JP3837026B2 - Substrate cleaning apparatus and substrate cleaning method - Google Patents

Substrate cleaning apparatus and substrate cleaning method Download PDF

Info

Publication number
JP3837026B2
JP3837026B2 JP2001015027A JP2001015027A JP3837026B2 JP 3837026 B2 JP3837026 B2 JP 3837026B2 JP 2001015027 A JP2001015027 A JP 2001015027A JP 2001015027 A JP2001015027 A JP 2001015027A JP 3837026 B2 JP3837026 B2 JP 3837026B2
Authority
JP
Japan
Prior art keywords
substrate
wafer
liquid
cleaning
moving member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001015027A
Other languages
Japanese (ja)
Other versions
JP2002219424A (en
Inventor
孝之 戸島
武彦 折居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2001015027A priority Critical patent/JP3837026B2/en
Priority to KR1020020003783A priority patent/KR100887360B1/en
Priority to US10/052,534 priority patent/US20020096196A1/en
Publication of JP2002219424A publication Critical patent/JP2002219424A/en
Application granted granted Critical
Publication of JP3837026B2 publication Critical patent/JP3837026B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,例えば半導体ウェハやLCD基板用ガラス等の基板を洗浄処理する基板処理方法に関する。
【0002】
【従来の技術】
例えば半導体デバイスの製造プロセスにおいては,半導体ウェハ(以下,「ウェハ」という。)を薬液や純水等の洗浄液によって洗浄し,ウェハに付着したパーティクル,有機汚染物,金属不純物のコンタミネーションを除去する洗浄システムが使用されている。その中でも,ウェハを回転させて洗浄処理を行うスピン型の基板洗浄装置を備えた枚葉式の洗浄システムが知られている。
【0003】
一般的に洗浄システムには,ウェハの搬送を行う搬送装置が設けられ,この搬送装置により基板洗浄装置に対してウェハが搬入出される。一方,基板洗浄装置には,ウェハを回転自在に保持するスピンチャックが設けられ,ウェハの搬入出の場合,装置内に進入した搬送装置のアームとスピンチャックの間でウェハの受け渡しが行われる。基板洗浄装置では,一般的に半導体デバイスが形成されるウェハ面(ウェハ表面)を上面にしてウェハをスピンチャックにより支持し,スピンチャックにより回転させられたウェハ上面に,洗浄液を供給して洗浄処理を施す。
【0004】
このような基板洗浄装置では,回転しているウェハに洗浄液を連続して供給するので,液消費量が嵩むと共に,スピンチャックにより支持されているウェハ下面(半導体デバイスが形成されないウェハ面すなわちウェハ裏面)には洗浄液を供給できなかったので,ウェハの片面しか洗浄できなかった。そこで,例えば特開平8−78368号公報等において開示された基板洗浄装置によれば,スピンチャック上に設置された複数の支持ピンによりウェハを支持し,ウェハ上面と,ウェハ下面とスピンチャックの隙間とに洗浄液をそれぞれ供給して洗浄することにより,液消費量の節約を図ると共に,ウェハの両面を同時に洗浄する。
【0005】
【発明が解決しようとする課題】
しかしながら,この特開平8−78368号公報号の基板洗浄装置によれば,ウェハ下面とスピンチャックの隙間全体に洗浄液を供給できるように,この隙間を狭くする必要がある。このため,支持ピンの高さが低く抑えられ,例えば前記搬送装置のアームが支持ピンに対してウェハの授受する場合に,スピンチャックに衝突するおそれがあり,ウェハの搬入出が困難となっている。さらに基板洗浄装置には,ウェハ上面に対して移動する上面移動部材が設けられており,ウェハ上面の洗浄液を上面移動部材とウェハ上面の間で挟むことにより,洗浄していた。しかしながら,前述したように半導体デバイスが形成されるウェハ面を上面にしてウェハをスピンチャックに支持させているので,このようなウェハ上面には比較的高い洗浄能力が要求され,上面移動部材を洗浄液に直接接触させてしまうと,上面移動部材にパーティクル等が付着している場合には,このパーティクルによって洗浄液が汚染されてしまうおそれがある。
【0006】
従って本発明の目的は,基板の搬入出を円滑に行うことができ,洗浄効率をより向上させることができる基板洗浄方法を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決するために,処理液を供給して基板を処理する装置であって,基板を支持する支持手段と,前記支持手段により支持された基板下面に近接した処理位置と前記支持手段により支持された基板下面から離れた退避位置との間で相対的に移動する下面移動部材とを備え,前記処理位置に移動した下面移動部材と前記支持手段により支持された基板下面の間に処理液が供給されて基板下面が処理されることを特徴とする,基板処理装置が提供される。
【0008】
本発明において,基板とは,半導体ウェハやLCD基板用ガラス等の基板などが例示され,その他,CD基板,プリント基板,セラミック基板などでも良い。また基板表面は,半導体デバイス等が形成可能なように鏡面となっており,基板裏面は,粗面となっている。また処理液には,例えば各種薬液や純水等の洗浄液があり,本発明の基板処理装置は,例えばウェハ等に洗浄液を供給して洗浄処理する基板洗浄装置として具体化される。
【0009】
基板処理装置にあっては,例えば基板を搬送する搬送装置が,基板を基板処理装置に搬入し,例えば基板表面を上面にして支持手段に基板を渡して支持させる(基板裏面は下面になる)。この場合,下面移動部材は,予め退避位置に相対的に移動しているので,搬送装置は下面移動部材と接触することはなく,搬入が円滑に行われる。その後,下面移動部材は処理位置に相対的に移動し,下面移動部材と基板下面(基板裏面)の間に処理液が供給されて基板下面が処理される。一方,処理後に基板を基板処理装置から搬出する場合は,下面移動部材は退避位置に相対的に移動し,前記搬送装置は,下面移動部材と接触することはなく,支持手段から基板を搬出させることができる。こうして,搬出も円滑に行われる。
【0010】
この基板処理装置にあっては,前記支持手段は,回転自在に構成されていることが好ましい。例えば支持手段は,支持した基板を回転させる。この基板の回転により,下面移動部材と基板下面の間に供給された処理液内に流れが発生し,この液流により,処理液内の淀みを防止すると共に,処理効率を向上させる。例えば下面移動部材と基板下面の間に処理液を液盛りさせる場合,支持手段は,この液盛りが崩れない程度の比較的低速の回転速度(例えば30〜50rpm以下)で基板を回転させたり,また間欠的に基板を回転させ,下面移動部材と基板下面の間に満遍なく処理液を供給した後で新しい処理液を供給する必要を無くす。液盛りが崩れない限り,基板下面全体を,既に下面移動部材と基板下面の間に供給された処理液により処理できるからである。一方,液盛りが崩れた場合には,新液を供給して液盛りを適宜修復する。こうして処理液の消費量を節約する。また,基板の回転により処理液を下面移動部材と基板下面の間から流出させる一方で,下面移動部材と基板下面の間に新たな処理液を供給することにより,下面移動部材と基板下面の間の処理液を常に新しい処理液に置換して好適な処理を実施しても良い。この場合,新液を静かに供給して処理液の省液化を図ると良い。なお,下面移動部材上に処理液を供給して液盛りした後に,下面移動部材を処理位置に相対的に移動させ,基板下面全体に処理液を接触させて処理することも可能である。
【0011】
また,この基板処理装置にあっては,前記下面移動部材に,処理液を所定温度にさせる下面温度調整機構が設けられていることが好ましい。この場合,下面温度調整機構は,処理液を所定温度に調整して例えば反応を促進させる。
【0012】
基板両面を洗浄できるように,前記支持手段により支持された基板上面にも処理液が供給されて基板上面が処理される構成としても良い。また,前記支持手段により支持された基板上面に対して相対的に近接自在な上面移動部材を備えていても良い。更に,基板上面に供給される処理液を所定温度にさせる液温度調整機構を備えていても良い。また,前記上面移動部材に,基板上面に供給された処理液を所定温度にさせる上面温度調整機構が設けられていても良い。
【0013】
本発明によれば,支持手段により支持された基板に対して洗浄液を供給して基板を洗浄する方法であって,前記支持手段により支持された基板下面から離れた退避位置に下面移動部材を相対的に移動させる工程と,前記支持手段に基板を渡して支持させる工程と,前記支持手段により支持された基板下面に近接した処理位置に前記下面移動手段を相対的に移動させ,前記処理位置に移動した下面移動部材と前記支持手段により支持された基板下面の間に洗浄液を液盛りさせ,液盛り後は新しい洗浄液の供給を停止して前記支持手段により支持された基板下面に洗浄液を接触させ,一方,前記支持手段により支持された基板上面に洗浄液を液盛りさせて基板上面に洗浄液を供給し,,液盛り後は新しい洗浄液の供給を停止し,基板上下面に洗浄液を液盛した状態で洗浄処理する工程と,前記基板をリンス処理する工程と,前記基板を乾燥処理する工程と,前記退避位置に,前記下面移動部材を相対的に移動させる工程と,前記支持手段から基板を搬出する工程を有することを特徴とする,基板洗浄方法が提供される。
【0014】
この基板洗浄方法にあっては,支持手段に基板を渡して支持させる場合や,支持手段から基板を離して受け取る場合には,退避位置に下面移動部材を相対的に移動させるので,支持手段に対する基板の授受が円滑に行われる。
【0015】
この基板洗浄方法において,前記基板下面に洗浄液を接触させて処理するに際し,前記処理位置に移動した下面移動部材と前記支持手段により支持された基板下面の間に洗浄液を液盛りさせた状態で処理する。即ち,液盛り後は新しい洗浄液の供給を停止してなるべく既存の洗浄液のみで基板下面を処理し,洗浄液の節約を図る。また,前記基板下面に洗浄液を接触させて処理するに際し,前記下面移動部材に対して相対的に基板を回転させても良い。基板の回転により洗浄液内に液流が発生し,この液流により,洗浄液内の淀みを防止すると共に,処理効率を向上させる。また,前記基板下面に洗浄液を接触させて処理するに際し,洗浄液を所定温度にさせても良い。例えば洗浄液を所定温度に調整して反応を促進させる。
【0016】
また,この基板洗浄方法において,基板上面に洗浄液を供給して処理する工程を有している。そうすれば,基板両面を洗浄できるようになる。この場合,基板上面に洗浄液を液盛りさせた状態で処理すると良い。即ち,液盛り後は新しい洗浄液の供給を停止してなるべく既存の洗浄液のみで基板上面を処理し,洗浄液の節約を図る。また前記支持手段により支持された前記基板上面に対して上面移動部材を相対的に移動させても良い。この場合,例えば前記上面移動部材は,基板上面に供給された洗浄液に接触しない。
【0017】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を,基板の一例としてウェハ両面を洗浄するように構成された基板処理装置としての基板洗浄装置に基づいて説明する。図1は,本実施の形態にかかる基板洗浄装置8,9,10,11を組み込んだ洗浄システム1の斜視図である。洗浄システム1は,キャリアC単位でウェハWを搬入し,ウェハWを一枚ずつ洗浄,乾燥し,キャリア単位でウェハWを搬出するように構成されている。
【0018】
この洗浄システム1には,ウェハWを収納したキャリアCを4個分載置できる載置部2が設けられている。洗浄システム1の中央には,載置部2に載置されたキャリアCから洗浄前のウェハWを一枚ずつ取り出し,また,洗浄後のウェハWをキャリアCに収納する取出収納アーム3が配置されている。この取出収納アーム3の背部には,取出収納アーム3との間でウェハWの授受を行う搬送アーム4が待機している。搬送アーム4は,洗浄システム1の中央に設けられた搬送路6に沿って移動可能に設けられている。搬送アーム4は,3本のアーム4a,4b,4cを備え,これらアーム4a〜4cを用いて搬送路6の両側に配置された各種処理装置に対してウェハWを搬入出する。各種処理装置の例を挙げると,例えば搬送路6の一方の側方には,本実施の形態にかかる基板洗浄装置8,9が上下に2段に配置され,これら基板洗浄装置8,9と並んで基板洗浄装置10,11が上下に2段に配置されている。また,搬送路6の他方の側方には,ウェハWを加熱して乾燥させる加熱装置12が4基積み重ねて設けられている。これら加熱装置12に隣接し,プリント回路板等が組み込まれて洗浄システム1の電気制御系統を司るコントロールエリア13が配置されている。なお,ウェハWでは,ウェハW表面は例えば半導体デバイスなどが形成可能なように鏡面となっており,ウェハW裏面は粗面となっている。
【0019】
基板洗浄装置8〜11は,ウェハWの表裏面に洗浄液を液盛りして洗浄する,いわゆるパドル洗浄を実施するように何れも同様に構成されているので,基板洗浄装置8を例にとって説明する。図2は,基板洗浄装置8の平面図であり,図3は,基板洗浄装置8の縦断面図である。図2及び図3に示すように,基板洗浄装置8のケース20内に,ウェハWを収納するカップ21と,このカップ21内で例えばウェハW表面を上面にしてウェハWを回転自在に支持する支持手段としてのスピンチャック22とを備えている。そして,ケース20の一方側には,スピンチャック22により支持されたウェハW上面(ウェハW表面)に洗浄液を供給する上面供給手段としての上面供給ノズル23が配置され,ケース20の他方側には,モータ等の移動機構24によってスピンチャック22により支持されたウェハW上面に対して相対的に移動する上面移動部材25が配置されている。なお,ケース20の前面側(図1に示す洗浄システム1において,搬送路6に臨む側面)には,開閉自在なシャッタ26が設けられており,前述の搬送アーム4によって基板洗浄装置8に対して搬入出される際には,このシャッタ26が開くようになっている。
【0020】
カップ21の側面には,ブラケット30が固着され,このブラケット30は,モータ31により回転するボールネジ軸32に螺合されたナット33に連結されている。従って,カップ21は,モータ31の正逆回転により,図3中において二点鎖線21’で示した位置に下降して,スピンチャック22をカップ21の上方に突出させてウェハWを授受させる状態と,図3中において実線21で示した位置に上昇して,スピンチャック22及びウェハWを包囲し,ウェハW両面に供給した洗浄液等が周囲に飛び散ることを防止する状態とに上下に移動自在である。
【0021】
カップ21の底部には,カップ21内の液滴を排液する排液管34と,カップ21内の雰囲気を排気する排気管35とが接続されている。排液管34には,気液分離ボックス36が設けられ,この気液分離ボックス36により排液された液滴中から気泡等を除去するようになっている。除去された気泡は,気液分離ボックス36に接続された排気管37により外部に排気される。また,カップ21の底部には,環状の仕切り壁38が起立して設けられ,仕切り壁38の上端には,外側に向かって下方に傾斜する整流板39が配設されている。
【0022】
図4に示すように,スピンチャック22は,ウェハWを支持するチャック本体40と,このチャック本体40の底部に接続された回転筒体41とを備え,このチャック本体40内には,スピンチャック22により支持されたウェハW下面(ウェハW裏面)に対して相対的に移動する下面移動部材42が配置されている。回転筒体41の外周面にはベルト43が巻回されており,このベルト43をモータ44によって周動させることにより,スピンチャック22全体が回転するようになっている。
【0023】
チャック本体40の上部には,ウェハWの周縁部を複数箇所において保持するための保持部材45が装着されている。保持部材45の下部には,チャック本体40の周縁から中心に向かって次第に低くなる傾斜面45aが形成されており,この傾斜面45aにより保持部材45はウェハWを保持するようになっている。なお,各保持部材45内に例えば重錘を設けることにより,スピンチャック22が回転したときの遠心力によって各保持部材45の上部側が内側に移動し,ウェハWの周縁部を外側から保持するように構成しても良い。また,チャック本体40の底部には周方向の適宜位置に排出口46を設け,この排出口46によりチャック本体40内の液滴の排液及び雰囲気の排気を行うようになっている。
【0024】
下面移動部材42は,チャック本体40内及び回転筒体41内を貫挿するシャフト47上に接続されている。シャフト47は,水平板48の上面に固着されており,この水平板48は,シリンダ等からなる昇降機構49により鉛直方向に昇降する。従って,下面移動部材42は,図4中において二点鎖線42’で示したようにチャック本体40内の上方に上昇して,スピンチャック22により支持されたウェハW下面に対して洗浄処理を施している状態(処理位置A)と,図4中において実線42で示したようにチャック本体40内の下方に下降して,スピンチャック22により支持されたウェハW下面から離れて待機している状態(退避位置B)とに上下に移動自在である。前述したようにカップ21を二点鎖線21’に示した位置に下降させてスピンチャック22を対してウェハWを授受させる場合,下面移動部材42を退避位置Bに位置させておく。そうすれば,下面移動部材42とスピンチャック22により支持されるウェハWの位置(高さ)との間には,十分な隙間が形成されることになり,スピンチャック22に対するウェハWの授受が円滑に行われるようになっている。なお,下面移動部材42を所定高さに固定する一方で,前記回転筒体41に図示しない昇降機構を接続させてスピンチャック22全体を鉛直方向に昇降させることにより,下面移動部材42を処理位置Aと退避位置Bに上下に移動自在にしても良い。
【0025】
下面移動部材42に例えば薬液や純水等の洗浄液や乾燥ガスを供給する下面供給路50が,シャフト47内を貫通して設けられている。この下面供給路50には,三方弁51を介して薬液供給路52,純水供給路53,ガス供給路54がそれぞれ接続され,三方弁51の切換操作により下面移動部材42に供給される流体が切り換えられる。薬液供給路52には,ウェハW上面に供給される薬液の温度を調整する例えばヒータからなる温度調整器55が設けられている。下面供給路50は,下面供給手段として機能し,例えば三方弁51が薬液供給路52側に切り換えられると,薬液供給路52から所定温度に温調された薬液を供給することになる。例えば下面移動部材42は処理位置Aに上昇して,処理位置Aに移動した下面移動部材42とスピンチャック22により支持されたウェハW下面の間に例えば0.5〜3mm程度の隙間L1を形成する。そして下面供給路50は,薬液供給路52を通して下面移動部材42とウェハW下面の間に薬液を供給する。このように狭い隙間L1に薬液を供給すると,薬液は隙間L1全体に拡がって液盛りされ,ウェハW下面全体に均一に接触可能な薬液の液膜を形成して好適な洗浄処理を施すようになっている。しかも液膜形成後も,隙間L1で薬液の液膜を挟むので,表面張力によって薬液の液膜の形状崩れを防止して引き続き好適な洗浄処理を施すことが可能である。また,同様に純水供給路53を通して純水を供給し,下面移動部材42上に純水を供給する。ガス供給路54からは例えば常温のNガス(加熱されたホットNガスでも良い)を供給し,洗浄後にウェハW下面を乾燥させる。
【0026】
一方,下面移動部材42に供給された洗浄液や乾燥ガスを排出する下面排出路56が,シャフト47内を貫通して設けられている。この下面排出路56には,三方弁57を介して薬液排液路58,純水排液路59,ガス排気路60がそれぞれ接続されている。下面移動部材42に形成された薬液の液膜や純水の液膜は,薬液排液路58,純水排液路59により外部にそれぞれ排液される。チャック本体40内に充満したNガスは,ガス排気路60により外部に排気される。なお,薬液には,例えばアンモニア成分を主体としたAPM(NHOH/H/HOの混合液),塩酸成分を主体としたHPM(HCl/H/HOの混合液),フッ酸成分を主体としたDHF(HF/HOの混合液)等がある。
【0027】
下面移動部材42の内部には,給電により発熱するヒータ61が埋設されている。このヒータ61は,下面温度調整機構として機能して,例えば前述したように下面移動部材42とウェハW下面の間に供給された薬液を所定温度に調整する。
【0028】
図5,6に示すように上面供給ノズル23は,細長の形状を有しており,その長さは,例えばウェハWの直径よりも大きくなっている。上面供給ノズル23の下部には,複数の供給口65は長手方向に一列に設けられ,上面供給ノズル23の上部には,例えば薬液及び純水やNガスを供給する上面供給路66が接続されている。この上面供給路66には,三方弁67を介して薬液供給路68,純水供給路69,ガス供給路70がそれぞれ接続され,三方弁67の切換操作により上面供給ノズル23内に供給される流体が切り換えられる。薬液供給路68や純水供給路69から供給される薬液や純水は,上面供給ノズル23内に設けられた液溜め部71に一旦貯留される。この液溜め部71は,長手方向に長い空間を形成しており,全ての供給口65に連通している。そして液溜め部71に貯留された洗浄液は,各供給口65を通してウェハW上面に供給される。従って,複数の供給口65から一度に所定量の洗浄液を吐出することにより,ウェハWの直径よりも長い直線状に洗浄液を吐出するようになっている。
【0029】
また図6に示すように,液溜め部71内には,液溜め部71内の洗浄液の温度を調整する液温度調整機構としての温度調整路Sが前記長手方向に沿って設けられている。この温度調整路Sは,所定温度に調整された流体,例えば水等が内部に流れるようにチューブ等で構成されている。また,温度調整路Sは,温度調整路Sの内部と外部との間で熱交換可能である。温度調整路Sは,上面供給ノズル23の一端近上方から液溜め部71内に入り,前記長手方向に形成された液溜め部71内を通って,上面供給ノズル23の他端付近上方から上面供給ノズル23外に出るように形成されている。従って,温調された水が温度調整路S内を通ることにより,液溜め部71内の洗浄液が温調される。特に薬液を所定温度に温調してウェハW上面に供給すると高い洗浄能力を得られるので,このように温度調整路Sを設けることは有効である。
【0030】
前記上面供給ノズル23は,先の図2に示すように,支持アーム72により支持されており,この支持アーム72は,モータ等の図示しない駆動機構により,例えば基板洗浄装置8の長手方向(図2中のX方向)に水平に伸びたレール73に沿って移動自在に構成されている。また,上面供給ノズル23とウェハWの距離を調節するために支持アーム72は,鉛直方向にも移動自在に構成されている。従って,例えば図7に示すようにウェハWの上方の所定位置に,上面供給ノズル23を平行移動させる。そして,スピンチャック22により少なくともゆっくりと半回転させられたウェハWに対して,直線状に薬液を供給して液盛りすることにより,ウェハW上面に薬液の液膜を均一に形成するようになっている。
【0031】
前記上面移動部材25は,前記移動機構24により水平及び鉛直方向に移動自在である。前述したように上面供給ノズル23によりウェハW上面に薬液の液膜が形成されると,図4に示すように上面移動部材25は,水平移動しながらスピンチャック22の上方に移動し,図4中において二点鎖線25’で示したようにウェハWの距離を図りながら鉛直方向に下降して,前記ウェハW上面に形成された薬液の液膜に接触しない位置であって,このウェハW上面に対して近接した位置まで移動する。また,このようにウェハW上面に対して近接した状態からスピンチャック22の上方に鉛直方向に上昇して,カップ21から離れた位置に水平移動して待機するようにもなっている。このように上面移動部材25は,スピンチャック22により支持されたウェハW上面に対して進退移動可能である。
【0032】
上面移動部材25の上部には,薬液供給路75が接続されている。従って,上面移動部材25は,薬液をウェハW上面に供給するように構成されている。
【0033】
上面移動部材25の内部には,下面移動部材42と同様に給電により発熱するヒータ76が埋設されている。このヒータ76は,上面温度調整機構として機能し,図4の二点鎖線25’で示したように,上面移動部材25がウェハW上面に対して近接した位置まで移動した場合には,ヒータ76は発熱してウェハW上面に形成された薬液の液膜を所定温度に調整するようになっている。またこのように上面移動部材25はウェハWの上方を覆うことにより,薬液の液膜から薬液が蒸発することを防ぐようになっている。この場合,ウェハW上面に対して近接した位置まで移動した上面移動部材25とスピンチャック22により支持されたウェハW上面に形成された薬液の液膜の間には,隙間L2が形成され,上面移動部材25は,この薬液の液膜と直接接触するようなことがない。そうすることによって,例えば上面移動部材25に付着したパーティクル等が薬液の液膜に転写して,薬液の洗浄能力が低下する事態を防止するようになっている。
【0034】
なお,洗浄システム1に備えられた他の基板洗浄装置9,10,11も,基板洗浄装置8と同様の構成を有し,洗浄液の液膜によりウェハW両面を同時にパドル洗浄することができる。
【0035】
さて,この洗浄システム1において,先ず図示しない搬送ロボットにより未だ洗浄されていないウェハWを例えば25枚ずつ収納したキャリアCが載置部2に載置される。そして,この載置部2に載置されたキャリアCから取出収納アーム3によって一枚ずつウェハWが取り出され,取出収納アーム3から搬送アーム4にウェハWが受け渡される。そして,搬送アーム4によってウェハWは各基板洗浄装置8〜11に適宜搬入され,ウェハWに付着しているパーティクルなどの汚染物質が洗浄,除去される。こうして所定の洗浄処理が終了したウェハWは,再び搬送アーム4によって各基板洗浄装置8〜11から適宜搬出され,取出収納アーム3に受け渡されて,再びキャリアCに収納される。
【0036】
ここで,代表して基板洗浄装置8での洗浄について図8〜図15に基づいて説明する。先ず基板洗浄装置8のシャッタ26が開き,搬送アーム4は,例えばウェハWを保持したアーム4cを装置内に進入させる。カップ21は下降してチャック本体40を上方に相対的に突出させる。図8に示すように,下面移動部材42は予め下降してチャック本体40内の退避位置Bに位置している。
【0037】
図9に示すように,搬送アーム4は,アーム4cを降ろして保持部材45にウェハWを渡し,スピンチャック22では半導体デバイスが形成されるウェハW表面を上面にしてウェハWを支持する。この場合,下面移動部材42を退避位置Bに位置させ,スピンチャック22により支持されるウェハWの位置(高さ)から十分に離すので,搬送アーム4は,余裕をもってウェハWをスピンチャック22に渡すことができる。
【0038】
次いで図10に示すように,下面移動部材42は,チャック本体40内の処理位置Aに上昇する。処理位置Aに移動した下面移動部材42とスピンチャック22により支持されたウェハW下面(ウェハW裏面)の間には,例えば0.5〜3mm程度の隙間L1が形成される。一方,下面供給路50により薬液を下面移動部材42とウェハW下面の間に供給する。即ち,三方弁51を薬液供給路52側に切り換えて温度調整器55により所定温度に温調された薬液を流す。下面移動部材42上では,下面供給路50から薬液を例えば静かに染み出させて隙間L1に薬液を供給する。狭い隙間L1では,薬液を全体に押し広げて液盛し,ウェハW下面全体に均一に接触する薬液の液膜を形成する。隙間L1全体に薬液の液膜を形成すると,薬液の供給を停止してウェハW下面を洗浄処理する。隙間L1に薬液を液盛りして液膜を形成すると表面張力により薬液の液膜の形状崩れを防ぐことができる。例えば薬液の液膜の形状が崩れてしまうと,ウェハW下面において薬液の液膜に非接触の部分が発生したり,又は液膜中に気泡が混合してしまい洗浄不良を起こしてしまうが,このように下面移動部材42とウェハW下面の間で薬液を液盛りすることにより,薬液の液膜の形状を保って洗浄不良を防止することができる。
【0039】
この場合,スピンチャック22は,薬液の液膜の形状が崩れない程度の比較的低速の回転速度(例えば30〜50rpm以下)でウェハWを回転させる。ウェハWの回転により薬液の液膜内に液流が発生し,この液流により,薬液の液膜内の淀みを防止すると共に洗浄効率が向上する。また,ウェハWの回転を間欠的に行っても良い。例えば所定時間若しくは所定回転数,ウェハWを回転させた後,スピンチャック22の回転稼働を所定時間停止させてウェハWを静止させ,その後に再びウェハWを回転させる。このようにウェハWの回転と回転停止を繰り返すと,薬液をウェハW下面全体に容易に拡散させることができる。もちろん,ウェハWを全く回転させずに静止した状態に保って洗浄処理を施すことも可能である。また,液膜を形成した後では新しい薬液を供給する必要が無くなる。薬液の液膜の形状が崩れない限り,ウェハW下面全体を,既に下面移動部材42とウェハW下面の間に供給された薬液により洗浄できるからである。一方,薬液の液膜の形状が崩れそうになった場合等には,新液を供給して薬液の液膜の形状を適宜修復する。このように薬液の消費量を節約する。なお,ウェハWの回転により薬液の液膜の液滴を下面移動部材42の周縁から滴り落とす一方で,下面供給路50により薬液を継続的に供給することにより,薬液の液膜内を常に真新しい薬液に置換して好適な薬液処理を実施することも可能である。この場合も,新液をなるべく静かに供給して薬液の省液化を図ると良い。
【0040】
下面移動部材42内のヒータ61が発熱して,下面移動部材42上の薬液の液膜を所定温度に温調する。このように薬液供給から液膜形成に渡って継続的に薬液を温調するので,液膜内で薬液反応を促進させて洗浄効率を向上させることができる。例えばウェハW下面に付着したパーティクル,有機汚染物,金属不純物の除去を短時間で行えると共に,これらの除去率を向上させる。
【0041】
