JP3836089B2 - Sample container for melting point measurement of MOX fuel - Google Patents

Sample container for melting point measurement of MOX fuel Download PDF

Info

Publication number
JP3836089B2
JP3836089B2 JP2003173954A JP2003173954A JP3836089B2 JP 3836089 B2 JP3836089 B2 JP 3836089B2 JP 2003173954 A JP2003173954 A JP 2003173954A JP 2003173954 A JP2003173954 A JP 2003173954A JP 3836089 B2 JP3836089 B2 JP 3836089B2
Authority
JP
Japan
Prior art keywords
melting point
sample container
tungsten
sample
mox fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003173954A
Other languages
Japanese (ja)
Other versions
JP2005009997A (en
Inventor
恭一 森本
正人 加藤
弘樹 宇野
Original Assignee
核燃料サイクル開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 核燃料サイクル開発機構 filed Critical 核燃料サイクル開発機構
Priority to JP2003173954A priority Critical patent/JP3836089B2/en
Publication of JP2005009997A publication Critical patent/JP2005009997A/en
Application granted granted Critical
Publication of JP3836089B2 publication Critical patent/JP3836089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サーマルアレスト法によりMOX燃料の融点を測定するための耐熱試料容器に関し、更に詳しく述べると、全体がタングステン−レニウム合金からなる融点測定用試料容器に関するものである。本発明は、特に高Pu富化度で高O/MのU−Pu混合酸化物の融点測定に有用である。
【0002】
【従来の技術】
【特許文献1】
特開2002−296206号公報
【0003】
高速増殖炉ではMOX燃料(ウラン−プルトニウム混合酸化物)が用いられている。これは、酸化ウラン(UO2 )と酸化プルトニウム(PuO2 )の固溶体である。酸化ウラン(UO2 )と酸化プルトニウム(PuO2 )は同じ結晶構造を持ち、全組成範囲にわたって固溶する。また、混合酸化物では、MO2±x (M=Pu+U)が可能であり、広い単相領域が存在する。ここで酸素と重金属の比はO/M(=2±x)と呼ばれており、化学量論比2.0からのずれの程度に依存して物性が変化する。MOX燃料として用いられているのは、O/M=1.99〜1.95が多いとされている。
【0004】
ところで、酸化ウラン(UO2 )の溶融温度は2840℃前後、酸化プルトニウム(PuO2 )の溶融温度は2390℃前後であり、混合酸化物の場合には組成に応じて両者の間の値をとる。またO/Mによっても溶融温度は変化する。更に、燃焼が進むと、核***生成物(FP)の蓄積に伴う融点の低下が生じる。このようなことから分かるように、融点の正確な測定は、核燃料の開発・製造に極めて重要である。
【0005】
従来、核燃料物質の融点測定にはサーマルアレスト(熱停留)法が用いられている。これは、測定試料を封入した容器を加熱炉内に設置し、温度計測しながら試料を昇温していき、試料が溶融する際の潜熱(融解吸熱)により昇温が停滞する熱曲線の変化を読み取ることで試料の融点を求める方法である。変曲点の読み取り誤差を極力低く抑えるために、試料の温度計測と同時に試料容器の温度を計測し、容器温度データをリファレンスとして、リファレンスと試料温度データとの差分をプロットし、プロットした示差熱曲線の変曲点を読み取ることで試料の融点を求める方法も提案されている(特許文献1参照)。
【0006】
ところで、融点を測定する試料となる核燃料物質の中には、前記のように、融点が2800℃を超えるものもある。そのために試料容器としては、従来、タングステン製の容器が用いられている。
【0007】
【発明が解決しようとする課題】
しかし、MOX燃料について融点測定を行おうとすると、熱曲線の形状が非常に悪く不安定となり解析が困難になるという問題があった。特に、Pu濃度が約30%のMOX燃料について、燃料設計等で必要となってくるO/M=2.00〜1.98付近では融点の測定を行っても、信頼性の高い正確なデータを得ることは困難であった。このように従来方法において、熱曲線の形状が非常に悪く不安定となり解析が困難になる原因については、解明されていなかった。
【0008】
本発明の目的は、MOX燃料中の酸素と試料容器との反応を抑え、昇温停滞時の熱曲線の不安定性を低減させてMOX燃料の融点測定に対する信頼性を向上させることができる融点測定用試料容器を提供することである。本発明の他の目的は、特に燃料設計等の観点から重要性の高いPu濃度が30%以下のMOX燃料において、O/M=2.00〜1.98付近のU−Pu混合酸化物の融点の正確な信頼性の高い測定が行える融点測定用試料容器を提供することである。
【0009】
【課題を解決するための手段】
タングステン製試料容器にMOX燃料(U−Pu混合酸化物)を封入して、サーマルアレスト法によって融点測定を行った後、試料の金相観察を行った結果、試料中にタングステンが多く混入していることが判明した。試料中にタングステンが混入する原因は、MOX燃料中に含まれる酸素と試料容器の構成材であるタングステンとが反応するためであり、MOX燃料とタングステン製試料容器の酸素ポテンシャル(酸化のし易さの目安)がタングステン製試料容器の方が高いために起こるものと考えられる。
【0010】
このようなMOX燃料と試料容器構成材であるタングステンとにおける酸素のやりとりが測定に影響している可能性があり、これが測定の不安定性を大きくしていたものと推測された。そこで鋭意研究を続けた結果、本発明者等は、従来技術において熱曲線の形状が非常に悪く解析が困難になってしまう原因は、U−Pu混合酸化物中に含まれる酸素と試料容器の構成材であるタングステンとが反応し、その反応の際に発生する熱が、試料溶融の際の融解吸熱と同時に起こることによって昇温停滞の熱曲線が不安定なものになってしまうためであることを見出した。これはタングステン製試料容器を使用してPu濃度が約30%でO/Mが2.00付近のU−Pu混合酸化物の融点測定を行う場合に必ず生じる現象である。本発明は、かかる熱曲線形状悪化のメカニズムの知得に基づきなされたものである。
【0011】
U−Pu混合酸化物中の酸素とタングステン製試料容器との反応は、O/Mを下げることにより低減できることが分かっている。具体的には、Pu濃度が約30%のU−Pu混合酸化物において、上記の現象が見られなくなるO/Mはおおよそ1.94以下である。しかし、それでは燃料設計等で必要となってくるO/M=2.00〜1.98付近の融点の予測は不可能である。そのため、何らかの対策が必要となる。
【0012】
このような課題を解決できる本発明は、MOX燃料を封入してサーマルアレスト法により融点を測定するための試料容器であって、全体がタングステン−レニウム合金からなるMOX燃料の融点測定用試料容器である。ここで典型的には、測定試料となるMOX燃料はPu濃度が約30%(例えば30〜29%程度)でO/M=2.00〜1.95のU−Pu混合酸化物であり、容器構成材であるタングステン−レニウム合金はタングステン90%−レニウム10%からなる。一般的にはPu濃度30〜0%を測定範囲としており、それに応じて本発明は30%Pu以下のMOX燃料の融点測定に使用できる。
【0013】
【発明の実施の形態】
融点の測定方法は、基本的には従来技術と同様であってよく、測定試料を封入した容器を加熱炉内に設置し、温度計測しながら試料を昇温していき、試料が溶融する際の潜熱(融解吸熱)により昇温が停滞し、溶融が終了した時点で再び昇温が継続される熱曲線を得て、この熱曲線の解析から試料の融点を求めるサーマルアレスト法である。
【0014】
酸化ウラン(UO2 )をタングステン製試料容器に封入して測定した結果の一例を図1に示す。酸化ウランの場合には、容器構成材であるタングステンとの反応は生じない。また、酸化ウランの場合には、固相温度と液相温度が1点(同一の温度)として観測されるため、昇温の停滞を明確に認定することができる。従って、模式的には図2に示すような熱曲線が得られる。具体的な解析法は、サーマルアレスト開始直前までの熱曲線とサーマルアレストが現れている間の熱曲線の交点を求め、それを融点とする。
【0015】
ところが、MOX燃料の場合、固相温度と液相温度とが2点(異なる温度)として観測されるため、昇温の停滞は必ずしも明確であるとは限らない。理想的な場合の熱曲線を模式的に表したのが図3である。従って、このような場合も、基本的には熱曲線の変曲点から融点を求めることができる。
【0016】
【実施例】
図4は本発明に係る融点測定用試料容器の一実施例を示す断面図である。試料容器は、円筒部10の下端に底蓋12を嵌め込み、所定量の試料を入れ、上端に上蓋14を嵌め込み、溶接等により封入する構造である。なお、底蓋中央の凹部16は放射温度計の測定部分である。本発明では、これら円筒部10、底蓋12、及び上蓋14の全てがタングステン−レニウム合金によって製作されており、その点に特徴がある。典型的な組成は、タングステン90%−レニウム10%である。
【0017】
このようなタングステン−レニウム合金製試料容器を用いたU−Pu混合酸化物の熱曲線の一例を図5に示す。試料のPu濃度は29.9%、O/M=2.00である。また比較のために、従来のタングステン製試料容器を用いたU−Pu混合酸化物の熱曲線の例を図6に示す。試料のPu濃度は29.5%、O/M=2.00である。
【0018】
両者を対比すると、明らかな相違が認められる。U−Pu混合酸化物では、前述のように(図3参照)固相温度と液相温度の2点がある。まず固相温度に着目すると、図5のタングステン−レニウム合金製試料容器(本発明品)を用いての測定では変曲点が分かるが、図6のタングステン製試料容器(従来品)を用いての測定では、固相温度が本当にあるのかどうかが分からないほど微妙な変化となっている。また液相温度については、図5のタングステン−レニウム合金製試料容器(本発明品)での測定の方が40℃程度低く液相温度が観測されており、これも試料容器の構成材を変更し試料容器との反応による熱曲線変化を除去した成果である。
【0019】
融点測定後の試料の金相観察結果を図7に示す。Aはタングステン−レニウム合金製試料容器(本発明品)による融点測定試料であり、Bはタングステン製試料容器(従来品)による融点測定試料である。白色の部分が反応により容器構成材が混入した箇所を示している。明らかにタングステン−レニウム合金製試料容器(本発明品)を用いた場合は試料容器構成材の混入が殆ど生じていないことが分かる。
【0020】
本発明で用いるタングステン−レニウム合金は、従来用いられていたタングステンよりも若干融点が低いが、U−Pu混合酸化物を測定する上では、タングステン90%−レニウム10%であれば特に問題はない。なお、本発明に係る試料容器は、U−Pu混合酸化物(Pu濃度が30%程度のもの)と同程度以上の酸化力のある高融点材料の融点測定にも使用可能であることはいうまでもない。また、タングステン−レニウム合金製試料容器はタングステン製試料容器に比べて高価であるから、試料の性状に応じて使い分けることが望ましい。
【0021】
【発明の効果】
本発明は上記のように、タングステン−レニウム合金製の融点測定用試料容器であるから、試料がU−Pu混合酸化物(例えばPu濃度:30%程度、O/M:2.00付近)であっても、容器構成材との酸化反応が低減し、そのため熱曲線の形状が安定化し且つ良好になり、熱曲線の解析が行い易くなる。その結果、燃料設計の観点から重要性の高いO/M=2.00〜1.98付近の融点の従来方法よりも正確な信頼性の高い測定が可能となる。
【図面の簡単な説明】
【図1】酸化ウランのサーマルアレスト法による測定結果の一例を示すグラフ。
【図2】酸化ウランを試料とする場合の理想的な熱曲線を示す模式図。
【図3】U−Pu混合酸化物を試料とする場合の理想的な熱曲線を示す模式図。
【図4】融点測定用試料容器の一例を示す断面図。
【図5】本発明品を用いたU−Pu混合酸化物の熱曲線を示すグラフ。
【図6】従来品を用いたU−Pu混合酸化物の熱曲線を示すグラフ。
【図7】融点測定後の試料の金相観察結果を示す図。
【符号の説明】
10 円筒部
12 底蓋
14 上蓋
16 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant sample container for measuring the melting point of MOX fuel by a thermal arrest method. More specifically, the present invention relates to a melting point measurement sample container made entirely of a tungsten-rhenium alloy. The present invention is particularly useful for measuring the melting point of U-Pu mixed oxides with high Pu enrichment and high O / M.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-296206
MOX fuel (uranium-plutonium mixed oxide) is used in the fast breeder reactor. This is a solid solution of uranium oxide (UO 2 ) and plutonium oxide (PuO 2 ). Uranium oxide (UO 2 ) and plutonium oxide (PuO 2 ) have the same crystal structure and are dissolved in the entire composition range. In the mixed oxide, MO 2 ± x (M = Pu + U) is possible, and a wide single-phase region exists. Here, the ratio of oxygen to heavy metal is called O / M (= 2 ± x), and the physical properties change depending on the degree of deviation from the stoichiometric ratio of 2.0. It is said that O / M = 1.99 to 1.95 is often used as the MOX fuel.
[0004]
By the way, the melting temperature of uranium oxide (UO 2 ) is around 2840 ° C., the melting temperature of plutonium oxide (PuO 2 ) is around 2390 ° C., and in the case of a mixed oxide, it takes a value between the two depending on the composition. . Also, the melting temperature varies depending on O / M. Furthermore, as the combustion proceeds, the melting point decreases with the accumulation of fission products (FP). As can be seen from the above, accurate measurement of the melting point is extremely important for the development and production of nuclear fuel.
[0005]
Conventionally, the thermal arrest method has been used to measure the melting point of nuclear fuel materials. This is a change in the thermal curve in which the temperature rises stagnate due to the latent heat (melting endotherm) when the sample is melted by placing the container enclosing the measurement sample in the heating furnace and heating the sample while measuring the temperature. Is a method for obtaining the melting point of the sample by reading. To keep the inflection point reading error as low as possible, measure the temperature of the sample container at the same time as measuring the temperature of the sample, plot the difference between the reference and sample temperature data using the container temperature data as a reference, and plot the differential heat A method for obtaining the melting point of a sample by reading the inflection point of the curve has also been proposed (see Patent Document 1).
[0006]
By the way, as described above, some nuclear fuel materials serving as samples for measuring the melting point have melting points exceeding 2800 ° C. Therefore, a tungsten container is conventionally used as a sample container.
[0007]
[Problems to be solved by the invention]
However, when attempting to measure the melting point of MOX fuel, there is a problem that the shape of the heat curve is very bad and unstable, making analysis difficult. In particular, for MOX fuel with a Pu concentration of about 30%, accurate data with high reliability is obtained even when the melting point is measured in the vicinity of O / M = 2.00 to 1.98, which is required for fuel design. It was difficult to get. As described above, in the conventional method, the reason why the shape of the heat curve is very bad and unstable and the analysis becomes difficult has not been elucidated.
[0008]
It is an object of the present invention to suppress the reaction between oxygen in the MOX fuel and the sample container, to reduce the instability of the thermal curve when the temperature rise is stagnated, and to improve the reliability of the melting point measurement of the MOX fuel. A sample container is provided. Another object of the present invention is to provide a U-Pu mixed oxide of O / M = 2.00 to 1.98 in a MOX fuel having a Pu concentration of 30% or less, which is particularly important from the viewpoint of fuel design. An object of the present invention is to provide a melting point measurement sample container capable of accurately measuring the melting point with high reliability.
[0009]
[Means for Solving the Problems]
After the MOX fuel (U-Pu mixed oxide) was sealed in a tungsten sample container and the melting point was measured by the thermal arrest method, the gold phase of the sample was observed. As a result, a lot of tungsten was mixed in the sample. Turned out to be. The reason why tungsten is mixed in the sample is that oxygen contained in the MOX fuel reacts with tungsten, which is a constituent material of the sample container, and the oxygen potential (ease of oxidation) of the MOX fuel and the tungsten sample container. This is probably because the tungsten sample container is higher.
[0010]
The exchange of oxygen between the MOX fuel and tungsten, which is a sample container constituent material, may have an influence on the measurement, and it was speculated that this increased measurement instability. As a result of intensive research, the present inventors have found that the reason why the shape of the heat curve is very poor and the analysis becomes difficult in the prior art is that the oxygen contained in the U-Pu mixed oxide and the sample container This is because the component tungsten reacts and the heat generated during the reaction occurs simultaneously with the melting endotherm during the melting of the sample, resulting in an unstable heating curve. I found out. This is a phenomenon that always occurs when a tungsten sample container is used to measure the melting point of a U-Pu mixed oxide having a Pu concentration of about 30% and an O / M of around 2.00. The present invention has been made based on the knowledge of the mechanism for the deterioration of the heat curve shape.
[0011]
It has been found that the reaction between oxygen in the U-Pu mixed oxide and the tungsten sample container can be reduced by lowering the O / M. Specifically, in the U-Pu mixed oxide having a Pu concentration of about 30%, the O / M at which the above phenomenon is not observed is approximately 1.94 or less. However, it is impossible to predict the melting point in the vicinity of O / M = 2.00 to 1.98, which is necessary for fuel design and the like. Therefore, some countermeasure is required.
[0012]
The present invention, which can solve such problems, is a sample container for enclosing MOX fuel and measuring the melting point by the thermal arrest method, and is a sample container for measuring the melting point of MOX fuel made entirely of a tungsten-rhenium alloy. is there. Typically, the MOX fuel as a measurement sample is a U-Pu mixed oxide having a Pu concentration of about 30% (for example, about 30 to 29%) and O / M = 2.00 to 1.95. The container-constituting tungsten-rhenium alloy is composed of 90% tungsten-10% rhenium. In general, the Pu concentration is 30 to 0%, and the present invention can be used to measure the melting point of MOX fuel with 30% Pu or less.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The method for measuring the melting point may be basically the same as that of the prior art. When the sample is melted by placing the container enclosing the measurement sample in a heating furnace and raising the temperature while measuring the temperature, This is a thermal arrest method in which the temperature rise is stagnated due to the latent heat (melting endotherm) and the temperature rises again when melting is completed, and the melting point of the sample is obtained from the analysis of the heat curve.
[0014]
FIG. 1 shows an example of the results obtained by measuring uranium oxide (UO 2 ) in a tungsten sample container. In the case of uranium oxide, there is no reaction with tungsten as the container constituent material. In the case of uranium oxide, since the solid phase temperature and the liquid phase temperature are observed as one point (the same temperature), the stagnation of the temperature rise can be clearly identified. Therefore, a thermal curve as schematically shown in FIG. 2 is obtained. A specific analysis method obtains the intersection of the thermal curve immediately before the start of thermal arrest and the thermal curve while the thermal arrest appears, and uses it as the melting point.
[0015]
However, in the case of MOX fuel, since the solid phase temperature and the liquid phase temperature are observed as two points (different temperatures), the stagnation of the temperature rise is not necessarily clear. FIG. 3 schematically shows a heat curve in an ideal case. Therefore, in such a case as well, the melting point can basically be obtained from the inflection point of the thermal curve.
[0016]
【Example】
FIG. 4 is a cross-sectional view showing an embodiment of a sample container for melting point measurement according to the present invention. The sample container has a structure in which a bottom lid 12 is fitted into the lower end of the cylindrical portion 10, a predetermined amount of sample is placed, an upper lid 14 is fitted into the upper end, and sealed by welding or the like. The recess 16 in the center of the bottom cover is a measurement part of the radiation thermometer. In the present invention, all of the cylindrical portion 10, the bottom lid 12, and the top lid 14 are made of a tungsten-rhenium alloy, and this is a feature. A typical composition is 90% tungsten-10% rhenium.
[0017]
An example of the thermal curve of the U-Pu mixed oxide using such a sample container made of tungsten-rhenium alloy is shown in FIG. The Pu concentration of the sample is 29.9% and O / M = 2.00. For comparison, FIG. 6 shows an example of a thermal curve of a U-Pu mixed oxide using a conventional tungsten sample container. The Pu concentration of the sample is 29.5% and O / M = 2.00.
[0018]
When the two are contrasted, a clear difference is observed. In the U-Pu mixed oxide, as described above (see FIG. 3), there are two points: a solid phase temperature and a liquid phase temperature. First, paying attention to the solid phase temperature, the inflection point can be found in the measurement using the tungsten-rhenium alloy sample container (product of the present invention) in FIG. 5, but using the tungsten sample container (conventional product) in FIG. In this measurement, the change is so subtle that it is unknown whether the solid phase temperature really exists. As for the liquid phase temperature, the liquid phase temperature was observed to be lower by about 40 ° C. in the tungsten-rhenium alloy sample container (product of the present invention) in FIG. 5, and this also changed the constituent materials of the sample container. This is the result of removing the heat curve change due to the reaction with the sample container.
[0019]
The gold phase observation result of the sample after melting | fusing point measurement is shown in FIG. A is a melting point measurement sample using a tungsten-rhenium alloy sample container (product of the present invention), and B is a melting point measurement sample using a tungsten sample container (conventional product). The white part has shown the location where the container constituent material mixed by reaction. Obviously, when a sample container made of tungsten-rhenium alloy (product of the present invention) is used, the sample container constituent material is hardly mixed.
[0020]
The tungsten-rhenium alloy used in the present invention has a slightly lower melting point than that of conventionally used tungsten. However, when measuring U-Pu mixed oxide, there is no particular problem if tungsten is 90% -rhenium 10%. . It should be noted that the sample container according to the present invention can also be used for the melting point measurement of a high melting point material having an oxidizing power equal to or higher than that of a U-Pu mixed oxide (with a Pu concentration of about 30%). Not too long. Moreover, since the sample container made of tungsten-rhenium alloy is more expensive than the sample container made of tungsten, it is desirable to use properly according to the properties of the sample.
[0021]
【The invention's effect】
Since the present invention is a sample container for measuring the melting point made of a tungsten-rhenium alloy as described above, the sample is a U-Pu mixed oxide (for example, Pu concentration: about 30%, O / M: around 2.00). Even if it exists, the oxidation reaction with the container constituent material is reduced, so that the shape of the heat curve is stabilized and improved, and the analysis of the heat curve is facilitated. As a result, more accurate and reliable measurement of the melting point near O / M = 2.00 to 1.98, which is highly important from the viewpoint of fuel design, is possible.
[Brief description of the drawings]
FIG. 1 is a graph showing an example of a measurement result of uranium oxide by a thermal arrest method.
FIG. 2 is a schematic diagram showing an ideal thermal curve when uranium oxide is used as a sample.
FIG. 3 is a schematic diagram showing an ideal thermal curve when a U-Pu mixed oxide is used as a sample.
FIG. 4 is a sectional view showing an example of a melting point measurement sample container.
FIG. 5 is a graph showing a thermal curve of a U-Pu mixed oxide using the product of the present invention.
FIG. 6 is a graph showing a thermal curve of a U-Pu mixed oxide using a conventional product.
FIG. 7 is a view showing a gold phase observation result of a sample after melting point measurement.
[Explanation of symbols]
10 Cylindrical part 12 Bottom lid 14 Top lid 16 Recess

Claims (2)

MOX燃料を封入してサーマルアレスト法により融点を測定するための試料容器であって、全体がタングステン−レニウム合金からなることを特徴とするMOX燃料の融点測定用試料容器。A sample container for measuring a melting point of MOX fuel, which is a sample container for enclosing MOX fuel and measuring the melting point by a thermal arrest method, and is entirely made of a tungsten-rhenium alloy. 測定試料となるMOX燃料は、Pu濃度が約30%でO/M=2.00〜1.95のU−Pu混合酸化物であり、容器構成材であるタングステン−レニウム合金がタングステン90%−レニウム10%である請求項1記載のMOX燃料の融点測定用試料容器。The MOX fuel used as a measurement sample is a U-Pu mixed oxide having a Pu concentration of about 30% and O / M = 2.00 to 1.95, and the tungsten-rhenium alloy as a container component is 90% tungsten- The sample container for measuring the melting point of MOX fuel according to claim 1, which is 10% rhenium.
JP2003173954A 2003-06-18 2003-06-18 Sample container for melting point measurement of MOX fuel Expired - Fee Related JP3836089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003173954A JP3836089B2 (en) 2003-06-18 2003-06-18 Sample container for melting point measurement of MOX fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003173954A JP3836089B2 (en) 2003-06-18 2003-06-18 Sample container for melting point measurement of MOX fuel

Publications (2)

Publication Number Publication Date
JP2005009997A JP2005009997A (en) 2005-01-13
JP3836089B2 true JP3836089B2 (en) 2006-10-18

Family

ID=34097616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003173954A Expired - Fee Related JP3836089B2 (en) 2003-06-18 2003-06-18 Sample container for melting point measurement of MOX fuel

Country Status (1)

Country Link
JP (1) JP3836089B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318367A (en) * 2017-12-29 2018-07-24 中核四0四有限公司 In a kind of MOX pellets oxygen metallic atom than analysis method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604154B2 (en) * 2007-01-11 2010-12-22 独立行政法人 日本原子力研究開発機構 MOX fuel melting point measurement sample
DE102013102088B3 (en) * 2013-03-04 2014-07-17 Netzsch-Gerätebau GmbH Method and device for material analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318367A (en) * 2017-12-29 2018-07-24 中核四0四有限公司 In a kind of MOX pellets oxygen metallic atom than analysis method

Also Published As

Publication number Publication date
JP2005009997A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
Fender et al. Thermodynamic properties of Fe1− xO. Transitions in the single phase region
US3481855A (en) Continuous oxygen monitor for liquid metals
Kato et al. Solidus and liquidus temperatures in the UO2–PuO2 system
US3378478A (en) Apparatus for continuous oxygen monitoring of liquid metals
JP3836089B2 (en) Sample container for melting point measurement of MOX fuel
Iizuka et al. Electrochemical reduction of (U, Pu) O2 in molten LiCl and CaCl2 electrolytes
Lambertson et al. Uranium oxide phase equilibrium systems: I, UO2–Al2O3
Kato et al. Solidus and liquidus of plutonium and uranium mixed oxide
JP3588595B2 (en) Melting point measurement method for high melting point materials
Swain et al. Electrochemical behaviour of LiCl-KCl eutectic melts containing moisture as impurity. Part I: Inert tungsten electrode
JPH07167823A (en) Collating electrode for electrochemical measurement of partial pressure of oxygen in ionic melt
McKee et al. Calibration stability of oxygen meters for LMFBR sodium systems
JP4604154B2 (en) MOX fuel melting point measurement sample
Perron THERMODYNAMICS OF NONSTOICHIOMETRIC URANIUM DIOXIDE.
CN104089917B (en) Method for testing content of oxygen in villaumite
Legge Polarographic determination of uranium
Venugopal et al. Standard molar Gibbs free energy of formation of NaCrO2 by emf measurements
Cox et al. Measurement of oxidation/reduction kinetics to 2100° C using non-contact solid-state electrolytes
JPS6367655B2 (en)
Veshchunov et al. Molten corium oxidation model
Hayward et al. Measurement of 2000–2100 C oxygen diffusion coefficients in hypostoichiometric UO2
Salaev et al. The results of studies on the extension of methodological capabilities of determining physico-chemical conditions of lead-based liquid-metal coolants
Casadio et al. Cyclic voltammetric behavior of uranyl ion in sulfuric acid solutions. Application to some nuclear materials characterization
Javed et al. THERMODYNAMIC AND DEFECT-STRUCTURE STUDIES IN MIXED-OXIDE FUELS.
RU2785081C1 (en) Potentiometric oxygen sensor for measuring oxygen concentration in liquid metal, its use for measurement of oxygen content in liquid sodium of sodium-fast nuclear reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090804

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100804

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110804

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120804

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130804

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees