JP3834254B2 - Semiconductor device, fixing structure thereof, and fixing method of semiconductor device - Google Patents

Semiconductor device, fixing structure thereof, and fixing method of semiconductor device Download PDF

Info

Publication number
JP3834254B2
JP3834254B2 JP2002102487A JP2002102487A JP3834254B2 JP 3834254 B2 JP3834254 B2 JP 3834254B2 JP 2002102487 A JP2002102487 A JP 2002102487A JP 2002102487 A JP2002102487 A JP 2002102487A JP 3834254 B2 JP3834254 B2 JP 3834254B2
Authority
JP
Japan
Prior art keywords
cooling device
semiconductor device
heat sink
fixing
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002102487A
Other languages
Japanese (ja)
Other versions
JP2003297990A (en
Inventor
康己 上貝
弘 西堀
貴信 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002102487A priority Critical patent/JP3834254B2/en
Publication of JP2003297990A publication Critical patent/JP2003297990A/en
Application granted granted Critical
Publication of JP3834254B2 publication Critical patent/JP3834254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放熱部材を介して半導体素子の発熱を冷却装置に伝える半導体装置および該半導体装置の冷却装置への固定構造ならびに半導体装置の冷却装置への固定方法に関する。
【0002】
【従来の技術】
従来、放熱板を介して半導体素子の発熱を冷却装置に伝える方法として、放熱板と冷却装置間に熱伝導性を有するゲル状のグリースあるいはシート状の部材を塗布または挿入し、半導体装置を固定ねじで冷却装置に固定する方法があった。このような半導体装置および固定方法は、例えば特開平4−233752号公報に示されている。
【0003】
放熱板と冷却装置の密着性を高くするために、半導体装置は多数のねじで固定されるが、放熱板に撓みがある場合や、冷却装置の半導体装置の取り付け面に反りがある場合、ねじ固定にともなう放熱板の撓み変形により、放熱板に固着されている絶縁部材や半導体素子が破損することが懸念される。
【0004】
また、温度変動が生じた場合、半導体装置の熱変形がねじ固定によって拘束されるため、半導体装置における放熱板へのはんだ接合部の熱応力(ひずみ)が非固定の状態に比較して増大し、その結果、温度サイクルに対する半導体装置の寿命が低下するという問題があった。
【0005】
他方、半導体装置のねじ固定部近傍に溝を加工して、ねじ固定にともなう半導体素子への作用力を緩和する半導体デバイスが、たとえば特開昭63−31144号公報に示されている。
【0006】
【発明が解決しようとする課題】
この半導体デバイスにおいては、ねじ固定部近傍に溝部を設けて低剛性とすることにより、ねじ固定にともなう半導体素子への応力を緩和させている。
【0007】
しかし、半導体装置の熱変形(撓み)については拘束された状態となるため、放熱板はんだ接合部の熱応力(ひずみ)が非固定の状態に比較して増加する。その結果、温度サイクルに対する半導体装置の寿命(信頼性)が低下するという問題があった。
【0008】
また、半導体装置が厳しい振動環境下で使用される場合、十分なねじ締め力が必要となるが、従来の方法では、ねじ締付力を増加させるほど半導体装置の撓みに対する拘束力が大きくなるため、信頼性の観点から、必要十分な締付力を付与できず、振動環境下でねじの緩みの懸念があった。
【0009】
本発明は、上記の課題を解決するためになされたものであり、温度サイクルに対する半導体装置の寿命短縮を抑制でき、厳しい振動環境下で使用可能な半導体装置、冷却装置への半導体装置の固定構造および固定方法を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る半導体装置は、冷却装置に固定される半導体装置であって、半導体素子と、該半導体素子を搭載し、半導体素子で発生した熱を放散する放熱板と、該放熱板と冷却装置との間であって放熱板の中央部に間隙を形成し、冷却装置への固定用ねじを受け入れる(挿通する)穴を有する凸部とを備え、該間隙によって形成される、該放熱板と冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超える。該凸部は、放熱板の一部を突出させて形成してもよく、別部材を放熱板に固定して設けてもよい。また、穴の周囲に凸部を形成してもよい。
【0011】
上記のように凸部を設けることにより、半導体装置の動作時における半導体素子の発熱や、半導体装置の使用環境の温度変動にともなう放熱板の撓みによる放熱板裏面と冷却装置表面の干渉を防ぐことができる。また、凸部にねじを受け入れる穴を設けることにより、冷却装置へのねじ固定による半導体装置の拘束の程度を従来よりも格段に軽減することができる。
【0012】
本発明に係る半導体装置の固定構造は、放熱板を有する半導体装置の冷却装置への固定構造であって、冷却装置と放熱板の少なくとも一方に、放熱板と冷却装置との間であって放熱板の中央部に間隙を形成するとともに冷却装置への固定用ねじを受け入れる穴を有する凸部を設け、前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超え、上記穴を通して冷却装置に固定ねじを螺着することにより半導体装置を冷却装置に固定する。なお、上記凸部は、冷却装置と放熱板の少なくとも一方の一部で形成してもよいが、冷却装置および放熱板とは別部材で形成してもよい。また、穴の周囲に凸部を形成してもよい。
【0013】
冷却装置と放熱板の少なくとも一方に上記のような凸部を設け、該凸部に固定ねじを挿通して半導体装置を冷却装置に固定することにより、放熱板と冷却装置との間に間隙を形成するとともに固定ねじによる半導体装置の拘束の程度を軽減することができる。
【0014】
本発明に係る半導体装置の固定方法は、1つの局面では、放熱板を有する半導体装置を冷却装置に固定する方法であって、放熱板と冷却装置との間であって放熱板の中央部に間隙を形成する凸部を設け、前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超え、該凸部を挿通するように冷却装置に固定ねじを螺着することにより、半導体装置を冷却装置に固定する。なお、上記凸部は、冷却装置と放熱板の少なくとも一方の一部で形成してもよいが、冷却装置および放熱板とは別部材で形成してもよい。
【0015】
本発明に係る半導体装置の固定方法は、他の局面では、放熱板と冷却装置との間であって、放熱板の中央部に間隙を形成する間隙形成部材を設置し、前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超え、該間隙形成部材を挿通して冷却装置に固定ねじを螺着することにより、半導体装置を冷却装置に固定する。なお、間隙形成部材としては、たとえばワッシャ、円形断面を有するワイヤー環、矩形断面を有するワイヤー環等を使用することができる。
【0016】
上記のいずれの局面の場合も、凸部を通して冷却装置に固定ねじを螺着して半導体装置を冷却装置に固定するので、放熱板と冷却装置との間に間隙を形成するとともに固定ねじによる半導体装置の拘束の程度を軽減することができる。
【0017】
【発明の実施の形態】
以下、本発明の実施の形態について図1〜図14を用いて説明する。
【0018】
(実施の形態1)
図1および図2に示すように、本発明の半導体装置1は、放熱板2と、筐体30と、半導体素子33とを有し、固定ねじ9により冷却装置4に固定される。
【0019】
放熱板2は凸部7aを有し、該凸部7aに固定ねじ9を挿通する。凸部7aの内側には間隙が形成され、この間隙内にグリース15を塗布する。放熱板2上に放熱板はんだ接合部11を介して絶縁部材12を実装する。絶縁部材12は、表裏面に金属パターン34を有し、表面側の金属パターン34上に素子はんだ接合部35を介して半導体素子33を実装する。
【0020】
筐体30内には複数の絶縁部材12および半導体素子33が収容され、図2の例では半導体素子33間を導線32で接続している。また、筐体30上には電極端子31の一部が延在する。
【0021】
本実施の形態1では、上記のように半導体装置1の放熱板2に凸部7aを設け、放熱板2における冷却装置4への取付面の固定ねじ9の周辺部を凸状としたことを重要な特徴とする。より詳細には、図3および図4に示すように、放熱板2の固定ねじを受け入れる通し穴3の周辺を凸状にし、通し穴3を凸部7aで囲んでいる。通し穴3は複数設けられ、各通し穴3ごとに凸部7aを設けている。なお、図3および図4に示す例では凸部7aは環状であるが、凸部7aを通し穴3の周囲に断続的に形成してもよい。
【0022】
本実施の形態1によれば、半導体装置1は、固定ねじ9により冷却装置4に放熱板2の凸部7aの部分で固定される。このとき、放熱板2の中央部と冷却装置4の間には、グリース15が塗布され、半導体装置1の熱を冷却装置4に伝える。ねじ固定時のグリース15の厚みは凸部7aの高さで決定され、絶縁部材12の実装位置直下では、放熱板2は冷却装置4の表面と干渉していない。
【0023】
なお、上記のグリース15の代わりに、たとえば弾性変形により放熱板2の変形量を吸収可能で伝熱特性に優れた弾性部材等を使用することができる。
【0024】
半導体装置1は、半導体素子33の発熱のほか、使用環境の温度変動によって熱変形を生じる。一般に、放熱板1には熱伝導率の大きい銅やアルミニウム材が用いられ、絶縁部材12にはセラミックスが用いられる。銅およびアルミニウムの線膨張係数(α)は各々17×10-6(/℃)および23×10-6(/℃)程度であり、絶縁部材12のそれは、3〜10×10-6(/℃)であって、相互の線膨張係数の不整合のために、図13に示すように、放熱板2には撓みが生じる。
【0025】
その際、放熱板2と冷却装置4の間にはグリース15が塗布されているが、凸部7aの高さ相当の間隔が存在するため、放熱板2が撓んだ場合、面間隔Dが撓みで減少するものの放熱板2の撓みは妨げられない。
【0026】
図14に面間隔Dの条件に対する放熱板はんだ接合部11の発生ひずみの関係を有限要素解析を用いて計算した結果を示す。面間隔Dが0の場合に比較して、面間隔Dの存在する条件では、ひずみは大幅に低減することがわかる。このため、放熱板はんだ接合部11や絶縁部材12および半導体素子33に対するねじ固定の影響を最小限に抑えることができる。
【0027】
また、冷却装置4との固定が凸部7aの部分で行われるため、ねじ固定による半導体装置1の拘束の程度を軽減することができ、使用ねじに対する規定トルクでねじを締め付けることができる。したがって、半導体装置1が厳しい振動環境に置かれてもねじ部の緩みは生じない。
【0028】
放熱板2の裏面からの凸部7aの高さは、グリース15の層の熱抵抗を抑える必要から、低い方が望ましい。例えば、0.01mm以上0.2mm以下の高さが、放熱板2の撓み量およびグリース15の層の熱抵抗の点から最適である。
【0029】
以上より、冷却装置4へのねじ固定時に、温度変動にともなう放熱板2の熱変形(撓み)が生じても、放熱板2の熱変形が妨げられることがなくなるため、放熱板はんだ接合部11や絶縁部材12および半導体素子33の熱応力が増加することなく、放熱板はんだ接合部11の熱疲労寿命の低下や、半導体素子33および絶縁部材12の破損を防止できる。
【0030】
(実施の形態2)
次に、本発明の実施の形態2について、図5を用いて説明する。図1〜図4の例においては放熱板2の凸部7aは円形状に通し穴3ごとに独立して突出しているが、図5に示すように放熱板2の中央部の撓みを妨げなければ放熱板2の凸部7bを直線形状としてもよい。すなわち、放熱板2の中央部の両側に複数の通し穴3を囲むように一組の直線状の凸部7aを形成してもよい。本例の場合には、実施の形態1と同様の効果が得られることに加え、実施の形態1よりも凸部7aの加工が容易になる。
【0031】
(実施の形態3)
次に、本発明の実施の形態3について、図6を用いて説明する。図6に示すように、放熱板2の中央部領域を囲むように放熱板2に凸部7cを設けてもよい。この場合にも、実施の形態1と同様の効果が得られるのみならず、実施の形態1よりも凸部7aの加工は容易となる。それに加え、グリース15が放熱板2の外部へはみ出すことを防ぐことができる。
【0032】
(実施の形態4)
次に、本発明の実施の形態4について、図7を用いて説明する。図1の構造においては、放熱板2に凸部7aを加工して設けたが、図7に示すように、放熱板2とは別製のワッシャ20aをねじ固定部の放熱板2と冷却装置4の間に設置してもよい。
【0033】
それにより、実施の形態1と同様の効果が得られる上、凸部7aの加工を省略することができ、放熱板2のコストを抑えることができる。
【0034】
ワッシャ20aの平面形状の例を図8(a)〜(c)に示す。図8(a)に示すように、ワッシャ20aの平面形状は、典型的には完全なリング状であるが、矩形等の任意形状とすることができる。また、図8(b)に示すようにリングの一部を切断した形状のワッシャ20bや、図8(c)に示すようにリングを複数に分割した形状のワッシャ20cを採用することもできる。
【0035】
なお、固定ねじ9を受け入れることができ、かつ放熱板2と冷却装置4との間に間隙を形成することができる部材(間隙形成部材)であれば、上記のワッシャ20a以外の任意の部材を採用することができる。
【0036】
(実施の形態5)
次に、本発明の実施の形態5について、図9および図10を用いて説明する。図1の構造においては半導体装置1の放熱板2に凸部7aを設けているが、図9および図10に示すように、冷却装置4における半導体装置1の取付面に凸部8aを設けてもよい。該凸部8aは、固定ねじ9が螺着される各ねじ穴6を囲むように設けられる。この場合にも、実施の形態1と同様の効果を得ることができる。なお、図10において、13は冷媒通路を示し、14はフィンを示す。
【0037】
(実施の形態6)
次に、本発明の実施の形態6について、図11を用いて説明する。図9の構造では、冷却装置4の凸部8aを各ねじ穴6ごとに設け、円形状に突出した形状としている。しかし、図11に示すように、放熱板2の外周部に対応した位置であれば、複数のねじ穴6に対し一体の凸部8bを設けてもよい。
【0038】
なお、図11の例では直線状の1組の凸部8bを設けているが、図6に示す場合と同様に凸部8bを環状としてもよい。本実施の形態の場合も、実施の形態5と同様の効果を得ることができる。
【0039】
(実施の形態7)
次に、本発明の実施の形態7について、図12を用いて説明する。図7および図8に示したワッシャ20aでは平板形状のワッシャを示したが、図12(a)に示すように、円形断面のワイヤー環21aとしてもよい。
【0040】
しかし、ワイヤー環21aの断面形状は、これに限らず矩形等任意形状であってもよい。また、ワイヤー環21aの平面形状は、完全なリング状でなくてもよく、図12(b)に示すように一部を切断した形状のワイヤー環21bや、図12(c)に示すようにリングを複数に分割した形状のワイヤー環21を採用可能である。この場合にも、実施の形態4と同様の効果を得ることができる。
【0041】
以上のように本発明の実施の形態について説明を行なったが、今回開示した実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
【0042】
【発明の効果】
本発明の半導体装置によれば、半導体装置の動作時における半導体素子の発熱等にともなう放熱板の撓みによる放熱板裏面と冷却装置表面の干渉を防ぐことができるため、半導体素子と放熱板間の接合部における熱応力の増加を抑制することができる。それにより、温度サイクルに対する半導体装置の熱疲労寿命を延長することができる。また、ねじ固定による半導体装置の拘束の程度を従来よりも軽減することができるので、固定ねじによる十分な締付力で半導体装置を冷却装置に固着することができる。したがって、半導体装置を厳しい振動環境下で使用した場合でも、ねじの緩みを抑制することができる。
【0043】
本発明の半導体装置の固定構造によれば、放熱板と冷却装置との間に間隙を形成するとともに固定ねじによる半導体装置の拘束の程度を軽減することができるので、温度サイクルに対する半導体装置の熱疲労寿命を延長することができ、また半導体装置を厳しい振動環境下で使用した場合でも、ねじの緩みを抑制することができる。
【0044】
本発明の半導体装置の固定方法によれば、放熱板と冷却装置との間に間隙を形成するとともに固定ねじによる半導体装置の拘束の程度を軽減することができるので、温度サイクルに対する半導体装置の熱疲労寿命を延長することができ、また半導体装置を厳しい振動環境下で使用した場合でも、ねじの緩みを抑制することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1における半導体装置の部分断面側面図である。
【図2】 図1の半導体装置の断面図である。
【図3】 本発明の放熱板の平面図である。
【図4】 図3のA−A線断面図である。
【図5】 本発明の実施の形態2における放熱板の平面図である。
【図6】 本発明の実施の形態3における放熱板の平面図である。
【図7】 本発明の実施の形態4における半導体装置の部分断面図である。
【図8】 (a)〜(c)は本発明の実施の形態4におけるワッシャの平面図である。
【図9】 本発明の実施の形態5における冷却装置の平面図である。
【図10】 図9のB−B線断面図である。
【図11】 本発明の実施の形態6における冷却装置の平面図。
【図12】 (a)〜(c)は本発明の実施の形態7におけるワイヤー環の平面図および断面図である。
【図13】 本発明の実施の形態1における放熱板の撓み状況を示す半導体装置の断面図である。
【図14】 面間隔Dの条件の違いによる放熱板はんだ接合部への影響を有限要素解析で計算した結果を示す図である。
【符号の説明】
1 半導体装置、2 放熱板、3 通し穴、4 冷却装置、6 ねじ穴、7a、7b、7c、8a、8b 凸部、9 固定ねじ、11 放熱板はんだ接合部、12 絶縁部材、13 冷媒通路、14 フィン、15 グリース、20a、20b、20c ワッシャ、21a、21b、21c ワイヤー環、30 筐体、31 電極端子、32 導線、33 半導体素子、34 金属パターン、35 素子はんだ接合部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device that transmits heat generated by a semiconductor element to a cooling device through a heat dissipation member, a structure for fixing the semiconductor device to the cooling device, and a method for fixing the semiconductor device to the cooling device.
[0002]
[Prior art]
Conventionally, as a method of transmitting heat generated by a semiconductor element to a cooling device through a heat sink, a gel grease or sheet-like member having thermal conductivity is applied or inserted between the heat sink and the cooling device to fix the semiconductor device. There was a method of fixing to the cooling device with screws. Such a semiconductor device and a fixing method are disclosed in, for example, Japanese Patent Laid-Open No. 4-233552.
[0003]
In order to increase the adhesion between the heat sink and the cooling device, the semiconductor device is fixed with a large number of screws. However, if the heat sink is bent or if the mounting surface of the semiconductor device of the cooling device is warped, the screw There is a concern that the insulating member and the semiconductor element fixed to the heat radiating plate may be damaged by the bending deformation of the heat radiating plate accompanying the fixing.
[0004]
Also, when temperature fluctuations occur, the thermal deformation of the semiconductor device is constrained by screw fixing, so the thermal stress (strain) of the solder joint to the heat sink in the semiconductor device increases compared to the unfixed state. As a result, there is a problem that the lifetime of the semiconductor device with respect to the temperature cycle is reduced.
[0005]
On the other hand, for example, Japanese Patent Application Laid-Open No. 63-31144 discloses a semiconductor device in which a groove is machined in the vicinity of a screw fixing portion of a semiconductor device to relieve an acting force on a semiconductor element accompanying screw fixing.
[0006]
[Problems to be solved by the invention]
In this semiconductor device, a groove is provided in the vicinity of the screw fixing portion so as to have low rigidity, thereby relieving stress on the semiconductor element accompanying the screw fixing.
[0007]
However, since the thermal deformation (deflection) of the semiconductor device is constrained, the thermal stress (strain) of the heat sink solder joint increases compared to the non-fixed state. As a result, there is a problem that the lifetime (reliability) of the semiconductor device with respect to the temperature cycle is reduced.
[0008]
In addition, when a semiconductor device is used in a severe vibration environment, a sufficient screw tightening force is required. However, in the conventional method, as the screw tightening force is increased, the restraining force against the deflection of the semiconductor device increases. From the viewpoint of reliability, necessary and sufficient tightening force could not be applied, and there was a concern about loosening of the screw in a vibration environment.
[0009]
The present invention has been made to solve the above-described problems, and can reduce the life of a semiconductor device against a temperature cycle and can be used in a severe vibration environment. The structure for fixing a semiconductor device to a cooling device And to provide a fixing method.
[0010]
[Means for Solving the Problems]
A semiconductor device according to the present invention is a semiconductor device fixed to a cooling device, and includes a semiconductor element, a heat sink that mounts the semiconductor element and dissipates heat generated in the semiconductor element, and the heat sink and the cooling device And a convex portion having a hole for receiving (inserting) a fixing screw to the cooling device, and a heat sink formed by the gap, The distance between the surfaces of the cooling device exceeds the amount of deflection of the heat sink due to temperature fluctuation. The convex portion may be formed by protruding a part of the heat radiating plate, or may be provided with another member fixed to the heat radiating plate. Moreover, you may form a convex part around a hole.
[0011]
Providing the protrusions as described above prevents the heat generation of the semiconductor element during the operation of the semiconductor device and the interference between the back surface of the heat sink and the surface of the cooling device due to the deflection of the heat sink due to the temperature fluctuation of the semiconductor device usage environment Can do. Further, by providing a hole for receiving a screw in the convex portion, the degree of restraint of the semiconductor device by fixing the screw to the cooling device can be remarkably reduced as compared with the conventional case.
[0012]
The structure for fixing a semiconductor device according to the present invention is a structure for fixing a semiconductor device having a heat sink to a cooling device, wherein at least one of the cooling device and the heat sink is between the heat sink and the cooling device and dissipates heat. A convex part having a hole for receiving a screw for fixing to the cooling device is formed in the central portion of the plate, and a surface interval between the heat radiating plate and the cooling device formed by the gap is a temperature. The semiconductor device is fixed to the cooling device by exceeding the amount of bending of the heat sink due to the fluctuation and screwing a fixing screw into the cooling device through the hole. In addition, although the said convex part may be formed in a part of at least one of a cooling device and a heat sink, you may form it in a member different from a cooling device and a heat sink. Moreover, you may form a convex part around a hole.
[0013]
Protruding portions as described above are provided on at least one of the cooling device and the heat radiating plate, and a fixing screw is inserted into the protruding portion to fix the semiconductor device to the cooling device, thereby providing a gap between the heat radiating plate and the cooling device. In addition to the formation, the degree of restraint of the semiconductor device by the fixing screw can be reduced.
[0014]
In one aspect, a fixing method of a semiconductor device according to the present invention is a method of fixing a semiconductor device having a heat sink to a cooling device, between the heat sink and the cooling device and at a central portion of the heat sink. Protrusions that form gaps are provided, and the surface spacing between the heat sink and the cooling device, which is formed by the gaps , exceeds the amount of deflection of the heat sink due to temperature fluctuations, and is so inserted through the protrusions. The fixing device is screwed onto the cooling device to fix the semiconductor device to the cooling device. In addition, although the said convex part may be formed in a part of at least one of a cooling device and a heat sink, you may form it in a member different from a cooling device and a heat sink.
[0015]
In another aspect, the method for fixing a semiconductor device according to the present invention is formed between the heat sink and the cooling device by installing a gap forming member that forms a gap at the center of the heat sink and is formed by the gap. The surface spacing between the heat sink and the cooling device exceeds the amount of bending of the heat sink due to temperature fluctuation, and the semiconductor is formed by inserting the gap forming member and screwing the fixing screw into the cooling device. Secure the device to the cooling device. As the gap forming member, for example, a washer, a wire ring having a circular cross section, a wire ring having a rectangular cross section, or the like can be used.
[0016]
In any of the above aspects, a fixing screw is screwed to the cooling device through the convex portion to fix the semiconductor device to the cooling device, so that a gap is formed between the heat radiating plate and the cooling device and the semiconductor by the fixing screw is used. The degree of restraint of the apparatus can be reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0018]
(Embodiment 1)
As shown in FIGS. 1 and 2, the semiconductor device 1 of the present invention has a heat radiating plate 2, a housing 30, and a semiconductor element 33, and is fixed to the cooling device 4 with fixing screws 9.
[0019]
The heat sink 2 has a convex portion 7a, and a fixing screw 9 is inserted through the convex portion 7a. A gap is formed inside the convex portion 7a, and grease 15 is applied in the gap. An insulating member 12 is mounted on the heat sink 2 via a heat sink solder joint 11. The insulating member 12 has a metal pattern 34 on the front and back surfaces, and the semiconductor element 33 is mounted on the metal pattern 34 on the front surface side via an element solder joint 35.
[0020]
A plurality of insulating members 12 and semiconductor elements 33 are accommodated in the housing 30, and the semiconductor elements 33 are connected by conductive wires 32 in the example of FIG. 2. A part of the electrode terminal 31 extends on the housing 30.
[0021]
In the first embodiment, as described above, the heat sink 2 of the semiconductor device 1 is provided with the convex portion 7a, and the peripheral portion of the fixing screw 9 on the mounting surface of the heat sink 2 to the cooling device 4 is convex. An important feature. More specifically, as shown in FIGS. 3 and 4, the periphery of the through hole 3 that receives the fixing screw of the heat radiating plate 2 is convex, and the through hole 3 is surrounded by the convex portion 7 a. A plurality of through holes 3 are provided, and a convex portion 7 a is provided for each through hole 3. 3 and 4, the convex portion 7 a is annular, but the convex portion 7 a may be intermittently formed around the through hole 3.
[0022]
According to the first embodiment, the semiconductor device 1 is fixed to the cooling device 4 by the fixing screw 9 at the convex portion 7 a of the heat sink 2. At this time, grease 15 is applied between the central portion of the heat radiating plate 2 and the cooling device 4 to transmit the heat of the semiconductor device 1 to the cooling device 4. The thickness of the grease 15 at the time of screw fixing is determined by the height of the convex portion 7 a, and the heat radiating plate 2 does not interfere with the surface of the cooling device 4 immediately below the mounting position of the insulating member 12.
[0023]
Instead of the above grease 15, for example, an elastic member or the like that can absorb the deformation amount of the heat radiating plate 2 by elastic deformation and has excellent heat transfer characteristics can be used.
[0024]
In addition to the heat generated by the semiconductor element 33, the semiconductor device 1 undergoes thermal deformation due to temperature fluctuations in the usage environment. In general, copper or aluminum having a high thermal conductivity is used for the heat radiating plate 1, and ceramics are used for the insulating member 12. The linear expansion coefficients (α) of copper and aluminum are about 17 × 10 −6 (/ ° C.) and 23 × 10 −6 (/ ° C.), respectively, and that of the insulating member 12 is 3 to 10 × 10 −6 (/ And the heat sink 2 is bent as shown in FIG.
[0025]
At that time, grease 15 is applied between the heat sink 2 and the cooling device 4, but there is an interval corresponding to the height of the convex portion 7 a, so when the heat sink 2 is bent, the surface interval D is Although it reduces by bending, the bending of the heat sink 2 is not hindered.
[0026]
FIG. 14 shows the result of calculating the relationship of the generated strain of the heat sink solder joint 11 with respect to the condition of the surface interval D using finite element analysis. It can be seen that the strain is greatly reduced under the condition where the surface distance D exists as compared with the case where the surface distance D is zero. For this reason, the influence of the screw fixation with respect to the heat sink solder joint part 11, the insulating member 12, and the semiconductor element 33 can be suppressed to the minimum.
[0027]
Further, since the fixing to the cooling device 4 is performed at the portion of the convex portion 7a, the degree of restraint of the semiconductor device 1 by screw fixing can be reduced, and the screw can be tightened with a prescribed torque with respect to the used screw. Therefore, even if the semiconductor device 1 is placed in a severe vibration environment, the screw portion does not loosen.
[0028]
The height of the convex portion 7a from the back surface of the heat radiating plate 2 is preferably low because it is necessary to suppress the thermal resistance of the grease 15 layer. For example, a height of 0.01 mm or more and 0.2 mm or less is optimal in terms of the amount of bending of the heat sink 2 and the thermal resistance of the grease 15 layer.
[0029]
As described above, when the screws are fixed to the cooling device 4, even if thermal deformation (deflection) of the heat sink 2 due to temperature fluctuation occurs, the heat deformation of the heat sink 2 is not hindered. In addition, it is possible to prevent the thermal fatigue life of the heat sink solder joint 11 from being reduced and the semiconductor element 33 and the insulating member 12 from being damaged without increasing the thermal stress of the insulating member 12 and the semiconductor element 33.
[0030]
(Embodiment 2)
Next, Embodiment 2 of the present invention will be described with reference to FIG. In the example of FIGS. 1 to 4, the convex portion 7 a of the heat sink 2 protrudes independently for each through hole 3 in a circular shape. However, as shown in FIG. 5, the deflection of the center portion of the heat sink 2 must be prevented. For example, the protrusion 7b of the heat sink 2 may be linear. That is, a pair of linear convex portions 7 a may be formed on both sides of the central portion of the heat sink 2 so as to surround the plurality of through holes 3. In the case of this example, in addition to obtaining the same effect as in the first embodiment, the processing of the convex portion 7a is easier than in the first embodiment.
[0031]
(Embodiment 3)
Next, Embodiment 3 of the present invention will be described with reference to FIG. As shown in FIG. 6, a convex portion 7 c may be provided on the heat radiating plate 2 so as to surround the central region of the heat radiating plate 2. Also in this case, not only the same effect as in the first embodiment is obtained, but also the processing of the convex portion 7a is easier than in the first embodiment. In addition, the grease 15 can be prevented from protruding outside the heat sink 2.
[0032]
(Embodiment 4)
Next, Embodiment 4 of the present invention will be described with reference to FIG. In the structure of FIG. 1, the protrusion 7 a is processed and provided on the heat radiating plate 2, but as shown in FIG. 7, a washer 20 a made separately from the heat radiating plate 2 is connected to the heat radiating plate 2 of the screw fixing portion and the cooling device. 4 may be installed.
[0033]
Thereby, the same effects as those of the first embodiment can be obtained, and the processing of the convex portion 7a can be omitted, and the cost of the heat radiating plate 2 can be suppressed.
[0034]
Examples of the planar shape of the washer 20a are shown in FIGS. As shown in FIG. 8 (a), the planar shape of the washer 20a is typically a complete ring shape, but may be an arbitrary shape such as a rectangle. Alternatively, a washer 20b having a shape obtained by cutting a part of the ring as shown in FIG. 8B or a washer 20c having a shape obtained by dividing the ring into a plurality of shapes as shown in FIG. 8C can be adopted.
[0035]
Any member other than the washer 20a may be used as long as it is a member that can receive the fixing screw 9 and can form a gap between the heat sink 2 and the cooling device 4 (gap forming member). Can be adopted.
[0036]
(Embodiment 5)
Next, a fifth embodiment of the present invention will be described with reference to FIG. 9 and FIG. In the structure of FIG. 1, the protrusion 7 a is provided on the heat sink 2 of the semiconductor device 1. However, as shown in FIGS. 9 and 10, the protrusion 8 a is provided on the mounting surface of the semiconductor device 1 in the cooling device 4. Also good. The convex portion 8a is provided so as to surround each screw hole 6 into which the fixing screw 9 is screwed. Also in this case, the same effect as in the first embodiment can be obtained. In addition, in FIG. 10, 13 shows a refrigerant path and 14 shows a fin.
[0037]
(Embodiment 6)
Next, Embodiment 6 of the present invention will be described with reference to FIG. In the structure of FIG. 9, the convex part 8a of the cooling device 4 is provided for each screw hole 6, and has a shape protruding in a circular shape. However, as shown in FIG. 11, as long as the position corresponds to the outer peripheral portion of the heat radiating plate 2, integral convex portions 8 b may be provided for the plurality of screw holes 6.
[0038]
In addition, in the example of FIG. 11, the linear set of convex portions 8b is provided, but the convex portions 8b may be annular as in the case shown in FIG. In the case of the present embodiment, the same effect as in the fifth embodiment can be obtained.
[0039]
(Embodiment 7)
Next, Embodiment 7 of the present invention will be described with reference to FIG. Although the flat washer is shown in the washer 20a shown in FIGS. 7 and 8, a wire ring 21a having a circular cross section may be used as shown in FIG. 12 (a).
[0040]
However, the cross-sectional shape of the wire ring 21a is not limited to this, and may be an arbitrary shape such as a rectangle. Moreover, the planar shape of the wire ring 21a may not be a complete ring shape, as shown in FIG. 12B, a wire ring 21b having a partially cut shape as shown in FIG. A wire ring 21 having a shape obtained by dividing the ring into a plurality of parts can be employed. Also in this case, the same effect as in the fourth embodiment can be obtained.
[0041]
Although the embodiment of the present invention has been described above, the embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all modifications within the scope.
[0042]
【The invention's effect】
According to the semiconductor device of the present invention, it is possible to prevent interference between the back surface of the heat sink and the surface of the cooling device due to bending of the heat sink due to heat generation of the semiconductor element during operation of the semiconductor device. An increase in thermal stress at the joint can be suppressed. Thereby, the thermal fatigue life of the semiconductor device with respect to the temperature cycle can be extended. In addition, since the degree of restraint of the semiconductor device by screw fixing can be reduced as compared with the prior art, the semiconductor device can be fixed to the cooling device with a sufficient tightening force by the fixing screw. Therefore, even when the semiconductor device is used in a severe vibration environment, it is possible to suppress loosening of the screw.
[0043]
According to the fixing structure of the semiconductor device of the present invention, the gap between the heat sink and the cooling device can be formed and the degree of restraint of the semiconductor device by the fixing screw can be reduced. The fatigue life can be extended and loosening of the screw can be suppressed even when the semiconductor device is used in a severe vibration environment.
[0044]
According to the semiconductor device fixing method of the present invention, a gap is formed between the heat sink and the cooling device, and the degree of restraint of the semiconductor device by the fixing screw can be reduced. The fatigue life can be extended and loosening of the screw can be suppressed even when the semiconductor device is used in a severe vibration environment.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional side view of a semiconductor device according to a first embodiment of the present invention.
2 is a cross-sectional view of the semiconductor device of FIG.
FIG. 3 is a plan view of the heat sink of the present invention.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is a plan view of a heat dissipation plate in Embodiment 2 of the present invention.
FIG. 6 is a plan view of a heat dissipation plate in Embodiment 3 of the present invention.
FIG. 7 is a partial cross-sectional view of a semiconductor device according to a fourth embodiment of the present invention.
FIGS. 8A to 8C are plan views of washers according to Embodiment 4 of the present invention. FIGS.
FIG. 9 is a plan view of a cooling device according to Embodiment 5 of the present invention.
10 is a cross-sectional view taken along line BB in FIG.
FIG. 11 is a plan view of a cooling device according to Embodiment 6 of the present invention.
12A to 12C are a plan view and a cross-sectional view of a wire ring according to a seventh embodiment of the present invention.
FIG. 13 is a cross-sectional view of the semiconductor device showing a bending state of the heat sink in the first embodiment of the present invention.
FIG. 14 is a diagram showing the result of calculation by finite element analysis of the influence on the heat sink solder joint due to the difference in the surface spacing D condition.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor device, 2 Heat sink, 3 Through hole, 4 Cooling device, 6 Screw hole, 7a, 7b, 7c, 8a, 8b Convex part, 9 Fixing screw, 11 Heat sink solder joint part, 12 Insulation member, 13 Refrigerant passage , 14 Fin, 15 Grease, 20a, 20b, 20c Washer, 21a, 21b, 21c Wire ring, 30 Housing, 31 Electrode terminal, 32 Conductor, 33 Semiconductor element, 34 Metal pattern, 35 Element solder joint.

Claims (10)

冷却装置に固定される半導体装置であって、
半導体素子と、
前記冷却装置に接合し、この接合面の裏面側に前記半導体素子を搭載し、前記半導体素子で発生した熱を放散する放熱板と、
前記放熱板と前記冷却装置との間であって前記放熱板の中央部に間隙を形成するとともに前記冷却装置への固定用ねじを受け入れる穴を有する凸部と、
を備え、
前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超える半導体装置。
A semiconductor device fixed to a cooling device,
A semiconductor element;
Bonding to the cooling device, mounting the semiconductor element on the back side of the bonding surface, and a heat dissipation plate that dissipates heat generated in the semiconductor element,
A convex portion having a hole between the heat radiating plate and the cooling device and forming a gap in the central portion of the heat radiating plate and receiving a fixing screw to the cooling device;
With
A semiconductor device in which a surface interval between the heat radiating plate and the cooling device formed by the gap exceeds an amount of bending of the heat radiating plate due to temperature fluctuation.
前記半導体素子と放熱板との間に絶縁部材を備え、
前記絶縁部材の線膨張係数は、前記放熱板の線膨張係数より低い請求項1記載の半導体装置。
An insulating member is provided between the semiconductor element and the heat sink,
The semiconductor device according to claim 1, wherein a linear expansion coefficient of the insulating member is lower than a linear expansion coefficient of the heat sink.
前記間隙には、グリースを配置した、請求項1または2に記載の半導体装置。The gap was placed a grease, the semiconductor device according to claim 1 or 2. 放熱板を有する半導体装置の冷却装置への固定構造であって、
前記冷却装置と前記放熱板の少なくとも一方に、前記放熱板と前記冷却装置との間であって前記放熱板の中央部に間隙を形成するとともに前記冷却装置への固定用ねじを受け入れる穴を有する凸部を設け、
前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超え
前記穴を通して前記冷却装置に固定ねじを螺着することにより、前記半導体装置を前記冷却装置に固定した、半導体装置の固定構造。
A structure for fixing a semiconductor device having a heat sink to a cooling device,
At least one of the cooling device and the heat radiating plate has a hole between the heat radiating plate and the cooling device, forming a gap in the center of the heat radiating plate and receiving a fixing screw to the cooling device. Protrusions are provided,
The surface interval between the heat sink and the cooling device formed by the gap exceeds the amount of deflection of the heat sink due to temperature fluctuation,
A semiconductor device fixing structure in which a fixing screw is screwed into the cooling device through the hole to fix the semiconductor device to the cooling device.
前記半導体素子と放熱板との間に絶縁部材を備え、
前記絶縁部材の線膨張係数は、前記放熱板の線膨張係数より低い請求項4に記載の半導体装置の固定構造。
An insulating member is provided between the semiconductor element and the heat sink,
The semiconductor device fixing structure according to claim 4 , wherein a linear expansion coefficient of the insulating member is lower than a linear expansion coefficient of the heat sink.
前記間隙には、グリースを配置した、請求項4または5に記載の半導体装置の固定構造。The semiconductor device fixing structure according to claim 4 , wherein grease is disposed in the gap. 放熱板を有する半導体装置を冷却装置に固定する方法であって、
前記放熱板と前記冷却装置との間であって前記放熱板の中央部に間隙を形成する凸部を設け、該凸部を挿通するように前記冷却装置に固定ねじを螺着することにより、前記半導体装置を前記冷却装置に固定し、
前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超える半導体装置の固定方法。
A method of fixing a semiconductor device having a heat sink to a cooling device,
By providing a convex portion that forms a gap at the center of the heat radiating plate between the heat radiating plate and the cooling device, and screwing a fixing screw to the cooling device so as to pass through the convex portion, Fixing the semiconductor device to the cooling device;
The method of fixing a semiconductor device, wherein a surface interval between the heat sink and the cooling device formed by the gap exceeds a deflection amount of the heat sink due to temperature fluctuation.
放熱板を有する半導体装置を冷却装置に固定する方法であって、
前記放熱板と前記冷却装置との間であって前記放熱板の中央部に間隙を形成する間隙形成部材を設置し、該間隙形成部材を挿通して前記冷却装置に固定ねじを螺着することにより、前記半導体装置を前記冷却装置に固定し、
前記間隙によって形成される、前記放熱板と前記冷却装置との間の面間隔は、温度変動にともなう放熱板の撓み量を超える半導体装置の固定方法。
A method of fixing a semiconductor device having a heat sink to a cooling device,
A gap forming member is formed between the heat radiating plate and the cooling device to form a gap at the center of the heat radiating plate, and the fixing screw is screwed into the cooling device through the gap forming member. By fixing the semiconductor device to the cooling device,
The method of fixing a semiconductor device, wherein a surface interval between the heat sink and the cooling device formed by the gap exceeds a deflection amount of the heat sink due to temperature fluctuation .
前記半導体素子を搭載するとともに放熱板に接合された絶縁部材を備え、
前記絶縁部材の線膨張係数は、前記放熱板の線膨張係数より低い請求項7または8に記載の半導体装置の固定方法。
An insulating member mounted with the semiconductor element and bonded to a heat sink;
The method for fixing a semiconductor device according to claim 7 , wherein a linear expansion coefficient of the insulating member is lower than a linear expansion coefficient of the heat sink.
前記間隙には、グリースを配置した、請求項からのいずれか1項に記載の半導体装置の固定方法。The gap was placed a grease, fixing method of a semiconductor device according to any one of claims 7 to 9.
JP2002102487A 2002-04-04 2002-04-04 Semiconductor device, fixing structure thereof, and fixing method of semiconductor device Expired - Fee Related JP3834254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002102487A JP3834254B2 (en) 2002-04-04 2002-04-04 Semiconductor device, fixing structure thereof, and fixing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002102487A JP3834254B2 (en) 2002-04-04 2002-04-04 Semiconductor device, fixing structure thereof, and fixing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2003297990A JP2003297990A (en) 2003-10-17
JP3834254B2 true JP3834254B2 (en) 2006-10-18

Family

ID=29388950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002102487A Expired - Fee Related JP3834254B2 (en) 2002-04-04 2002-04-04 Semiconductor device, fixing structure thereof, and fixing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3834254B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128571A (en) * 2004-11-01 2006-05-18 Toyota Motor Corp Semiconductor device
JP4685039B2 (en) * 2007-01-15 2011-05-18 三菱電機株式会社 Power semiconductor device
JP2015088556A (en) * 2013-10-29 2015-05-07 富士電機株式会社 Electronic module
JP6244060B2 (en) 2016-01-06 2017-12-06 新電元工業株式会社 Semiconductor device mounting table and in-vehicle device
CN107408542B (en) * 2016-01-06 2019-07-26 新电元工业株式会社 The mounting table and car-mounted device of semiconductor devices
JP2018195717A (en) * 2017-05-17 2018-12-06 富士電機株式会社 Semiconductor module, semiconductor module base plate and semiconductor device manufacturing method
JP7378379B2 (en) * 2020-11-02 2023-11-13 三菱電機株式会社 Power semiconductor modules and power conversion devices

Also Published As

Publication number Publication date
JP2003297990A (en) 2003-10-17

Similar Documents

Publication Publication Date Title
EP0971407B1 (en) Thermal conductive unit and thermal connection structure using same
US5548090A (en) Heat sink and printed circuit board combination
US6545352B1 (en) Assembly for mounting power semiconductive modules to heat dissipators
JP5881860B2 (en) Power module
US6337796B2 (en) Semiconductor device mount structure having heat dissipating member for dissipating heat generated from semiconductor device
US20050167806A1 (en) Method and apparatus for providing an integrated circuit cover
JPH06209174A (en) Heat sink
JPH0581185B2 (en)
JP2002261476A (en) Structure and method for grounding cooling module and electronic apparatus having that structure
JP4069070B2 (en) Power semiconductor module
JP3834254B2 (en) Semiconductor device, fixing structure thereof, and fixing method of semiconductor device
CN104066291A (en) Housing And Power Module Having The Same
JP2002198477A (en) Semiconductor device
JP2020025138A (en) Electronic apparatus
JP5640616B2 (en) Heat dissipation structure for electronic components
JPH11330564A (en) Optical module
JP2007165426A (en) Semiconductor device
JPH09283886A (en) Substrate mounting method, mounting substrate structure and electronic apparatus using mounting substrate structure
JP5787435B2 (en) Semiconductor heat dissipation device
JPH1032305A (en) Multichip module
JP2018195717A (en) Semiconductor module, semiconductor module base plate and semiconductor device manufacturing method
JP2002111250A (en) Fixing spacer and air conditioner using the same
JP3051376B2 (en) Lead frame, method for manufacturing the same, and semiconductor device using lead frame
JPH0997661A (en) Receptacle for electronic part
US7348664B2 (en) Semiconductor apparatus having a cooling apparatus that compressively engages a semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees