced, but the catalyst activity becomes stable. It is.
[0031]
Comparative Example 1
32.5 g of copper nitrate trihydrate, 43.0 g of zinc nitrate hexahydrate and 7.9 g of aluminum nitrate nonahydrate were dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution A. On the other hand, 36.2 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 45.5% by weight of copper oxide, 50.0% by weight of zinc oxide, and 4.5% by weight of aluminum oxide.
[0032]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst to which zirconium oxide and cerium oxide are not added has remarkably low catalytic activity and stability of catalytic activity compared to the catalyst to which zirconium oxide and cerium oxide are added (Example 1). is there.
[0033]
Comparative Example 2
33.2 g of copper nitrate trihydrate, 39.9 g of zinc nitrate hexahydrate, 8.0 g of aluminum nitrate nonahydrate and 2.9 g of cerium nitrate hexahydrate were dissolved in distilled water, and 300 ml of an aqueous solution was dissolved. It prepared and it was set as the A liquid. On the other hand, 36.7 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 45.4% by weight of copper oxide, 45.3% by weight of zinc oxide, 4.5% by weight of aluminum oxide and 4.8% by weight of cerium oxide (CeO 2 ).
[0034]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst to which zirconium oxide is not added has significantly lower stability of the catalytic activity than the catalyst to which zirconium oxide is added (Example 1).
[0035]
Comparative Example 3
35.1 g of copper nitrate trihydrate, 25.3 g of zinc nitrate hexahydrate, 8.5 g of aluminum nitrate nonahydrate and 12.5 g of zirconium oxynitrate dihydrate were dissolved in distilled water, and 300 ml of an aqueous solution was obtained. To prepare a solution A. On the other hand, 36.3 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 45.5% by weight of copper oxide, 27.3% by weight of zinc oxide, 4.5% by weight of aluminum oxide and 22.7% by weight of zirconium oxide.
[0036]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst to which cerium oxide is not added is slightly less stable in the catalytic activity than the catalyst to which cerium oxide is added (Example 1).
[0037]
Comparative Example 4
34.8 g of copper nitrate trihydrate, 25.1 g of zinc nitrate hexahydrate, 8.4 g of aluminum nitrate nonahydrate, 9.9 g of zirconium oxynitrate dihydrate, and 4.1 g of gallium nitrate hydrate It melt | dissolved in distilled water and 300 ml aqueous solution was prepared and it was set as A liquid. On the other hand, 37.0 g of anhydrous sodium carbonate was dissolved in distilled water to prepare a 300 ml aqueous solution, which was designated as solution B. Liquid A and liquid B were each added dropwise simultaneously to 800 ml of room temperature distilled water that was well stirred at a rate of 8 ml / min to obtain a precipitate. The precipitate was aged at room temperature for 3 days, then filtered and washed to remove sodium in the precipitate. Thereafter, the precipitate was dried at 110 ° C. and calcined in air at 600 ° C. for 2 hours to obtain a catalyst. The composition of this catalyst was 45.5% by weight of copper oxide, 27.3% by weight of zinc oxide, 4.5% by weight of aluminum oxide, 18.2% by weight of zirconium oxide and 4.5% by weight of gallium oxide.
[0038]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst to which cerium oxide is not added has lower stability of the catalyst activity than the catalyst to which cerium oxide is added (Example 2).
[0039]
Comparative Example 5
1.8 g of the catalyst precursor obtained in the same manner as in Example 3 was impregnated with an aqueous solution in which 0.42 g of lanthanum acetate hydrate was dissolved in 10 ml of distilled water, then dried at 110 ° C., and 600 in air. The catalyst was obtained by calcining at 2 ° C. for 2 hours. The composition of the catalyst was 40.9 wt% copper oxide, 24.5 wt% zinc oxide, 4.1 wt% aluminum oxide, 16.4 wt% zirconium oxide, 4.1 wt% gallium oxide and 10.0 lanthanum oxide. % By weight.
[0040]
0.3 ml of the obtained catalyst was filled in a reaction tube, and a methanol reforming reaction was carried out in the same manner as in Example 1.
The reaction product gas was analyzed by gas chromatography, and the hydrogen space time yield was examined. Table 1 shows the hydrogen space time yield at 48 hours and 800 hours of reaction time and the catalyst activity stability (hydrogen space time yield at 800 hours of reaction time / hydrogen space time yield at 48 hours of reaction time). Products other than hydrogen were mainly CO 2 and CO.
From this result, it is clear that the catalyst added with lanthanum oxide does not improve the stability of the catalytic activity.
[0041]
Table 1
Figure 0003837487
[0042]
【The invention's effect】
The methanol reforming catalyst of the present invention has excellent durability, that is, its high catalytic activity is maintained over a long period of time.

Claims (4)

酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウムおよび酸化セリウムを必須成分とすることを特徴とするメタノールを水蒸気で改質して水素を製造する際に用いられるメタノール改質用触媒。A methanol reforming catalyst used for producing hydrogen by reforming methanol with water vapor, comprising copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide as essential components. 更に、酸化ガリウムを含有することを特徴とする請求項1に記載のメタノール改質用触媒。The methanol reforming catalyst according to claim 1, further comprising gallium oxide. 触媒は480〜690℃での焼成処理を受けていることを特徴とする請求項1又は2に記載のメタノール改質用触媒。The catalyst for methanol reforming according to claim 1 or 2, wherein the catalyst is subjected to a calcination treatment at 480 to 690 ° C. 酸化銅、酸化亜鉛、酸化アルミニウム、酸化ジルコニウムおよび酸化セリウムを必須成分とし、酸化ガリウムを任意成分とする金属酸化物で構成された触媒であって、触媒全体を100重量%とするとき、各酸化物の含有量が、上記の順に20〜60重量%、10〜50重量%、2〜10重量%、10〜40重量%、2〜10重量%、0〜10重量%であることを特徴とする請求項1乃至3何れかに記載のメタノール改質用触媒。A catalyst composed of a metal oxide containing copper oxide, zinc oxide, aluminum oxide, zirconium oxide and cerium oxide as essential components and gallium oxide as an optional component, and when the total amount of the catalyst is 100% by weight, The content of the product is 20-60 wt%, 10-50 wt%, 2-10 wt%, 10-40 wt%, 2-10 wt%, 0-10 wt% in the above order. The methanol reforming catalyst according to any one of claims 1 to 3.
JP2001349051A 2001-11-14 2001-11-14 Methanol reforming catalyst Expired - Lifetime JP3837487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001349051A JP3837487B2 (en) 2001-11-14 2001-11-14 Methanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001349051A JP3837487B2 (en) 2001-11-14 2001-11-14 Methanol reforming catalyst

Publications (2)

Publication Number Publication Date
JP2003144931A JP2003144931A (en) 2003-05-20
JP3837487B2 true JP3837487B2 (en) 2006-10-25

Family

ID=19161780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001349051A Expired - Lifetime JP3837487B2 (en) 2001-11-14 2001-11-14 Methanol reforming catalyst

Country Status (1)

Country Link
JP (1) JP3837487B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5585805B2 (en) * 2007-08-13 2014-09-10 日産自動車株式会社 PM oxidation catalyst and production method thereof

Also Published As

Publication number Publication date
JP2003144931A (en) 2003-05-20

Similar Documents

Publication Publication Date Title
US4598061A (en) Catalyst for the synthesis of methanol and alcohol mixtures containing higher alcohols and method of making the catalyst
JP4062647B2 (en) Catalyst for steam reforming of methanol
US5691263A (en) Amorphous perovskite catalysts for nitrogen oxide reduction and methods of preparing the same
JPS62210057A (en) Catalyst and its production
CN102105222A (en) Catalyst for synthesizing methanol from synthesis gas and preparation method thereof
JP3553066B2 (en) Process for the catalytic decomposition of nitrous oxide contained in pure or gaseous mixtures
WO2010035653A1 (en) Methanol dehydrogenation catalyst for producing methyl formate and method for producing methyl formate
JP2013129554A (en) Composite oxide, method for producing the same, and catalyst for exhaust gas purification
JPH04214026A (en) Ceria with high surface area
CA2085315A1 (en) Process for the preparation of synthetic gases
US6037305A (en) Use of Ce/Zr mixed oxide phase for the manufacture of styrene by dehydrogenation of ethylbenzene
JP2002292282A (en) Dehydrogenation catalyst for cyclohexanol and method for manufacturing the same
JPH10216522A (en) Catalyst for methanol synthesis
CN111229249A (en) Multi-component water-resistant catalyst for preparing carboxylic ester by aldehyde oxidative esterification, preparation method of multi-component water-resistant catalyst and preparation method of carboxylic ester
KR101584399B1 (en) Method for preparing dimethyl carbonate using supported catalyst
JP4119980B2 (en) Catalyst for propane dehydrogenation reaction
JPH10277392A (en) Catalyst for synthesis of methanol
JP3530937B2 (en) Catalyst for methanol synthesis
JP3837487B2 (en) Methanol reforming catalyst
JP2006256911A (en) Preparation method of ceria-zirconia-based oxide
JP3837520B2 (en) Catalyst for CO shift reaction
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JP3944875B2 (en) Catalyst for synthesizing carboxylic acid ester and method for producing carboxylic acid ester
JPH039772B2 (en)
JP3794079B2 (en) Production method of carbonic acid diester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

R150 Certificate of patent or registration of utility model

Ref document number: 3837487

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term