一方,上面供給ノズル23が,ウェハWの上方の所定位置に平行移動する。上面供給ノズル23は直線状に薬液を供給する。即ち,三方弁67を薬液供給路68側に切り換えて薬液を上面供給路66に流し,液溜め部71で温度調整路Sにより薬液を所定温度に温調して吐出口65から吐出させる。また,ウェハWをスピンチャック22により少なくとも半回転させ,ウェハW上面に薬液を液盛りして薬液の液膜を均一に形成する。
【0042】
ウェハW上面にも薬液の液膜が形成されると,図11に示すように,上面移動部材25は,ウェハW上面に形成された薬液の液膜に接触しない位置であって,このウェハW上面に対して近接した位置まで移動する。例えばウェハW上面に対して近接した位置まで移動した上面移動部材25とスピンチャック22により支持されたウェハW上面に形成された薬液の液膜の間には,隙間L2が形成される。上面移動部材25は,ウェハW上面の薬液の液膜の形状が崩れそうになった場合等に限り,新液を供給して薬液の液膜の形状を適宜修復し,ウェハW上面の薬液処理は,上面供給ノズル23から既に供給された薬液により行い,液膜形成後は新液の供給を控えて薬液の消費量を節約する。なお,ウェハWを回転させて薬液の液膜の液滴をウェハW上面の周縁から滴り落とす一方で,上面移動部材25から薬液を継続的に供給することにより,ウェハW上面で薬液の液膜内を常に真新しい薬液に置換して好適な薬液処理を実施しても良い。
【0043】
上面移動部材25内のヒータ76が発熱して,ウェハW上面に形成された薬液の液膜を所定温度に調整する。このように薬液の液膜の上方を上面移動部材25で覆うので液膜から薬液が蒸発して液膜の液量が減少することを防止できると共に,薬液を温調することにより所定温度に保って洗浄能力の低下を防止することができる。さらに薬液供給から液膜形成に渡って継続的に薬液を温調するので,ウェハW上面でも,液膜内で薬液反応を促進させて洗浄効率を向上させることができる。また上面移動部材25は,隙間L2をおいてウェハW上面に形成された薬液の液膜に接触することがないので,この上面移動部材25にパーティクル等が付着している場合があっても,このパーティクル等によって薬液の液膜が汚染されることを防止することができる。特にウェハWは例えば半導体デバイス等が形成されるウェハW表面を上面にしてスピンチャック22に支持されるので,このように薬液の液膜の清浄度を維持することは重要である。
【0044】
ウェハW両面の薬液処理が終了すると,図12に示すように,三方弁51を純水供給路53側に切り換えて純水を下面供給路50に流し,純水をウェハW下面に供給する。また,ウェハWを薬液処理するときよりも高速(例えば500〜1000rpm程度)に回転させると共に,処理位置Aに位置した状態に下面移動部材42を保つ。このように高速回転しているウェハWに,隙間L1を通して純水を供給することにより,供給した純水をウェハW下面全体に均一に拡散させることができる。さらに下面移動部材42自体も洗浄することができる。一方,上面移動部材25は,ウェハW上面から退避してカップ21外で待機する。また,上面供給ノズル23は,ウェハWの上方の所定位置に再び平行移動する。上面供給ノズル23は,ウェハW上面に直線状に純水を供給する。即ち,三方弁67を純水供給路69側に切り換えて純水を上面供給路66に流す。高速回転しているウェハWに純水を供給することにより,供給した純水をウェハW上面全体に均一に拡散させることができる。こうして,ウェハW両面をリンス処理し,ウェハWから薬液を洗い流す。
【0045】
リンス処理後,ウェハWをリンス処理するときよりも高速(例えば2000〜3000rpm程度)に回転させてウェハWをスピン乾燥させる。また,三方弁51をガス供給路54側に切り換えてNガス(又は加熱されたホットNガス)を下面供給路50に流し,NガスをウェハW下面に供給しても良い。このとき,下面移動部材42の乾燥も同時に行う。図13に示すように,スピン乾燥の途中で下面移動部材42を退避位置Bに下降させ,退避位置Bの位置からNガスをウェハW下面に供給する。例えば前半の10秒間では処理位置Aの位置からNガスを供給し,その後に下面移動部材42は下降して後半の10秒間では退避位置Bの位置からNガスを供給する。もちろん,下面移動部材42は,スピン乾燥が終了するまで処理位置Aの位置でNガスを供給し続けても良い。一方,上面供給ノズル23は,ウェハW上面にNガスを供給する。即ち,三方弁67をガス供給路70側に切り換えてNガスを上面供給路66に流す。こうして,ウェハW両面をリンス処理し,ウェハWから純水の液滴を除去する。
【0046】
乾燥処理後,基板処理装置8内からウェハWを搬出する。即ち,図14に示すように,搬送アーム4は,例えばアーム4bを装置内に進入させてウェハW下面を支持させる。次いで,図15に示すようにアーム4bを上昇させてスピンチャック22からウェハWを離して受け取り,装置内から退出させる。この場合,下面移動部材42は退避位置Bに位置しているので,搬入するときと同様に下面移動部材42とスピンチャック22により支持されるウェハWの位置(高さ)との間には,十分な隙間が形成されることになり,搬送アーム4は,余裕をもってスピンチャック22からウェハWを受け取ることができる。
【0047】
かかる基板処理装置8によれば,ウェハWを搬入出する際には,下面移動部材42を予め退避位置Bに下降させているので,搬送装置4は,下面移動部材42と接触することはなく,ウェハWの搬入出を円滑に行うことができる。また,上面移動部材25は,ウェハW上面に液盛りされた薬液に接触することがないので,この薬液の汚染を防止して高い洗浄能力を維持させることができる。更にウェハW両面に液盛りされた薬液をヒータ61,76により所定温度にそれぞれ温調するので,洗浄効率を向上させることができる。
【0048】
基板処理装置8では,ウェハW両面を同時に洗浄することができるので,例えばウェハWの片面のみを洗浄するように構成された基板洗浄装置を,ウェハW表面専用の装置とウェハW裏面専用の装置とに分けて設け,ウェハWの表裏面を順次洗浄するような場合に比べて,洗浄システム1の小型化を図ると共に,スループットを向上させることができる。
【0049】
以上,本発明の好適な実施の形態の一例を示したが,本発明はここで説明した形態に限定されない。例えば先の本実施形態では,下面移動部材42は処理位置Aに上昇した後に隙間L1に薬液を供給してウェハW下面を処理していたが,例えば図16に示すように,処理位置Aに上昇する前に(退避位置Bに位置している時点で)下面移動部材42上に薬液を液盛りして液膜を形成し,液膜形成後に下面移動部材42は処理位置Aに上昇して,先の図11に示したように薬液をウェハW下面に接触させて処理しても良い。この場合も,狭い隙間L1で薬液を挟むことにより,薬液の液盛りが崩れるのを防止しつつウェハW下面全体に薬液を均一に接触させ,好適な洗浄処理を実施することができる。
【0050】
例えば図17及び図18に上面供給ノズルの変形例を示す。図17,18に示す上面供給ノズル80の上部には,薬液が供給される薬液供給路81と,純水及びNガスを供給する純水・ガス供給路82がそれぞれ接続されている。また,上面供給ノズル80内には,薬液が一旦貯留される薬液溜め部83と,純水が一旦貯留される純水溜め部84が設けられている。薬液供給路81から供給された薬液は,薬液溜め部83に溜められた後に,薬液溜め部83に連通した複数の薬液供給口85によりウェハW上面に供給され,純水・ガス供給路82から供給された純水は,純水溜め部84に溜められた後に,純水溜め部84に連通した複数の純水供給口86によりウェハW上面に供給される。また,薬液溜め部83内と純水溜め部84内には,温度調整路Sがそれぞれ設けられ,薬液と純水を個別に温調できるようになっている。
【0051】
また上面供給ノズルからは薬液のみを供給し,ウェハW上面に純水に供給する純水ノズルと,ウェハW上面に乾燥ガスを供給する乾燥ノズルを個別に設けて,各種処理のときには各々対応するノズルを用いるようにしても良い。さらに薬液を供給するノズルを,複数の供給口が長手方向に一列に設けられた前記上面供給ノズル23に代えて,供給口が1つしかない一般的な供給ノズルにしても良い。
【0052】
また上面移動部材により,薬液処理から乾燥処理を連続して行っても良い。即ち図19に示すように,上面移動部材85の供給路86に,三方弁87を介して薬液供給路88,純水供給路89,ガス供給路90が接続され,薬液供給路88には温度調整器91が設けられている。こうして三方弁87を順次切り換えることにより,ウェハW上面に薬液,純水,Nガスを供給して上面移動部材85で各種処理を全て行い,さらにスピン乾燥後には前記ヒータ76の発熱により,ウェハW上に残存した液滴を乾燥させても良い。
【0053】
図20に,本発明の別の実施の形態にかかる基板洗浄装置95を示す。この基板洗浄装置95は,前記スピンチャック22により支持されたウェハWの周囲を包囲可能な円形筒状の上面移動部材96(カバー体)を備えている。この上面移動部材96内には,前記ヒータ76が埋設され,さらに上面移動部材96の上面には,前記薬液供給路75が接続されている。なお,上面移動部材96を設けた点を除けば,この基板洗浄装置95は先に説明した基板洗浄装置8と概ね同一の構成を有するため,図20において,先に説明した図3と共通の構成要素については同じ符号を付することにより,重複説明を省略する。
【0054】
この基板洗浄装置95にあっては,洗浄に際し,上面移動部材96は,ウェハW上面に形成された薬液の液膜に接触しない位置であって,このウェハW上面に対して近接した位置まで移動し,ウェハWの周囲ひいてはチャック本体40の周囲を覆う。上面移動部材96により覆われている状態では薬液の蒸発をより防ぐことができる。またヒータ76が発熱すれば,ヒータ76の熱は周囲に逃げなくなるので,ウェハW上面に形成された薬液の液膜を所定温度に短時間で温調することができる。さらにチャック本体40内の雰囲気も周囲に逃げなくなるので,カップ21の排気量も減少させることができ,例えばランニングコストを抑えることができる。
【0055】
また,本発明は,洗浄液が供給される基板洗浄装置に限定されず,その他の種々の処理液などを用いて洗浄以外の他の処理を基板に対して施すものであっても良い。また,基板は半導体ウェハに限らず,その他のLCD基板用ガラスやCD基板,プリント基板,セラミック基板などであっても良い。
【0056】
【実施例】
次に,本発明の実施例を行った。ウェハWに洗浄液を液盛りして洗浄するパドル洗浄の除去量(エッチング量)について評価する。
【0057】
先ず図21に示すように,ウェハW上に膜厚が10nm±0.3nm程度の熱酸化膜(Th―Oxide)を形成し,このようなウェハWを,ヒータ100が埋設された載置台101に載置する。そして,熱酸化膜に対して所定温度(例えば60℃)に加温された洗浄液,例えばAPM(NHOH/H/HOの混合液)を液盛りし,室温の状態でウェハWに対してSC1パドル洗浄を実施する。APM成分の混合容量比,即ちアンモニア水溶液(NHOH):過酸化水素水(H):純水(HO)を例えば1:1:5,1:1:10,1:2:5,1:2:10,1:5:5,1:5:10,1:5:20,1:5:50と順次変化させ,熱酸化膜の除去量がどのように変化するか調べる。膜厚の測定には,エリプソメータ等の光学系の膜厚測定装置が使用される。処理時間は,5分間(min)とし,測定結果には,ウェハW面内の9個の測定ポイントの測定値を平均したものを採用する。この測定結果をまとめた表を図22に示し,この図22に基づいて作成したグラフを図23に示す。
【0058】
次いで,図24に示すように,載置台101に載置されたウェハWの上方に蓋102を配置し,この蓋102とウェハWに間に形成される隙間L3を,60mm,30mm,15mmと順次狭め,熱酸化膜の除去量がどのように変化するか調べる。また,隙間L3を60mmとしたときには,APMの液膜の形状が崩れない程度に載置台101を回転させてAPMの液膜内を攪拌させ,その場合の熱酸化膜の除去量も調べる。APM成分の混合容量比は,1:1:5(アンモニア水溶液:過酸化水素水:純水)に固定される。なお,APMの所定温度,膜厚測定装置,処理時間,測定ポイント等の条件は,先に説明した評価方法と同様である。この測定結果をまとめた表を図25に示し,この図25に基づいて作成したグラフを図26に示す。
【0059】
次いで,ウェハWの上方に蓋を配置すると共に,前記ヒータ100を発熱させてウェハWを所定温度(例えば60℃)に温調することにより,熱酸化膜の除去量がどのように変化するか調べる。この場合,APM成分の混合容量比を,1:1:5,1:2:10,1:5:10,1:5:50と順次変化させる。また,ウェハWと蓋の距離L3は,5mmに固定され,処理時間は5分間(min)とする。なお,APMの所定温度,膜厚測定装置,測定ポイント等の条件は,先に説明した評価方法と同様である。この測定結果をまとめた表を図27に示し,この図27に基づいて作成したグラフを図28に示す。
【0060】
これらの表及びグラフから理解できるように,単にウェハWを載置台に載置する場合に熱酸化膜の除去量が最も少なく,蓋と温調を組み合わせた場合に熱酸化膜の除去量が最も多い。また,図25及び図26に示すように,ウェハWの上方に蓋を配置する際には,蓋とウェハWに間に形成される隙間L3が狭い方が,除去量が向上する。さらにウェハWを回転させて薬液の液膜を攪拌させた方が,液膜内に液流が生じて除去量が向上するものと考えられる。
【0061】
【発明の効果】
本発明によれば,基板を搬入出する際には,下面移動部材を予め退避位置に下降させているので,例えば基板を搬入出する搬送装置は,下面移動部材と接触することはなく,基板の搬入出を円滑に行うことができる。また,上面移動部材は,基板上面に液盛りされた洗浄液に接触することがないので,この洗浄液の汚染を防止して高い洗浄能力を維持させることができる。更に基板両面に液盛りされた薬液を,上面温度調整機構,下面温度調整機構により所定温度にそれぞれ温調するので,洗浄液の蒸発を防いで洗浄効率を向上させることができる。
【図面の簡単な説明】
【図1】本実施の形態にかかる基板洗浄装置を備えた洗浄システムの斜視図である。
【図2】本実施の形態にかかる基板洗浄装置の平面図である。
【図3】本実施の形態にかかる基板洗浄装置の縦断面図である。
【図4】スピンチャックを拡大して示した縦断面図である。
【図5】上面供給ノズルの斜視図である。
【図6】上面供給ノズルの縦断面図である。
【図7】上面供給ノズルからウェハに洗浄液が供給される様子を示す斜視図である。
【図8】ウェハを基板洗浄装置に搬入する工程の説明図である。
【図9】ウェハをスピンチャックに渡す工程の説明図である。
【図10】下面移動部材とウェハ下面の間に薬液を液盛りし,ウェハ上面に薬液を液盛りする工程の説明図である。
【図11】ウェハ両面をパドル洗浄する工程の説明図である。
【図12】ウェハ両面をリンス処理する工程の説明図である。
【図13】ウェハ両面を乾燥処理する工程の説明図である。
【図14】ウェハをスピンチャックから受け取る工程の説明図である。
【図15】ウェハを基板洗浄装置から搬出する工程の説明図である。
【図16】処理位置に上昇する前に下面移動部材上に薬液を液盛りする工程の説明図である。
【図17】上面供給ノズルの変形例を示す斜視図である。
【図18】図17の上面供給ノズルの縦断面図である。
【図19】上面移動部材の変形例を示す縦断面図である。
【図20】別の実施の形態にかかる基板洗浄装置の縦断面図である。
【図21】本実施例の構成を示す説明図である。
【図22】本実施例において,熱酸化膜をSC1パドル洗浄した場合のAPM成分の混合容量比と熱酸化膜の除去量の関係を示す表である。
【図23】図22に基づいて作成されたグラフである。
【図24】本実施例の構成において,ウェハの上方に蓋を配置した場合の説明図である。
【図25】本実施例において,ウェハの上方に蓋を配置してSC1パドル洗浄した場合の,蓋とウェハに間に形成される隙間と熱酸化膜の除去量の関係を示す表である。
【図26】図25に基づいて作成されたグラフである。
【図27】本実施例において,温調をしながらウェハの上方に蓋を配置してSC1パドル洗浄した場合の,APM成分の混合容量比と熱酸化膜の除去量の関係を示す表である。
【図28】図27に基づいて作成されたグラフである。
【符号の説明】
A 処理位置
B 退避位置
C キャリア
W ウェハ
1 洗浄システム
8,9,10,11 基板洗浄装置
22 スピンチャック
23 上面供給ノズル
25 上面移動部材
42 下面移動部材
50 下面供給路
61,72 ヒータ
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a cleaning process for substrates such as semiconductor wafers and glass for LCD substrates. Do The present invention relates to a substrate processing method.
[0002]
[Prior art]
For example, in a semiconductor device manufacturing process, a semiconductor wafer (hereinafter referred to as “wafer”) is cleaned with a cleaning solution such as a chemical solution or pure water to remove contamination of particles, organic contaminants, and metal impurities adhering to the wafer. A cleaning system is used. Among them, a single-wafer type cleaning system including a spin-type substrate cleaning apparatus that performs cleaning processing by rotating a wafer is known.
[0003]
Generally, a cleaning system is provided with a transfer device for transferring a wafer, and the transfer device transfers the wafer into and out of the substrate cleaning device. On the other hand, the substrate cleaning apparatus is provided with a spin chuck that rotatably holds the wafer. When the wafer is carried in and out, the wafer is transferred between the arm of the transfer apparatus that has entered the apparatus and the spin chuck. In a substrate cleaning apparatus, generally, a wafer surface (wafer surface) on which a semiconductor device is formed is supported as a top surface, the wafer is supported by a spin chuck, and a cleaning liquid is supplied to the top surface of the wafer rotated by the spin chuck to perform a cleaning process. Apply.
[0004]
In such a substrate cleaning apparatus, the cleaning liquid is continuously supplied to the rotating wafer, so that the liquid consumption increases and the lower surface of the wafer supported by the spin chuck (the wafer surface on which the semiconductor device is not formed, that is, the wafer rear surface). ) Could not supply the cleaning solution, so only one side of the wafer could be cleaned. Therefore, according to the substrate cleaning apparatus disclosed in, for example, Japanese Patent Application Laid-Open No. 8-78368, the wafer is supported by a plurality of support pins installed on the spin chuck, and the wafer upper surface and the gap between the wafer lower surface and the spin chuck are measured. In addition, each of the cleaning liquids is supplied and cleaned, thereby saving liquid consumption and cleaning both surfaces of the wafer simultaneously.
[0005]
[Problems to be solved by the invention]
However, according to the substrate cleaning apparatus disclosed in JP-A-8-78368, it is necessary to narrow this gap so that the cleaning liquid can be supplied to the entire gap between the lower surface of the wafer and the spin chuck. For this reason, the height of the support pins is kept low. For example, when the arm of the transfer device transfers a wafer to or from the support pins, there is a possibility of colliding with the spin chuck, making it difficult to carry in / out the wafer. Yes. Further, the substrate cleaning apparatus is provided with an upper surface moving member that moves relative to the upper surface of the wafer, and cleaning is performed by sandwiching a cleaning liquid on the upper surface of the wafer between the upper surface moving member and the upper surface of the wafer. However, as described above, the wafer surface on which the semiconductor device is formed is the upper surface and the wafer is supported by the spin chuck. Therefore, a relatively high cleaning ability is required on the upper surface of such a wafer, and the upper surface moving member is attached to the cleaning liquid. If the particles are directly contacted with each other, if particles or the like adhere to the upper surface moving member, the cleaning liquid may be contaminated by the particles.
[0006]
Accordingly, an object of the present invention is to smoothly carry in and out the substrate and to improve the cleaning efficiency. Washing It is to provide a method.
[0007]
[Means for Solving the Problems]
To solve the above problems, Treatment liquid An apparatus for processing a substrate by supplying, a supporting means for supporting the substrate, a processing position close to the lower surface of the substrate supported by the supporting means, and a retracted position away from the lower surface of the substrate supported by the supporting means, A lower surface moving member that moves relative to each other, and a processing liquid is supplied between the lower surface moving member that has moved to the processing position and the lower surface of the substrate supported by the supporting means to process the lower surface of the substrate. A substrate processing apparatus is provided.
[0008]
In the present invention, the substrate is exemplified by a substrate such as a semiconductor wafer or LCD substrate glass, and may be a CD substrate, a printed substrate, a ceramic substrate, or the like. The substrate surface is a mirror surface so that a semiconductor device or the like can be formed, and the substrate back surface is a rough surface. The processing liquid includes cleaning liquids such as various chemical liquids and pure water, and the substrate processing apparatus of the present invention is embodied as a substrate cleaning apparatus that supplies a cleaning liquid to a wafer or the like and performs a cleaning process.
[0009]
Substrate processing equipment In this case, for example, a transport device that transports the substrate carries the substrate into the substrate processing apparatus, for example, passes the substrate to the support means with the substrate surface as the upper surface and supports it (the back surface of the substrate is the lower surface). In this case, since the lower surface moving member has been moved relative to the retracted position in advance, the transport device does not come into contact with the lower surface moving member, and the carry-in is performed smoothly. Thereafter, the lower surface moving member moves relative to the processing position, and the processing liquid is supplied between the lower surface moving member and the substrate lower surface (substrate back surface) to process the substrate lower surface. On the other hand, when the substrate is unloaded from the substrate processing apparatus after processing, the lower surface moving member moves relative to the retracted position, and the transfer device unloads the substrate from the support means without contacting the lower surface moving member. be able to. In this way, unloading is performed smoothly.
[0010]
In this substrate processing apparatus, the support means is preferably configured to be rotatable. For example, the support means rotates the supported substrate. By this rotation of the substrate, a flow is generated in the processing liquid supplied between the lower surface moving member and the lower surface of the substrate, and this liquid flow prevents stagnation in the processing liquid and improves the processing efficiency. For example, when the processing liquid is deposited between the lower surface moving member and the lower surface of the substrate, the support means rotates the substrate at a relatively low rotational speed (for example, 30 to 50 rpm or less) such that the liquid deposition does not collapse. Further, the substrate is rotated intermittently, so that it is not necessary to supply a new processing liquid after the processing liquid is uniformly supplied between the lower surface moving member and the lower surface of the substrate. This is because the entire lower surface of the substrate can be processed with the processing liquid already supplied between the lower surface moving member and the lower surface of the substrate as long as the liquid volume does not collapse. On the other hand, when the liquid volume collapses, a new liquid is supplied to restore the liquid volume appropriately. In this way, consumption of the processing liquid is saved. Further, while the processing liquid flows out from between the lower surface moving member and the lower surface of the substrate by rotating the substrate, a new processing liquid is supplied between the lower surface moving member and the lower surface of the substrate, so A suitable treatment may be carried out by always replacing the treatment solution with a new treatment solution. In this case, it is recommended to supply new solution gently to save the processing solution. In addition, after supplying the processing liquid onto the lower surface moving member and depositing the liquid, it is also possible to move the lower surface moving member relative to the processing position and bring the processing liquid into contact with the entire lower surface of the substrate for processing.
[0011]
In the substrate processing apparatus, it is preferable that a lower surface temperature adjusting mechanism for bringing the processing liquid to a predetermined temperature is provided on the lower surface moving member. In this case, the lower surface temperature adjusting mechanism adjusts the treatment liquid to a predetermined temperature to promote, for example, the reaction.
[0012]
A configuration may be adopted in which the processing liquid is also supplied to the upper surface of the substrate supported by the supporting means so that the upper surface of the substrate is processed so that both surfaces of the substrate can be cleaned. Further, an upper surface moving member that is relatively close to the upper surface of the substrate supported by the support means may be provided. Furthermore, a liquid temperature adjusting mechanism for bringing the processing liquid supplied to the upper surface of the substrate to a predetermined temperature may be provided. The upper surface moving member may be provided with an upper surface temperature adjusting mechanism for bringing the processing liquid supplied to the upper surface of the substrate to a predetermined temperature.
[0013]
According to the present invention, a cleaning liquid is supplied to a substrate supported by a support means to clean the substrate, and the lower surface moving member is relatively moved to a retreat position away from the lower surface of the substrate supported by the support means. Moving the substrate to the supporting means, supporting the substrate, and moving the lower surface moving means relatively to the processing position close to the lower surface of the substrate supported by the supporting means. The cleaning liquid is deposited between the moved lower surface moving member and the lower surface of the substrate supported by the supporting means, and after the liquid is accumulated, the supply of new cleaning liquid is stopped and the cleaning liquid is brought into contact with the lower surface of the substrate supported by the supporting means. On the other hand, the cleaning liquid is deposited on the upper surface of the substrate supported by the supporting means, and the cleaning liquid is supplied to the upper surface of the substrate. After the accumulation, the supply of new cleaning liquid is stopped and the upper and lower surfaces of the substrate are cleaned. Cleaning the substrate in a liquid state, rinsing the substrate, drying the substrate, relatively moving the lower surface moving member to the retracted position, and supporting Substrate cleaning method characterized by having a step of unloading the substrate from the means Is provided.
[0014]
This board Washing In the method, when the substrate is transferred to and supported by the support means, or when the substrate is received away from the support means, the lower surface moving member is relatively moved to the retracted position. Is done smoothly.
[0015]
This board Washing In the method, on the lower surface of the substrate Washing When processing by bringing the liquid into contact, the lower surface moving member moved to the processing position and the lower surface of the substrate supported by the supporting means are disposed. Washing Processing with liquid accumulated To do. That is, after filling New cleaning solution Stop supply of existing as much as possible Washing Treat the bottom surface of the substrate with only the liquid, Washing To save liquid. Also, on the bottom surface of the substrate Washing When processing by bringing the liquid into contact, the substrate may be rotated relative to the lower surface moving member. By rotating the substrate Washing A liquid flow is generated in the liquid, and this liquid flow Washing Prevents stagnation in the liquid and improves processing efficiency. Also, on the bottom surface of the substrate Washing When processing with liquid contact, Washing The liquid may be brought to a predetermined temperature. For example Washing The liquid is adjusted to a predetermined temperature to promote the reaction.
[0016]
Also this board Washing In the method, on the top surface of the substrate Washing Having a process of supplying and processing liquid Yes. Then, both sides of the substrate can be cleaned. In this case, on the top surface of the board Washing It is good to process in the state where the liquid was accumulated. That is, after filling New cleaning solution Stop supply of existing as much as possible Washing Treat the top surface of the substrate with only the liquid, Washing To save liquid. The upper surface moving member may be moved relative to the upper surface of the substrate supported by the support means. In this case, for example, the upper surface moving member is supplied to the upper surface of the substrate. Washing Do not touch the liquid.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described based on a substrate cleaning apparatus as a substrate processing apparatus configured to clean both surfaces of a wafer as an example of a substrate. FIG. 1 is a perspective view of a cleaning system 1 incorporating substrate cleaning apparatuses 8, 9, 10, and 11 according to the present embodiment. The cleaning system 1 is configured to carry in wafers W in units of carriers C, clean and dry the wafers W one by one, and carry out the wafers W in units of carriers.
[0018]
The cleaning system 1 is provided with a mounting section 2 on which four carriers C that store wafers W can be mounted. At the center of the cleaning system 1, a take-out storage arm 3 for taking out the wafers W before cleaning from the carrier C mounted on the mounting unit 2 one by one and storing the wafers W after cleaning in the carrier C is arranged. Has been. At the back of the take-out and storage arm 3, a transfer arm 4 that transfers the wafer W to and from the take-out and storage arm 3 is on standby. The transfer arm 4 is provided to be movable along a transfer path 6 provided in the center of the cleaning system 1. The transfer arm 4 includes three arms 4 a, 4 b, and 4 c, and the wafer W is transferred into and out of various processing apparatuses disposed on both sides of the transfer path 6 using these arms 4 a to 4 c. As examples of various processing apparatuses, for example, substrate cleaning apparatuses 8 and 9 according to the present embodiment are arranged in two upper and lower stages on one side of the conveyance path 6, and these substrate cleaning apparatuses 8 and 9 and Side by side, the substrate cleaning apparatuses 10 and 11 are arranged in two stages in the vertical direction. Further, four heating devices 12 for heating and drying the wafer W are provided on the other side of the transfer path 6 in a stacked manner. Adjacent to these heating devices 12, a printed circuit board and the like are incorporated, and a control area 13 that controls the electric control system of the cleaning system 1 is disposed. In the wafer W, the front surface of the wafer W is a mirror surface so that, for example, a semiconductor device can be formed, and the back surface of the wafer W is a rough surface.
[0019]
Since the substrate cleaning apparatuses 8 to 11 are configured in the same manner so as to perform so-called paddle cleaning, in which cleaning liquid is deposited on the front and back surfaces of the wafer W to perform cleaning, the substrate cleaning apparatus 8 will be described as an example. . FIG. 2 is a plan view of the substrate cleaning apparatus 8, and FIG. 3 is a longitudinal sectional view of the substrate cleaning apparatus 8. As shown in FIGS. 2 and 3, a cup 21 for storing the wafer W is housed in a case 20 of the substrate cleaning apparatus 8, and the wafer W is rotatably supported in the cup 21 with the surface of the wafer W as an upper surface, for example. And a spin chuck 22 as support means. An upper surface supply nozzle 23 is disposed on one side of the case 20 as upper surface supply means for supplying a cleaning solution to the upper surface of the wafer W (wafer W surface) supported by the spin chuck 22. An upper surface moving member 25 that moves relative to the upper surface of the wafer W supported by the spin chuck 22 by a moving mechanism 24 such as a motor is disposed. An openable / closable shutter 26 is provided on the front side of the case 20 (the side facing the transfer path 6 in the cleaning system 1 shown in FIG. 1). When being carried in / out, the shutter 26 is opened.
[0020]
A bracket 30 is fixed to the side surface of the cup 21, and the bracket 30 is connected to a nut 33 screwed onto a ball screw shaft 32 that is rotated by a motor 31. Accordingly, the cup 21 is lowered to a position indicated by a two-dot chain line 21 'in FIG. 3 by forward and reverse rotation of the motor 31, and the spin chuck 22 protrudes above the cup 21 to transfer the wafer W. 3 is moved up and down to a position indicated by a solid line 21 in FIG. 3 so as to surround the spin chuck 22 and the wafer W and prevent the cleaning liquid supplied to both surfaces of the wafer W from scattering around. It is.
[0021]
A drain pipe 34 for draining liquid droplets in the cup 21 and an exhaust pipe 35 for exhausting the atmosphere in the cup 21 are connected to the bottom of the cup 21. The drainage pipe 34 is provided with a gas-liquid separation box 36, and bubbles and the like are removed from the liquid droplets drained by the gas-liquid separation box 36. The removed bubbles are exhausted to the outside through an exhaust pipe 37 connected to the gas-liquid separation box 36. An annular partition wall 38 is erected at the bottom of the cup 21, and a rectifying plate 39 that is inclined downward toward the outside is disposed at the upper end of the partition wall 38.
[0022]
As shown in FIG. 4, the spin chuck 22 includes a chuck body 40 that supports the wafer W, and a rotating cylinder 41 that is connected to the bottom of the chuck body 40. A lower surface moving member 42 that moves relative to the lower surface of the wafer W (back surface of the wafer W) supported by 22 is disposed. A belt 43 is wound around the outer peripheral surface of the rotating cylinder 41, and the entire spin chuck 22 is rotated by rotating the belt 43 by a motor 44.
[0023]
A holding member 45 for holding the peripheral edge of the wafer W at a plurality of locations is mounted on the chuck body 40. An inclined surface 45a that gradually decreases from the peripheral edge of the chuck body 40 toward the center is formed at the lower portion of the holding member 45, and the holding member 45 holds the wafer W by the inclined surface 45a. For example, by providing a weight in each holding member 45, the upper side of each holding member 45 is moved inward by the centrifugal force when the spin chuck 22 rotates, so that the peripheral portion of the wafer W is held from the outside. You may comprise. Further, a discharge port 46 is provided at an appropriate position in the circumferential direction at the bottom of the chuck body 40, and the discharge port 46 discharges liquid droplets in the chuck body 40 and exhausts the atmosphere.
[0024]
The lower surface moving member 42 is connected to a shaft 47 penetrating the chuck body 40 and the rotating cylinder 41. The shaft 47 is fixed to the upper surface of a horizontal plate 48, and the horizontal plate 48 is moved up and down in a vertical direction by an elevating mechanism 49 made of a cylinder or the like. Therefore, the lower surface moving member 42 moves upward in the chuck body 40 as indicated by a two-dot chain line 42 'in FIG. 4, and performs a cleaning process on the lower surface of the wafer W supported by the spin chuck 22. 4 (process position A) and a state in which it is lowered downward in the chuck body 40 as shown by a solid line 42 in FIG. 4 and is waiting away from the lower surface of the wafer W supported by the spin chuck 22. It can move up and down (retreat position B). As described above, when the cup 21 is lowered to the position indicated by the two-dot chain line 21 ′ and the wafer W is transferred to the spin chuck 22, the lower surface moving member 42 is positioned at the retreat position B. Then, a sufficient gap is formed between the lower surface moving member 42 and the position (height) of the wafer W supported by the spin chuck 22, and the wafer W is transferred to and from the spin chuck 22. It is going smoothly. In addition, while fixing the lower surface moving member 42 to a predetermined height, the lower surface moving member 42 is moved to the processing position by connecting a lifting mechanism (not shown) to the rotating cylinder 41 and moving the entire spin chuck 22 in the vertical direction. It may be movable up and down between A and the retreat position B.
[0025]
A lower surface supply path 50 for supplying a cleaning liquid such as a chemical solution or pure water or a dry gas to the lower surface moving member 42 is provided through the shaft 47. A chemical liquid supply path 52, a pure water supply path 53, and a gas supply path 54 are connected to the lower surface supply path 50 via a three-way valve 51, respectively, and fluid supplied to the lower surface moving member 42 by switching operation of the three-way valve 51. Is switched. The chemical solution supply path 52 is provided with a temperature regulator 55 configured by, for example, a heater for adjusting the temperature of the chemical solution supplied to the upper surface of the wafer W. The lower surface supply path 50 functions as a lower surface supply means. For example, when the three-way valve 51 is switched to the chemical liquid supply path 52 side, the chemical liquid whose temperature is adjusted to a predetermined temperature is supplied from the chemical liquid supply path 52. For example, the lower surface moving member 42 is raised to the processing position A, and a gap L1 of about 0.5 to 3 mm is formed between the lower surface moving member 42 moved to the processing position A and the lower surface of the wafer W supported by the spin chuck 22. To do. The lower surface supply path 50 supplies the chemical liquid between the lower surface moving member 42 and the lower surface of the wafer W through the chemical liquid supply path 52. When the chemical solution is supplied to the narrow gap L1 in this way, the chemical solution spreads over the entire gap L1 and forms a liquid film of the chemical solution that can be uniformly contacted with the entire lower surface of the wafer W to perform a suitable cleaning process. It has become. Moreover, even after the liquid film is formed, the liquid film of the chemical liquid is sandwiched by the gap L1, so that the shape of the liquid film of the chemical liquid can be prevented from being deformed by the surface tension, and a suitable cleaning process can be subsequently performed. Similarly, pure water is supplied through the pure water supply passage 53, and pure water is supplied onto the lower surface moving member 42. From the gas supply path 54, for example, N at room temperature 2 Gas (heated hot N 2 Gas may be used), and the lower surface of the wafer W is dried after cleaning.
[0026]
On the other hand, a lower surface discharge path 56 for discharging the cleaning liquid and the dry gas supplied to the lower surface moving member 42 is provided so as to penetrate the shaft 47. A chemical liquid drainage path 58, a pure water drainage path 59, and a gas exhaust path 60 are connected to the lower surface discharge path 56 via a three-way valve 57. The liquid film of chemical liquid and the liquid film of pure water formed on the lower surface moving member 42 are drained to the outside through the chemical liquid drain path 58 and the pure water drain path 59, respectively. N filled in the chuck body 40 2 The gas is exhausted to the outside through the gas exhaust path 60. For example, APM (NH 4 OH / H 2 O 2 / H 2 OPM), HPM mainly composed of hydrochloric acid (HCl / H 2 O 2 / H 2 OHF), DHF (HF / H) mainly composed of hydrofluoric acid component 2 O liquid mixture).
[0027]
A heater 61 that generates heat by power feeding is embedded in the lower surface moving member 42. The heater 61 functions as a lower surface temperature adjustment mechanism, and adjusts the chemical solution supplied between the lower surface moving member 42 and the lower surface of the wafer W to a predetermined temperature, for example, as described above.
[0028]
As shown in FIGS. 5 and 6, the upper surface supply nozzle 23 has an elongated shape, and the length thereof is larger than the diameter of the wafer W, for example. A plurality of supply ports 65 are provided in a row in the longitudinal direction at the lower part of the upper surface supply nozzle 23, and for example, chemical liquid and pure water or N 2 An upper surface supply path 66 for supplying gas is connected. A chemical solution supply path 68, a pure water supply path 69, and a gas supply path 70 are connected to the upper surface supply path 66 through a three-way valve 67, and are supplied into the upper surface supply nozzle 23 by a switching operation of the three-way valve 67. The fluid is switched. The chemical liquid and pure water supplied from the chemical liquid supply path 68 and the pure water supply path 69 are temporarily stored in a liquid reservoir 71 provided in the upper surface supply nozzle 23. The liquid reservoir 71 forms a long space in the longitudinal direction and communicates with all the supply ports 65. Then, the cleaning liquid stored in the liquid reservoir 71 is supplied to the upper surface of the wafer W through each supply port 65. Therefore, the cleaning liquid is discharged in a straight line longer than the diameter of the wafer W by discharging a predetermined amount of the cleaning liquid from the plurality of supply ports 65 at a time.
[0029]
As shown in FIG. 6, a temperature adjusting path S as a liquid temperature adjusting mechanism for adjusting the temperature of the cleaning liquid in the liquid reservoir 71 is provided in the liquid reservoir 71 along the longitudinal direction. This temperature adjustment path S is constituted by a tube or the like so that a fluid adjusted to a predetermined temperature, for example, water or the like flows inside. Further, the temperature adjustment path S can exchange heat between the inside and the outside of the temperature adjustment path S. The temperature adjustment path S enters the liquid reservoir 71 from above the one end of the upper surface supply nozzle 23, passes through the liquid reservoir 71 formed in the longitudinal direction, and passes from above the other end of the upper surface supply nozzle 23 to the upper surface. It is formed so as to go out of the supply nozzle 23. Therefore, the temperature of the cleaning liquid in the liquid reservoir 71 is controlled by the temperature-controlled water passing through the temperature adjustment path S. In particular, when the temperature of the chemical solution is adjusted to a predetermined temperature and supplied to the upper surface of the wafer W, a high cleaning ability can be obtained. Therefore, it is effective to provide the temperature adjustment path S in this way.
[0030]
As shown in FIG. 2, the upper surface supply nozzle 23 is supported by a support arm 72. The support arm 72 is driven by a driving mechanism (not shown) such as a motor in the longitudinal direction of the substrate cleaning apparatus 8 (see FIG. 2 is configured to be movable along a rail 73 extending horizontally in the X direction). Further, in order to adjust the distance between the upper surface supply nozzle 23 and the wafer W, the support arm 72 is configured to be movable also in the vertical direction. Therefore, for example, as shown in FIG. 7, the upper surface supply nozzle 23 is moved in parallel to a predetermined position above the wafer W. Then, a chemical solution is linearly supplied to the wafer W, which is at least half-rotated slowly by the spin chuck 22, and liquid is deposited, so that a liquid film of the chemical solution is uniformly formed on the upper surface of the wafer W. ing.
[0031]
The upper surface moving member 25 is movable in the horizontal and vertical directions by the moving mechanism 24. As described above, when a liquid film of a chemical solution is formed on the upper surface of the wafer W by the upper surface supply nozzle 23, the upper surface moving member 25 moves above the spin chuck 22 while moving horizontally as shown in FIG. As indicated by a two-dot chain line 25 ', the wafer W descends in the vertical direction while measuring the distance of the wafer W and does not come into contact with the liquid film of the chemical solution formed on the upper surface of the wafer W. Move to a position close to. Further, from the state close to the upper surface of the wafer W as described above, it rises vertically above the spin chuck 22 and moves horizontally to a position away from the cup 21 to stand by. As described above, the upper surface moving member 25 can move forward and backward with respect to the upper surface of the wafer W supported by the spin chuck 22.
[0032]
A chemical solution supply path 75 is connected to an upper portion of the upper surface moving member 25. Therefore, the upper surface moving member 25 is configured to supply the chemical liquid to the upper surface of the wafer W.
[0033]
Inside the upper surface moving member 25, a heater 76 that radiates heat by power feeding is embedded in the same manner as the lower surface moving member 42. The heater 76 functions as an upper surface temperature adjustment mechanism, and when the upper surface moving member 25 moves to a position close to the upper surface of the wafer W as indicated by a two-dot chain line 25 ′ in FIG. Generates heat and adjusts the liquid film of the chemical solution formed on the upper surface of the wafer W to a predetermined temperature. Further, in this way, the upper surface moving member 25 covers the upper portion of the wafer W, thereby preventing the chemical liquid from evaporating from the liquid film of the chemical liquid. In this case, a gap L2 is formed between the upper surface moving member 25 which has moved to a position close to the upper surface of the wafer W and the liquid film of the chemical solution formed on the upper surface of the wafer W supported by the spin chuck 22, and an upper surface is formed. The moving member 25 does not come into direct contact with the liquid film of the chemical solution. By doing so, for example, particles adhering to the upper surface moving member 25 are transferred to the liquid film of the chemical solution, and a situation where the cleaning ability of the chemical solution is reduced is prevented.
[0034]
The other substrate cleaning apparatuses 9, 10, and 11 provided in the cleaning system 1 also have the same configuration as the substrate cleaning apparatus 8, and can simultaneously perform paddle cleaning on both surfaces of the wafer W with a liquid film of the cleaning liquid.
[0035]
In this cleaning system 1, first, a carrier C storing, for example, 25 wafers W each not yet cleaned by a transfer robot (not shown) is placed on the placement unit 2. Then, the wafers W are taken out one by one from the carrier C placed on the placement unit 2 by the take-out and storage arm 3, and the wafers W are transferred from the take-out and storage arm 3 to the transfer arm 4. Then, the wafer W is appropriately carried into the substrate cleaning apparatuses 8 to 11 by the transfer arm 4, and contaminants such as particles adhering to the wafer W are cleaned and removed. The wafer W that has been subjected to the predetermined cleaning process in this way is appropriately unloaded from the substrate cleaning apparatuses 8 to 11 again by the transfer arm 4, transferred to the take-out storage arm 3, and stored in the carrier C again.
[0036]
Here, representatively, cleaning in the substrate cleaning apparatus 8 will be described with reference to FIGS. First, the shutter 26 of the substrate cleaning apparatus 8 is opened, and the transfer arm 4 causes, for example, the arm 4c holding the wafer W to enter the apparatus. The cup 21 is lowered to cause the chuck body 40 to relatively protrude upward. As shown in FIG. 8, the lower surface moving member 42 is lowered in advance and is positioned at the retracted position B in the chuck body 40.
[0037]
As shown in FIG. 9, the transfer arm 4 lowers the arm 4c and transfers the wafer W to the holding member 45, and the spin chuck 22 supports the wafer W with the surface of the wafer W on which the semiconductor device is formed as the upper surface. In this case, the lower surface moving member 42 is positioned at the retracted position B and is sufficiently separated from the position (height) of the wafer W supported by the spin chuck 22, so that the transfer arm 4 moves the wafer W to the spin chuck 22 with a margin. Can pass.
[0038]
Next, as shown in FIG. 10, the lower surface moving member 42 rises to the processing position A in the chuck body 40. A gap L1 of, for example, about 0.5 to 3 mm is formed between the lower surface moving member 42 moved to the processing position A and the lower surface of the wafer W (back surface of the wafer W) supported by the spin chuck 22. On the other hand, the chemical solution is supplied between the lower surface moving member 42 and the lower surface of the wafer W through the lower surface supply path 50. That is, the three-way valve 51 is switched to the chemical solution supply path 52 side, and the chemical solution whose temperature is adjusted to a predetermined temperature by the temperature regulator 55 is allowed to flow. On the lower surface moving member 42, for example, the chemical liquid is gently oozed out from the lower surface supply path 50, and the chemical liquid is supplied to the gap L1. In the narrow gap L1, the chemical liquid is pushed and spread over the entire surface to form a liquid film of the chemical liquid that uniformly contacts the entire lower surface of the wafer W. When a chemical liquid film is formed over the entire gap L1, the supply of the chemical liquid is stopped and the lower surface of the wafer W is cleaned. When a liquid film is formed by depositing a chemical solution in the gap L1, it is possible to prevent the shape of the liquid film of the chemical solution from being deformed by surface tension. For example, if the shape of the chemical liquid film collapses, a non-contact portion of the chemical liquid film is generated on the lower surface of the wafer W, or bubbles are mixed in the liquid film, resulting in poor cleaning. In this way, by depositing the chemical liquid between the lower surface moving member 42 and the lower surface of the wafer W, it is possible to maintain the shape of the liquid film of the chemical liquid and prevent poor cleaning.
[0039]
In this case, the spin chuck 22 rotates the wafer W at a relatively low rotational speed (for example, 30 to 50 rpm or less) such that the shape of the liquid film of the chemical solution does not collapse. The rotation of the wafer W generates a liquid flow in the chemical liquid film, and this liquid flow prevents stagnation in the chemical liquid film and improves the cleaning efficiency. Further, the wafer W may be rotated intermittently. For example, after rotating the wafer W for a predetermined time or a predetermined number of rotations, the rotation operation of the spin chuck 22 is stopped for a predetermined time, the wafer W is stopped, and then the wafer W is rotated again. By repeating the rotation and rotation stop of the wafer W in this way, the chemical solution can be easily diffused over the entire lower surface of the wafer W. Of course, it is also possible to perform the cleaning process while keeping the wafer W stationary without rotating at all. In addition, it is not necessary to supply a new chemical after forming the liquid film. This is because the entire lower surface of the wafer W can be cleaned with the chemical already supplied between the lower surface moving member 42 and the lower surface of the wafer W as long as the shape of the liquid film of the chemical liquid is not broken. On the other hand, when the shape of the chemical liquid film is about to collapse, a new liquid is supplied to appropriately repair the shape of the chemical liquid film. Thus, the consumption of the chemical solution is saved. In addition, while the droplet of the chemical liquid film is dropped from the peripheral edge of the lower surface moving member 42 by the rotation of the wafer W, the chemical liquid is continuously supplied through the lower surface supply path 50 so that the inside of the chemical liquid film is always brand new. It is also possible to carry out a suitable chemical solution treatment by substituting the chemical solution. In this case as well, it is recommended to supply new liquid as quietly as possible to save liquid chemicals.
[0040]
The heater 61 in the lower surface moving member 42 generates heat, and the liquid film of the chemical solution on the lower surface moving member 42 is adjusted to a predetermined temperature. Thus, since the temperature of the chemical solution is continuously controlled from the supply of the chemical solution to the formation of the liquid film, the chemical reaction can be promoted in the liquid film to improve the cleaning efficiency. For example, particles, organic contaminants, and metal impurities adhering to the lower surface of the wafer W can be removed in a short time and the removal rate thereof is improved.
[0041]
On the other hand, the upper surface supply nozzle 23 moves in parallel to a predetermined position above the wafer W. The upper surface supply nozzle 23 supplies the chemical solution linearly. That is, the three-way valve 67 is switched to the chemical solution supply path 68 side so that the chemical solution flows into the upper surface supply path 66, and the liquid reservoir 71 adjusts the temperature of the chemical solution to a predetermined temperature by the temperature adjustment path S and discharges it from the discharge port 65. Further, the wafer W is rotated at least half a turn by the spin chuck 22, and the chemical liquid is deposited on the upper surface of the wafer W to form a uniform liquid film of the chemical liquid.
[0042]
When the chemical liquid film is also formed on the upper surface of the wafer W, as shown in FIG. 11, the upper surface moving member 25 is in a position not in contact with the chemical liquid film formed on the upper surface of the wafer W. Move to a position close to the top surface. For example, a gap L <b> 2 is formed between the upper surface moving member 25 moved to a position close to the upper surface of the wafer W and the liquid film of the chemical solution formed on the upper surface of the wafer W supported by the spin chuck 22. The upper surface moving member 25 supplies a new liquid and repairs the shape of the liquid film of the chemical liquid as appropriate by supplying a new liquid only when the shape of the liquid film of the chemical liquid on the upper surface of the wafer W is about to collapse. Is performed with the chemical already supplied from the upper surface supply nozzle 23, and after the formation of the liquid film, the supply of the new liquid is refrained to save the consumption of the chemical. In addition, while the wafer W is rotated and droplets of a chemical liquid film are dropped from the peripheral edge of the upper surface of the wafer W, the chemical liquid is continuously supplied from the upper surface moving member 25, so that the chemical liquid film is formed on the upper surface of the wafer W. The inside may always be replaced with a brand new chemical solution to carry out a suitable chemical solution treatment.
[0043]
The heater 76 in the upper surface moving member 25 generates heat, and the liquid film of the chemical solution formed on the upper surface of the wafer W is adjusted to a predetermined temperature. Thus, since the upper part of the liquid film of the chemical solution is covered with the upper surface moving member 25, it is possible to prevent the chemical solution from evaporating from the liquid film and reduce the amount of the liquid film, and to keep the chemical solution at a predetermined temperature by adjusting the temperature. Therefore, it is possible to prevent the cleaning ability from being lowered. Furthermore, since the temperature of the chemical solution is continuously controlled from the supply of the chemical solution to the formation of the liquid film, the chemical solution reaction can be promoted in the liquid film on the upper surface of the wafer W to improve the cleaning efficiency. Further, since the upper surface moving member 25 does not come into contact with the liquid film of the chemical solution formed on the upper surface of the wafer W with the gap L2, even if particles or the like may adhere to the upper surface moving member 25, It is possible to prevent the liquid film of the chemical solution from being contaminated by these particles. In particular, since the wafer W is supported by the spin chuck 22 with the surface of the wafer W on which a semiconductor device or the like is formed as an upper surface, it is important to maintain the cleanliness of the chemical liquid film in this way.
[0044]
When the chemical treatment on both surfaces of the wafer W is completed, as shown in FIG. 12, the three-way valve 51 is switched to the pure water supply path 53 side to flow pure water to the lower surface supply path 50 and supply pure water to the lower surface of the wafer W. Further, the wafer W is rotated at a higher speed (for example, about 500 to 1000 rpm) than when the chemical liquid processing is performed, and the lower surface moving member 42 is kept in the state of being positioned at the processing position A. By supplying pure water to the wafer W rotating at high speed in this way through the gap L1, the supplied pure water can be uniformly diffused over the entire lower surface of the wafer W. Further, the lower surface moving member 42 itself can be cleaned. On the other hand, the upper surface moving member 25 retracts from the upper surface of the wafer W and stands by outside the cup 21. Further, the upper surface supply nozzle 23 is again translated to a predetermined position above the wafer W. The upper surface supply nozzle 23 linearly supplies pure water to the upper surface of the wafer W. That is, the three-way valve 67 is switched to the pure water supply path 69 side so that pure water flows into the upper surface supply path 66. By supplying pure water to the wafer W rotating at high speed, the supplied pure water can be uniformly diffused over the entire upper surface of the wafer W. In this way, the both surfaces of the wafer W are rinsed, and the chemical solution is washed away from the wafer W.
[0045]
After the rinsing process, the wafer W is spin-dried by rotating at a higher speed (for example, about 2000 to 3000 rpm) than when rinsing the wafer W. In addition, the three-way valve 51 is switched to the gas supply path 54 side and N 2 Gas (or heated hot N 2 Gas) through the lower surface supply path 50 and N 2 Gas may be supplied to the lower surface of the wafer W. At this time, the lower surface moving member 42 is simultaneously dried. As shown in FIG. 13, the lower surface moving member 42 is lowered to the retracted position B during the spin drying, and the position of the retracted position B is changed to N 2 Gas is supplied to the lower surface of the wafer W. For example, in the first 10 seconds, N from the position of the processing position A 2 After the gas is supplied, the lower surface moving member 42 descends and then moves from the position of the retreat position B to N in the latter 10 seconds. 2 Supply gas. Of course, the lower surface moving member 42 is N at the processing position A until the spin drying is completed. 2 You may continue supplying gas. On the other hand, the upper surface supply nozzle 23 is N on the upper surface of the wafer W. 2 Supply gas. That is, the three-way valve 67 is switched to the gas supply path 70 side and N 2 Gas is passed through the upper surface supply path 66. In this way, both surfaces of the wafer W are rinsed, and pure water droplets are removed from the wafer W.
[0046]
After the drying process, the wafer W is unloaded from the substrate processing apparatus 8. That is, as shown in FIG. 14, the transfer arm 4 supports, for example, the lower surface of the wafer W by causing the arm 4b to enter the apparatus. Next, as shown in FIG. 15, the arm 4 b is raised, the wafer W is separated from the spin chuck 22, is received, and is retracted from the apparatus. In this case, since the lower surface moving member 42 is located at the retracted position B, the lower surface moving member 42 and the position (height) of the wafer W supported by the spin chuck 22 are the same as when carrying in. A sufficient gap is formed, and the transfer arm 4 can receive the wafer W from the spin chuck 22 with a margin.
[0047]
According to the substrate processing apparatus 8, when the wafer W is loaded / unloaded, the lower surface moving member 42 is lowered to the retracted position B in advance, so that the transfer device 4 does not come into contact with the lower surface moving member 42. , The wafer W can be carried in and out smoothly. Further, since the upper surface moving member 25 does not come into contact with the chemical liquid accumulated on the upper surface of the wafer W, contamination of the chemical liquid can be prevented and high cleaning ability can be maintained. Furthermore, the temperature of the chemical liquid accumulated on both surfaces of the wafer W is adjusted to a predetermined temperature by the heaters 61 and 76, so that the cleaning efficiency can be improved.
[0048]
Since the substrate processing apparatus 8 can clean both surfaces of the wafer W at the same time, for example, a substrate cleaning apparatus configured to clean only one surface of the wafer W is used as an apparatus dedicated to the front surface of the wafer W and an apparatus dedicated to the back surface of the wafer W. Compared to the case where the front and back surfaces of the wafer W are sequentially cleaned, the size of the cleaning system 1 can be reduced and the throughput can be improved.
[0049]
Although an example of a preferred embodiment of the present invention has been described above, the present invention is not limited to the embodiment described here. For example, in the previous embodiment, the lower surface moving member 42 is moved to the processing position A and then supplies the chemical liquid to the gap L1 to process the lower surface of the wafer W. However, for example, as shown in FIG. Before rising (when it is in the retracted position B), a liquid film is formed on the lower surface moving member 42 to form a liquid film, and after the liquid film is formed, the lower surface moving member 42 is raised to the processing position A. As shown in FIG. 11, the chemical solution may be brought into contact with the lower surface of the wafer W for processing. Also in this case, by sandwiching the chemical solution in the narrow gap L1, the chemical solution can be brought into uniform contact with the entire lower surface of the wafer W while preventing the accumulation of the chemical solution from being collapsed, and a suitable cleaning process can be performed.
[0050]
For example, FIGS. 17 and 18 show a modification of the upper surface supply nozzle. 17 and 18, a chemical solution supply path 81 for supplying a chemical solution, pure water and N 2 A pure water / gas supply path 82 for supplying gas is connected to each other. In the upper surface supply nozzle 80, a chemical solution reservoir 83 for temporarily storing a chemical solution and a pure water reservoir 84 for temporarily storing pure water are provided. The chemical solution supplied from the chemical solution supply path 81 is stored in the chemical solution reservoir 83 and then supplied to the upper surface of the wafer W through a plurality of chemical solution supply ports 85 communicating with the chemical solution reservoir 83, and from the pure water / gas supply channel 82. The supplied pure water is stored in the pure water reservoir 84 and then supplied to the upper surface of the wafer W through a plurality of pure water supply ports 86 communicating with the pure water reservoir 84. Further, temperature adjustment paths S are provided in the chemical solution reservoir 83 and the pure water reservoir 84, respectively, so that the temperature of the chemical solution and pure water can be individually adjusted.
[0051]
Further, a pure water nozzle that supplies only a chemical solution from the upper surface supply nozzle and supplies pure water to the upper surface of the wafer W and a drying nozzle that supplies a dry gas to the upper surface of the wafer W are individually provided, and each corresponds to various processes. A nozzle may be used. Further, the nozzle for supplying the chemical solution may be a general supply nozzle having only one supply port instead of the upper surface supply nozzle 23 in which a plurality of supply ports are provided in a line in the longitudinal direction.
[0052]
Further, the chemical treatment and the drying treatment may be continuously performed by the upper surface moving member. That is, as shown in FIG. 19, a chemical liquid supply path 88, a pure water supply path 89, and a gas supply path 90 are connected to the supply path 86 of the upper surface moving member 85 via a three-way valve 87. An adjuster 91 is provided. By sequentially switching the three-way valve 87 in this way, chemical liquid, pure water, N 2 The gas may be supplied to perform various processes by the upper surface moving member 85, and after spin drying, the droplets remaining on the wafer W may be dried by the heat generated by the heater 76.
[0053]
FIG. 20 shows a substrate cleaning apparatus 95 according to another embodiment of the present invention. The substrate cleaning apparatus 95 includes a circular cylindrical upper surface moving member 96 (cover body) that can surround the periphery of the wafer W supported by the spin chuck 22. The heater 76 is embedded in the upper surface moving member 96, and the chemical solution supply path 75 is connected to the upper surface of the upper surface moving member 96. Except for the point that the upper surface moving member 96 is provided, the substrate cleaning device 95 has substantially the same configuration as the substrate cleaning device 8 described above. Constituent elements are denoted by the same reference numerals, and redundant description is omitted.
[0054]
In the substrate cleaning apparatus 95, during cleaning, the upper surface moving member 96 moves to a position not in contact with the chemical film formed on the upper surface of the wafer W and close to the upper surface of the wafer W. Then, the periphery of the wafer W and thus the periphery of the chuck body 40 is covered. In the state covered with the upper surface moving member 96, the chemical solution can be further prevented from evaporating. Further, if the heater 76 generates heat, the heat of the heater 76 does not escape to the surroundings, so that the liquid film of the chemical solution formed on the upper surface of the wafer W can be adjusted to a predetermined temperature in a short time. Further, since the atmosphere in the chuck body 40 does not escape to the surroundings, the exhaust amount of the cup 21 can be reduced, and for example, running cost can be suppressed.
[0055]
In addition, the present invention is not limited to the substrate cleaning apparatus to which the cleaning liquid is supplied, and may perform other processes other than the cleaning on the substrate using various other processing liquids. The substrate is not limited to a semiconductor wafer, but may be other LCD substrate glass, a CD substrate, a printed substrate, a ceramic substrate, or the like.
[0056]
【Example】
Next, an example of the present invention was performed. The removal amount (etching amount) of paddle cleaning in which the cleaning liquid is deposited on the wafer W and cleaned is evaluated.
[0057]
First, as shown in FIG. 21, a thermal oxide film (Th-Oxide) having a film thickness of about 10 nm ± 0.3 nm is formed on the wafer W, and such a wafer W is placed on the mounting table 101 in which the heater 100 is embedded. Placed on. Then, a cleaning liquid heated to a predetermined temperature (for example, 60 ° C.) with respect to the thermal oxide film, for example, APM (NH 4 OH / H 2 O 2 / H 2 O liquid mixture) is accumulated, and SC1 paddle cleaning is performed on the wafer W at room temperature. Mixing volume ratio of APM component, that is, aqueous ammonia solution (NH 4 OH): Hydrogen peroxide solution (H 2 O 2 ): Pure water (H 2 O) for example 1: 1: 5, 1: 1: 10, 1: 2: 5, 1: 2: 10, 1: 5: 5, 1: 5: 10, 1: 5: 20, 1: 5: 50 is sequentially changed to examine how the removal amount of the thermal oxide film changes. For measuring the film thickness, an optical film thickness measuring device such as an ellipsometer is used. The processing time is 5 minutes (min), and the measurement result is obtained by averaging the measurement values of nine measurement points in the wafer W surface. A table summarizing the measurement results is shown in FIG. 22, and a graph created based on FIG. 22 is shown in FIG.
[0058]
Next, as shown in FIG. 24, a lid 102 is disposed above the wafer W placed on the mounting table 101, and a gap L3 formed between the lid 102 and the wafer W is set to 60 mm, 30 mm, and 15 mm. Sequentially narrow and examine how the removal amount of the thermal oxide film changes. When the gap L3 is 60 mm, the mounting table 101 is rotated so that the shape of the liquid film of APM does not collapse, and the inside of the liquid film of APM is stirred, and the removal amount of the thermal oxide film in that case is also examined. The mixing volume ratio of the APM component is fixed at 1: 1: 5 (aqueous ammonia solution: hydrogen peroxide solution: pure water). The conditions such as a predetermined temperature of APM, a film thickness measuring device, a processing time, and a measurement point are the same as those in the evaluation method described above. A table summarizing the measurement results is shown in FIG. 25, and a graph created based on FIG. 25 is shown in FIG.
[0059]
Next, how the removal amount of the thermal oxide film changes by arranging a lid above the wafer W and heating the heater 100 to adjust the temperature of the wafer W to a predetermined temperature (for example, 60 ° C.). Investigate. In this case, the mixing volume ratio of the APM component is sequentially changed to 1: 1: 5, 1: 2: 10, 1: 5: 10, 1: 5: 50. The distance L3 between the wafer W and the lid is fixed to 5 mm, and the processing time is 5 minutes (min). The conditions such as the predetermined temperature of the APM, the film thickness measuring device, and the measurement points are the same as in the evaluation method described above. A table summarizing the measurement results is shown in FIG. 27, and a graph created based on FIG. 27 is shown in FIG.
[0060]
As can be understood from these tables and graphs, when the wafer W is simply placed on the mounting table, the removal amount of the thermal oxide film is the smallest, and when the lid and the temperature control are combined, the removal amount of the thermal oxide film is the smallest. Many. As shown in FIGS. 25 and 26, when the lid is disposed above the wafer W, the removal amount is improved when the gap L3 formed between the lid and the wafer W is narrow. Further, it is considered that when the wafer W is rotated and the liquid film of the chemical liquid is stirred, a liquid flow is generated in the liquid film and the removal amount is improved.
[0061]
【The invention's effect】
According to the present invention, when the substrate is loaded / unloaded, the lower surface moving member is lowered to the retracted position in advance, so that, for example, the transfer device for loading / unloading the substrate does not contact the lower surface moving member. Can be carried in and out smoothly. Further, since the upper surface moving member does not come into contact with the cleaning liquid accumulated on the upper surface of the substrate, contamination of the cleaning liquid can be prevented and high cleaning ability can be maintained. Furthermore, since the chemical liquid accumulated on both surfaces of the substrate is adjusted to a predetermined temperature by the upper surface temperature adjusting mechanism and the lower surface temperature adjusting mechanism, the evaporation of the cleaning liquid can be prevented and the cleaning efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a perspective view of a cleaning system including a substrate cleaning apparatus according to an embodiment.
FIG. 2 is a plan view of the substrate cleaning apparatus according to the present embodiment.
FIG. 3 is a longitudinal sectional view of the substrate cleaning apparatus according to the present embodiment.
FIG. 4 is an enlarged longitudinal sectional view showing a spin chuck.
FIG. 5 is a perspective view of an upper surface supply nozzle.
FIG. 6 is a longitudinal sectional view of an upper surface supply nozzle.
FIG. 7 is a perspective view showing a state in which cleaning liquid is supplied to the wafer from an upper surface supply nozzle.
FIG. 8 is an explanatory diagram of a process of carrying a wafer into a substrate cleaning apparatus.
FIG. 9 is an explanatory diagram of a process of transferring a wafer to a spin chuck.
FIG. 10 is an explanatory diagram of a process of depositing a chemical solution between the lower surface moving member and the lower surface of the wafer and depositing the chemical solution on the upper surface of the wafer.
FIG. 11 is an explanatory diagram of a process of performing paddle cleaning on both surfaces of a wafer.
FIG. 12 is an explanatory diagram of a process of rinsing both surfaces of the wafer.
FIG. 13 is an explanatory diagram of a process of drying both surfaces of a wafer.
FIG. 14 is an explanatory diagram of a process of receiving a wafer from a spin chuck.
FIG. 15 is an explanatory diagram of a process of unloading a wafer from the substrate cleaning apparatus.
FIG. 16 is an explanatory diagram of a process of depositing a chemical on the lower surface moving member before rising to the processing position.
FIG. 17 is a perspective view showing a modification of the upper surface supply nozzle.
18 is a longitudinal sectional view of the upper surface supply nozzle of FIG.
FIG. 19 is a longitudinal sectional view showing a modification of the upper surface moving member.
FIG. 20 is a longitudinal sectional view of a substrate cleaning apparatus according to another embodiment.
FIG. 21 is an explanatory diagram showing a configuration of the present example;
FIG. 22 is a table showing the relationship between the mixing capacity ratio of APM components and the removal amount of the thermal oxide film when the thermal oxide film is SC1 paddle cleaned in this example.
FIG. 23 is a graph created based on FIG.
FIG. 24 is an explanatory diagram in the case where a lid is arranged above the wafer in the configuration of the present embodiment.
FIG. 25 is a table showing the relationship between the gap formed between the lid and the wafer and the removal amount of the thermal oxide film when the lid is placed above the wafer and SC1 paddle cleaning is performed in this example.
FIG. 26 is a graph created based on FIG.
FIG. 27 is a table showing the relationship between the mixing capacity ratio of APM components and the removal amount of the thermal oxide film when a lid is placed above the wafer while performing temperature control and SC1 paddle cleaning is performed in this example. .
FIG. 28 is a graph created based on FIG.
[Explanation of symbols]
A Processing position
B Retraction position
C career
W wafer
1 Cleaning system
8, 9, 10, 11 Substrate cleaning equipment
22 Spin chuck
23 Top feed nozzle
25 Upper surface moving member
42 Lower surface moving member
50 Bottom supply path
61, 72 heater

Claims (4)

支持手段により支持された基板に対して洗浄液を供給して基板を洗浄する方法であって,A method of cleaning a substrate by supplying a cleaning liquid to the substrate supported by the support means,
前記支持手段により支持された基板下面から離れた退避位置に下面移動部材を相対的に移動させる工程と,  Relatively moving the lower surface moving member to a retreat position away from the lower surface of the substrate supported by the support means;
前記支持手段に基板を渡して支持させる工程と,  Passing and supporting the substrate to the support means;
前記支持手段により支持された基板下面に近接した処理位置に前記下面移動手段を相対的に移動させ,前記処理位置に移動した下面移動部材と前記支持手段により支持された基板下面の間に洗浄液を液盛りさせ,液盛り後は新しい洗浄液の供給を停止して前記支持手段により支持された基板下面に洗浄液を接触させ,一方,前記支持手段により支持された基板上面に洗浄液を液盛りさせて基板上面に洗浄液を供給し,液盛り後は新しい洗浄液の供給を停止し,基板上下面に洗浄液を液盛した状態で洗浄処理する工程と,  The lower surface moving means is relatively moved to a processing position close to the lower surface of the substrate supported by the supporting means, and the cleaning liquid is placed between the lower surface moving member moved to the processing position and the lower surface of the substrate supported by the supporting means. After the liquid is deposited, the supply of new cleaning liquid is stopped and the cleaning liquid is brought into contact with the lower surface of the substrate supported by the supporting means, while the cleaning liquid is accumulated on the upper surface of the substrate supported by the supporting means. A process of supplying a cleaning liquid to the upper surface, stopping the supply of a new cleaning liquid after the liquid has been deposited, and performing a cleaning process with the cleaning liquid being deposited on the upper and lower surfaces of the substrate;
前記基板をリンス処理する工程と,  Rinsing the substrate;
前記基板を乾燥処理する工程と,  Drying the substrate;
前記退避位置に,前記下面移動部材を相対的に移動させる工程と,  Relatively moving the lower surface moving member to the retracted position;
前記支持手段から基板を搬出する工程を有することを特徴とする,基板洗浄方法。  A substrate cleaning method comprising a step of unloading the substrate from the support means.
前記基板下面に洗浄液を液盛するに際し,前記下面移動部材に対して相対的に基板を回転させることを特徴とする,請求項1に記載の基板洗浄方法。2. The substrate cleaning method according to claim 1, wherein the substrate is rotated relative to the lower surface moving member when the cleaning liquid is deposited on the lower surface of the substrate. 前記基板上面に洗浄液を供給して洗浄するに際し,前記支持手段により支持された基板上面に供給された洗浄液に接触しない位置であって,基板上面に対して近接した位置に前記上面移動部材を相対的に移動させることを特徴とする,請求項1又は2に記載の基板洗浄方法。When cleaning is performed by supplying a cleaning liquid to the upper surface of the substrate, the upper surface moving member is relatively positioned at a position not in contact with the cleaning liquid supplied to the upper surface of the substrate supported by the support means and close to the upper surface of the substrate. The substrate cleaning method according to claim 1, wherein the substrate is moved in a moving manner. 前記基板を乾燥処理するに際し,処理位置の前記下面移動手段からガスを基板下面に供給し,その後に前記下面移動部材を退避位置に下降させ,退避位置からガスを基板下面に供給しながらスピン乾燥することを特徴とする,請求項1〜3のいずれかに記載の基板洗浄方法。When the substrate is dried, the gas is supplied from the lower surface moving means at the processing position to the lower surface of the substrate, and then the lower surface moving member is lowered to the retracted position, and spin drying while supplying the gas from the retracted position to the lower surface of the substrate. The substrate cleaning method according to claim 1, wherein the substrate cleaning method is performed.
JP2001015027A 2001-01-23 2001-01-23 Substrate cleaning apparatus and substrate cleaning method Expired - Fee Related JP3837026B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001015027A JP3837026B2 (en) 2001-01-23 2001-01-23 Substrate cleaning apparatus and substrate cleaning method
KR1020020003783A KR100887360B1 (en) 2001-01-23 2002-01-23 Substrate processing apparatus and substrate processing method
US10/052,534 US20020096196A1 (en) 2001-01-23 2002-01-23 Substrate processing apparatus and substrate processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001015027A JP3837026B2 (en) 2001-01-23 2001-01-23 Substrate cleaning apparatus and substrate cleaning method

Publications (2)

Publication Number Publication Date
JP2002219424A JP2002219424A (en) 2002-08-06
JP3837026B2 true JP3837026B2 (en) 2006-10-25

Family

ID=18881643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001015027A Expired - Fee Related JP3837026B2 (en) 2001-01-23 2001-01-23 Substrate cleaning apparatus and substrate cleaning method

Country Status (1)

Country Link
JP (1) JP3837026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220055418A (en) 2020-10-26 2022-05-03 도쿄엘렉트론가부시키가이샤 Substrate processing method and substrate processing apparatus
US11600500B2 (en) 2020-07-14 2023-03-07 Tokyo Electron Limited Substrate processing method

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004266212A (en) 2003-03-04 2004-09-24 Tadahiro Omi Processing system of substrate
JP4766836B2 (en) * 2004-03-01 2011-09-07 大日本印刷株式会社 Photomask substrate cleaning method
JP4499604B2 (en) * 2005-04-22 2010-07-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Supercritical processing method
US7914626B2 (en) 2005-11-24 2011-03-29 Tokyo Electron Limited Liquid processing method and liquid processing apparatus
JP4995655B2 (en) * 2007-07-12 2012-08-08 信越化学工業株式会社 Cleaning method
JP5451662B2 (en) * 2011-02-15 2014-03-26 東京エレクトロン株式会社 Liquid processing apparatus and liquid processing method
JP5643688B2 (en) * 2011-03-15 2014-12-17 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and recording medium storing program for executing liquid processing method
JP5474855B2 (en) 2011-03-15 2014-04-16 東京エレクトロン株式会社 Liquid processing apparatus, liquid processing method, and recording medium storing program for executing liquid processing method
JP6168273B2 (en) 2012-10-16 2017-07-26 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6320945B2 (en) * 2015-01-30 2018-05-09 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP6736386B2 (en) * 2016-07-01 2020-08-05 東京エレクトロン株式会社 Substrate liquid processing apparatus, substrate liquid processing method and recording medium
JP6836913B2 (en) * 2017-01-17 2021-03-03 東京エレクトロン株式会社 Substrate processing equipment, substrate processing method, and storage medium
JP2019018127A (en) * 2017-07-12 2019-02-07 株式会社 ハリーズ Cleaning system, cleaning method of transparent substrate, and manufacturing method of electronic component
JP7064339B2 (en) * 2018-01-31 2022-05-10 株式会社Screenホールディングス Board processing method and board processing equipment
CN112740367A (en) 2018-09-27 2021-04-30 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
JP7213648B2 (en) 2018-09-27 2023-01-27 東京エレクトロン株式会社 Substrate processing equipment
JP7263078B2 (en) 2018-09-27 2023-04-24 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JP7292919B2 (en) 2018-09-27 2023-06-19 東京エレクトロン株式会社 Substrate processing equipment
CN110957241A (en) 2018-09-27 2020-04-03 东京毅力科创株式会社 Substrate processing apparatus and substrate processing method
US11510284B2 (en) 2018-09-27 2022-11-22 Tokyo Electron Limited Substrate processing apparatus
JP7110053B2 (en) 2018-09-27 2022-08-01 東京エレクトロン株式会社 Substrate processing equipment
JP7420515B2 (en) * 2019-09-19 2024-01-23 株式会社ディスコ Protective film removal method and protective film removal device
JP7325293B2 (en) * 2019-10-10 2023-08-14 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11600500B2 (en) 2020-07-14 2023-03-07 Tokyo Electron Limited Substrate processing method
KR20220055418A (en) 2020-10-26 2022-05-03 도쿄엘렉트론가부시키가이샤 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP2002219424A (en) 2002-08-06

Similar Documents

Publication Publication Date Title
JP3837026B2 (en) Substrate cleaning apparatus and substrate cleaning method
US7418970B2 (en) Substrate processing apparatus for drying substrate
JP4011900B2 (en) Substrate processing apparatus and substrate processing method
US9437464B2 (en) Substrate treating method for treating substrates with treating liquids
JP3958539B2 (en) Substrate processing apparatus and substrate processing method
US7404407B2 (en) Substrate processing apparatus
JP4426036B2 (en) Substrate processing equipment
KR100887360B1 (en) Substrate processing apparatus and substrate processing method
JPH0917761A (en) Cleaning treatment apparatus
WO2001084621A1 (en) Rotation holding device and semiconductor substrate processing device
JP4083682B2 (en) Substrate processing apparatus and substrate processing method
US6620260B2 (en) Substrate rinsing and drying method
KR20180127217A (en) Substrate processing apparatus
JP2009231732A (en) Substrate processing device and substrate processing method
JP2007103956A (en) Substrate treatment device
JP3984004B2 (en) Substrate processing apparatus and substrate processing method
JP3958572B2 (en) Substrate processing apparatus and substrate processing method
JP3892687B2 (en) Substrate processing apparatus and substrate processing method
JP3540550B2 (en) Processing device and processing method
JP2007324610A (en) Device and method for substrate processing
JP2000049215A (en) Processing system
JP2003031537A (en) Wafer processing apparatus
TWI819538B (en) Substrate treating apparatus and substrate treating method
JP2009218617A (en) Substrate processing apparatus and substrate processing method
TW202310121A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150804

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees