JP3834100B2 - Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity - Google Patents

Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity Download PDF

Info

Publication number
JP3834100B2
JP3834100B2 JP11164696A JP11164696A JP3834100B2 JP 3834100 B2 JP3834100 B2 JP 3834100B2 JP 11164696 A JP11164696 A JP 11164696A JP 11164696 A JP11164696 A JP 11164696A JP 3834100 B2 JP3834100 B2 JP 3834100B2
Authority
JP
Japan
Prior art keywords
temperature
steel sheet
amount
cold
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11164696A
Other languages
Japanese (ja)
Other versions
JPH09296221A (en
Inventor
夏子 橋本
直樹 吉永
正芳 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11164696A priority Critical patent/JP3834100B2/en
Publication of JPH09296221A publication Critical patent/JPH09296221A/en
Application granted granted Critical
Publication of JP3834100B2 publication Critical patent/JP3834100B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コイル内における加工性のばらつきが極めて少ない冷延鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法に関するものである。本発明により製造された鋼板の用途は、自動車、家電、建材等であり、また本発明により製造された高強度鋼板を自動車用として適用した場合には、板厚を軽減することができるため、燃費の向上をもたらし、近年大きな問題となっている地球環境問題にも寄与することができる。
【0002】
【従来の技術】
特開昭58−185752号公報に開示されているように、極低炭素鋼板は優れた加工性を有するため、自動車などの用途に広く用いられている。また、極低炭素鋼の成分や製造方法を規定することによって、加工性をさらに改善するための工夫がなされてきた。例えば、特開平3−130323号公報、特開平4−143228号公報および特開平4−116124号公報には、Tiを添加した極低炭素鋼中のC、Mn、P等の量を極力低減させることによって、優れた加工性が得られることが開示されている。しかしながら、これらの発明においては、コイルの幅および長手方向における端部での歩留りを向上させる観点からの記述はない。
【0003】
材質のばらつきを低減するという観点では、特開平3−170618号公報および特開平4−52229号公報に記載のものがある。しかしながら、これらの発明は、仕上熱延での圧下率を大きくしたり、熱延後の巻取温度を高める必要があり、熱延工程に大きな負荷をかけることとなる。
そこで、本発明者らは、特開平8−3686号公報で示したように、γ域でのTi4 2 2 の析出を積極的に活用することで、巻取り以前に固溶Cの多くを固定し、加工性の均一性を著しく向上させる技術を確立した。しかし、この方法でもTi4 2 2 の析出は完全ではなく、高温巻取りを行った場合には、コイル中央部でわずかに残った固溶Cが微細炭化物を形成するため、材質を端部よりもむしろ低下させてしまう場合があった。
【0004】
端部材質劣化の問題は、PやSiで強化した良加工性高強度冷延鋼板においても同様である。これらの鋼板に関する技術としては、特開昭59−31827号公報、特開昭59−38337号公報、特公昭57−57945号公報、特開昭61−276931号公報などに代表されるものがあるが、いずれもコイルの幅および長手方向における端部での歩留りを向上させるための工夫はなされておらず、また本発明のようなTi硫化物を積極的に活用する技術でもない。
【0005】
【発明が解決しようとする課題】
Ti添加極低炭素鋼においては、熱延後の高温巻取りによってCをTiCとして析出せしめ、固溶Cを低減させることにより、冷延焼鈍後の材質を確保することが通常の方法となっていた。これは、PやSiで強化した場合においても同様である。しかしながら、熱延コイルの幅端部および長手方向の端部においては、巻取り時および巻取り後の冷却が著しく速く進行するため、TiCの析出が充分でなく、これらの部分では材質が劣化してしまうという問題があった。また、これを解決するために、γ域での炭硫化物の析出を促進させる技術も開発されたが、巻取り前に完全に固溶Cを取りきることは難しく、このため高温巻取りを行うと、コイル中央部ではわずかに残存する固溶Cが微細な炭化物を形成して材質が低下する場合があり、どのような巻取り条件でもコイル全長にわたって極めて高い加工性を確保することは困難であった。
【0006】
本発明は、巻取温度に依存することなく、コイルの幅および長手方向全長において端部材質劣化が極めて少ない冷延鋼板、溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
上記の課題を解決するために、本発明者らは、極低炭素鋼中において、Sを積極的に活用するとともに、Ti量とS量の比を最適化すること、Mn量を規定すること、また粗圧延後に巻取り巻戻しを行うことにより特定の析出物を析出せしめ、加工性の均一性に優れた高r値冷延鋼板を得ることを鋭意検討した。
【0008】
その結果、S≧0.004%とし、Ti*=Ti−3.42Nとしたとき、Ti*/S≧1、かつMn≦0.15%とすることが有効であることを見出した。また、粗圧延後、コイルを一旦巻取り、巻戻すことが加工性の均一性を高める上で非常に有効であること、巻取り、巻戻しの効果を十分に発揮させるためには、Ti*/C>9または計算から求まる巻取り前の固溶C量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005を満足することが非常に重要であることを見出した。
【0009】
さらに、熱延後の巻取りの後に、全S量のうちMnSとして析出するS量の割合K(=(S% as MnS)/(全S%))がK≦0.2を満たすことが材質の均一性を得る上で極めて重要であることが判明した。これは、以下のような機構に基づくものと考えられる。すなわち、全S量のうちMnSとして析出する量を極力低減せしめ、かつ粗圧延後、低温γ域で一旦コイルに巻取り、巻戻しを行い歪みを導入することでTi4 2 2 の析出を促進させることによって、仕上熱延の巻取り以前に固溶Cを十分低減させるものである。これによって、熱延後の巻取り時にコイルの端部が急速に冷却されても、巻取り以前に固溶Cが十分に固定されているために、コイル端部で固溶Cが多量に残存したり、微細炭化物が析出することによる材質の劣化が軽減されると考えられる。また、本発明鋼の場合、巻取り前の熱延工程でほとんどのCはTi4 2 2 として固定されるので、巻取温度に依存することなくコイル全長にわたって高い加工性を有する冷延鋼板を得ることができる。
【0010】
本発明は、上記知見に基づいて構成されたものであり、その要旨とするところは下記のとおりである。
(1)質量%で、C:0.0005〜0.007%、Si:0.005〜0.8%、Mn:0.01〜0.15%、P:0.2%以下、S:0.004〜0.02%、Al:0.005〜0.1%、N:0.007%以下を含み、さらにTiを、Ti*=Ti−3.42Nとするとき、Ti*/S≧1で、かつTi*/C>9、または巻取り前の固溶Cの計算量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005の条件を満たし、かつTi:0.01〜0.1%の範囲で含有し、残部は鉄および不可避的不純物よりなる鋼を、1210℃以上1250℃以下で加熱し、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、仕上温度≧(Ar3 −100)℃の仕上圧延を施し、室温から800℃の温度範囲で巻取り、全S量のうち、MnSとして析出するS量の割合K(=(S% as MnS)/(全S%))をK≦0.2とし、酸洗後、圧下率≧60%で冷間圧延し、さらに再結晶温度以上で焼鈍することを特徴とする加工性の均一性に優れた冷延鋼板の製造方法。
(2)本発明の加工性の均一性に優れた冷延鋼板の製造方法は、質量%で、C:0.0005〜0.007%、Si:0.005〜0.8%、Mn:0.01〜0.15%、P:0.2%以下、S:0.004〜0.02%、Al:0.005〜0.1%、N:0.007%以下を含み、さらにTiを、Ti*=Ti−3.42Nとするとき、Ti*/S≧1で、かつTi*/C>9、または巻取り前の固溶Cの計算量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005の条件を満たし、かつTi:0.01〜0.1%の範囲で含有し、残部は鉄および不可避的不純物よりなる鋼を、1210℃以上1250℃以下で加熱し、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、仕上温度≧(Ar 3 −100)℃の仕上圧延を施して、先に行った粗バーの巻取り巻き戻しによる歪の導入効果によりTi の析出を促進した後に、室温から800℃の温度範囲で巻取り、全S量のうち、MnSとして析出するS量の割合K(=(S% asMnS)/(全S%))をK≦0.2とし、酸洗後、圧下率≧60%で冷間圧延し、さらに再結晶温度以上で焼鈍することにより、コイル巻取りした鋼板の長手方向における中心部側と端部側における引張強さとランクフォード値と曲げ剛性の均一化をなしたことを特徴とする。
【0011】
本発明は、鋼成分として、さらに、質量%で、B:0.0001〜0.0030%を含有することを特徴とする前項(1)または(2)記載の加工性の均一性に優れた冷延鋼板の製造方法に関する。(本発明は、仕上圧延前に、先行材の後端部と後行材の先端部を接合して仕上圧延に供することを特徴とする前項(1)〜(3)のいずれか1項に記載の加工性の均一性に優れた冷延鋼板の製造方法に関する
【0012】
本発明は、前項(1)〜()のいずれか1項に記載の冷間圧延後の焼鈍に代えて、ライン内焼鈍炉を有する連続溶融亜鉛めっきラインで再結晶温度以上で焼鈍を施し、冷却過程中に亜鉛めっきを施すことを特徴とする加工性の均一性に優れた溶融亜鉛めっき鋼板の製造方法に関する。(本発明は、前項()に記載の亜鉛めっき後に、さらに400〜600℃の温度範囲で合金化処理を施すことを特徴とする加工性の均一性に優れた合金化溶融亜鉛めっき鋼板の製造方法に関する
【0013】
本発明における冷延鋼板の製造方法は、Tiを添加した極低炭素鋼、あるいはそれをPやSiで強化したものをベースとして、S量、Mn量、Ti量と、特定の硫化物の量を限定し、さらに粗圧延後、巻取り巻戻しを施すことで熱延後の巻取り以前にCを十分に析出させ、コイルの長手方向および幅方向の加工性の均一性に優れた冷延鋼板を提供するものである。以下にその限定理由を述べる。
【0014】
まず、化学成分の限定理由について説明する。
Cは、その量が増加するに従って、それを固定するための炭化物形成元素であるTi量を増大させねばならず、このためコスト高となり、また熱延コイルの端部において固溶Cが残存したり、微細炭化物が粒内に数多く析出するため粒成長性を妨げて加工性を劣化させるので、0.007%を上限とする。この観点からは、0.003%以下が好ましい。また、C量の下限は、真空脱ガス処理コストの観点から、0.0005%とする。
【0015】
Siは安価な高強度化元素として有効であるので、目的とする強度レベルに応じて活用する。ただし、その量が0.8%を超えるとYPが急激に上昇し、伸びが低下してめっき性を著しく損なうので、0.8%を上限とする。溶融亜鉛めっき用としては、めっき性の観点から0.3%以下とすることが好ましい。高強度(TSで350MPa以上)を必要としない場合には0.1%以下がさらに好ましい。Si量の下限は、製鋼コストの理由から、0.005%とする。
【0016】
Mnは本発明において最も重要な元素の1つである。すなわち、Mnが0.15%を超えるとMnSの析出量が増加し、結果としてTi4 2 2 の析出量が低下するため、たとえ高温巻取りを行ったとしても、熱延コイルの端部では冷却速度が速く、固溶Cが多量に残存したり、微細炭化物が多数析出して著しく材質を劣化させる。従って、Mn量の上限を0.15%とし、さらには0.10%未満とすることが好ましい。一方、Mn量を0.01%未満とすると、熱間割れを誘発し、また製鋼コストの上昇を招くので、下限を0.01%とする。
【0017】
PもSiと同様に安価な高強度化元素として目的とする強度レベルに応じて積極的に活用する。しかし、P量が0.2%超では熱間あるいは冷間加工時の割れの原因となり、2次加工性も著しく劣化させる。また、溶融亜鉛めっきの合金化速度が著しく遅滞化するため、P量の上限を0.2%とする。以上の観点から、より好ましくは0.08%以下がよい。高い強度を必要としない場合には0.03%以下がさらに好ましい。
【0018】
Sは本発明において極めて重要な元素であり、その添加量を0.004〜0.02%とする。S量が0.004%未満になるとTi4 2 2 の析出量が十分ではなく、低温で巻取った際にはもちろんのこと、たとえ高温で巻取ったとしてもコイルの端部では固溶Cが多量に残存したり、TiCやNbCの微細な析出により焼鈍時の粒成長性が阻害され、加工性が著しく劣化する。一方、S量が0.02%超では熱間割れが生じやすく、またTi4 2 2 の析出よりもMnSやTiSが多く析出するために同様の問題が生じ、加工性の均一性が確保されない。なお、この観点からは、S量は0.004〜0.012%がより好ましい範囲である。
【0019】
ところで、SはTi量との関係が重要であり、Ti*=Ti−3.42Nとするとき、Ti*/S≧1とする。Ti*/Sが1未満ではTi4 2 2 の析出が十分でなく、TiSやMnSが多く析出するので熱延後の巻取りの前にCを析出させることが困難となる。従って、熱延コイルの端部では、巻取温度を高めても多量の固溶Cが残存したり、微細炭化物が析出したりして極端な材質劣化を招く。Ti*/Sは1.2超とすることが好ましく、より一層の効果が望まれる場合には、1.5以上とすることが好ましい。
【0020】
Alは脱酸剤として少なくとも0.005%添加する必要がある。しかし、0.1%を超えるとコストアップとなるばかりか、介在物の増加を招き、加工性を劣化させる。
NはCと同様に、その増加とともにTi、Al等の窒化物形成元素を増量せねばならず、コスト高となるうえ、析出物の増加により延性の劣化を招くので、少ないほど望ましい。従って、N量の上限を0.007%とする。より好ましくは、0.003%以下がよい。
【0021】
Tiは0.01〜0.1%を添加する。Ti量が0.01%未満ではTi4 2 2 を巻取りの前に析出させることができず、また0.1%を超える量を添加しても、Cを固定する効果が飽和するばかりか、プレス成形時のめっき層の耐剥離性を確保することが困難になる。Ti4 2 2 を十分に析出させるという観点からは、Tiは0.025%超添加することが好ましい。
【0022】
熱延中、特に粗圧延後の巻取り、巻戻し中に固溶Cを全て炭硫化物として析出させるためには、Ti*/C>9なる関係を満足させることが重要である。ただし、この関係を満たさなくても、仕上圧延後の巻取り時の固溶C量が5ppm未満であれば、すなわち計算から求まる巻取り前の固溶C量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005なる関係が満たされていれば、十分な効果が得られる。なお、C−0.8S×12/32の式において、0.8はMnSにならなかったS量を表す係数、また12/32はCと1:1で結びつくのに必要なS量を表す係数である。
【0023】
また、コイル端部での材質を確保するためには、熱延後の巻取りの後に全S量のうちMnSとして析出するS量の割合K(=(S% as MnS)/(全S%))がK≦0.2でなければならない。さらに、この観点からは、K<0.15とすることが望ましい。この(S% as MnS)は次のようにして求められる。すなわち、硫化物が溶解しないような溶媒(例えば、非水溶媒)によって析出物を電解抽出する。得られた抽出残査を化学分析に供し、Mn量を測定(=X(g)とする)する。このとき、サンプル全体の電解量をY(g)とすると、(S% as MnS)=X/Y×32/55×100(%)となる。
【0024】
Bは粒界を強化して2次加工性を良好にするので、必要に応じて0.0001〜0.0030%の範囲で添加する。Bの添加量が0.0001%未満では、その効果は乏しく、また0.003%超添加しても、その効果は飽和し、延性が劣化する。
上記成分を得るための原料は特に限定しないが、鉄鉱石を原料として、高炉、転炉により成分を調製する方法以外に、スクラップを原料としてもよいし、これを電炉で溶製してもよい。スクラップを原料の全部または一部として使用する際には、Cu、Cr、Ni、Sn、Sb、Zn、Pb、Mo等の元素を含有してもよい。
【0025】
次に、製造プロセスに関する限定理由を述べる。
熱間圧延に供するスラブは、とくに限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスターで製造したものなどであればよい。また、鋳造後に直ちに熱間圧延を行う、連続鋳造−直接圧延(CC−DR)のようなプロセスにも適合する。
【0026】
熱間圧延における加熱温度は、Tiの析出量をなるべく増やすために1250℃以下とすることが必須である
粗圧延終了後には粗バーを一旦コイル状に巻取る。このとき、1100℃以下での加熱保持を行ってもよいし、コイルボックスのようなものの中で恒温保持してもよい。また、大気中での保持でもよい。表面性状の観点からは、不活性ガス雰囲気での保持を行ってもよい。巻取り巻戻しによる歪の導入と低温γ域での保持によって、Tiの析出が著しく促進され、熱延コイルの幅端部および長手方向の端部の材質劣化が著しく低減されるとともに、熱延板の板厚精度も向上する。
【0027】
巻戻したコイルは、そのまま(Ar3 −100)℃以上の仕上温度で仕上圧延を行ってもよいし、粗バーを接合して連続的に仕上熱延を行ってもよい。粗バーを接合して連続的に仕上圧延を行うことによって、材質劣化が生じる巻取り時のコイル端部に相当する部分が減少することから、歩留りが向上するとともに熱延板の板厚精度も向上する。
【0028】
仕上圧延における仕上温度は、プレス成形性を確保するために(Ar3 −100)℃以上とする必要がある。
本発明は、熱延後の巻取温度が低くても加工性を確保できるという特徴を有する。すなわち、本発明によれば、Cのほとんどは熱延の加熱時〜熱延後の冷却までの過程でTi4 2 2 として析出しており、高温巻取りしても大きく材質が向上することはない。従って、巻取りは操業上適当な温度で行えばよく、室温から800℃の範囲で行う。室温未満で巻取ることは過剰な設備が必要となるばかりで特段の効果もない。また、800℃超で巻取ると熱延板の結晶粒が粗大化したり、表面の酸化スケールが厚くなったり、酸洗コストの上昇を招くので、800℃を上限とする。この観点と、Pの化合物の析出による材質の低下をさけるためには、巻取りは650℃以下の温度で行うことが好ましい。有害な化合物の析出を完全に避けるためには、500℃以下の温度で巻取ることがさらに好ましい。さらに、巻取り後に室温付近まで温度が下がる時間を短縮するためには、100℃以下で巻取ることが好ましい。このような低温巻取り化によって、製造コストの削減が計れることは言うまでもない。
【0029】
冷間圧延の圧下率は、深絞り性を確保する観点から60%以上とする。
連続焼鈍における焼鈍温度は、加工性を確保するために、再結晶温度以上とする。
連続溶融亜鉛めっきラインにおける再結晶焼鈍温度も同様の理由で再結晶温度以上とする。溶融亜鉛めっきは、めっき性、めっき密着性の観点から、420〜500℃の温度で施すのがよい。その後の合金化処理温度は、低過ぎると合金化反応が遅すぎて生産性を損なうばかりか耐食性、溶接性が劣悪になり、また高過ぎると耐めっき剥離性が劣化するので、400〜600℃の範囲で行うのが好ましい。より密着性の優れためっき層を得るためには、480〜550℃の範囲で合金化を行うのがよい。
【0030】
連続焼鈍や連続溶融亜鉛めっきラインにおける加熱速度は特に限定するものではなく、通常の速度でもよいし、1000℃/s以上の超急速加熱を行ってもよい。
なお、溶融亜鉛めっき以外にも、電気めっき等種々の表面処理を施してもよい。
【0031】
【発明の実施の形態】
以下、本発明の実施の形態を、実施例により具体的に説明する。
〔実施例1〕
表1、表2(表1のつづき)に示す化学成分を有するTi添加極低炭素鋼を転炉にて出鋼し、連続鋳造機にてスラブとした後、1210℃で加熱し、粗圧延終了後コイル状に巻取り、直ちに巻戻した後に、仕上温度926℃、板厚3mmとなるような熱間圧延を行い、ランアウトテーブルでの冷却速度25℃/sで冷却し、表3、表4(表3のつづき)中に示した種々の巻取温度でコイルに巻取った。このコイルの長手方向中心部から試料を切り出し、以下のような処理を行った。すなわち、実験室にて酸洗後、0.8mmまで冷間圧延を行い、連続焼鈍相当の熱処理を施した。焼鈍条件は、焼鈍温度:790℃、均熱:50s、冷却速度:室温まで約60℃/sとした。その後、0.8%の圧下率で調質圧延を行い、引張試験に供した。ここで、引張試験および平均ランクフォード値(以下r値)の測定は、JIS Z 2201記載の5号試験片を用いて行った。なお、r値は伸び15%で評価し、圧延方向(L方向)、圧延方向に垂直な方向(C方向)、および圧延方向に対して45゜方向(D方向)の値を測定し、下式により算出した。試験結果を表3、表4にまとめて示す。
【0032】
r=(rL+2rD+rC)/4
【0033】
【表1】

Figure 0003834100
【0034】
【表2】
Figure 0003834100
【0035】
【表3】
Figure 0003834100
【0036】
【表4】
Figure 0003834100
【0037】
表3、表4から明らかなように、本発明の成分を有する鋼では、800℃以下の温度であればいずれの巻取温度でも極めて優れた材質が得られることが分かる。これに対して、比較鋼Jでは高温巻取りした場合、その他の比較鋼では巻取温度が低い場合に、材質が劣悪となることが明かとなった。
〔実施例2〕
実施例1で用いた鋼A、B、E、H、J、Nの冷延コイルについて、長手方向における材質特性を調査した。試験結果を表5にまとめて示す。
【0038】
【表5】
Figure 0003834100
【0039】
表5から明らかなように、本発明の範囲によって製造された鋼は、コイルの中央部はもちろんのこと、その端部10mにおいても優れた特性を示している。これに対して、比較鋼Jではコイル中央部の材質が端部に比べて低下し、その他の比較鋼ではコイル端部になるにつれて材質が著しく劣化し、低温巻取りの場合には、コイル全長で材質が劣悪になった。この傾向が端部になるほど顕著になるのは明白である。
【0040】
〔実施例3〕
表1、表2中の鋼B、D、E、G、H、Nのスラブを、1250℃で加熱し、粗圧延終了後、コイル状に巻取り、直ちに巻戻した後に、仕上温度915℃、板厚3mmとなるような仕上圧延を行い、ランアウトテーブルでの冷却速度20℃/sで冷却した後、400℃で巻取ったコイルと、1250℃で加熱し、仕上温度915℃、板厚3mmとなるような熱間圧延を行った後、ランアウトテーブルでの冷却速度20℃/sで冷却した後、400℃で巻取ったコイルの長手方向中心部から試料を切り出した。実験室にて酸洗後、0.8mmまで冷間圧延を行い、連続焼鈍相当の熱処理を施した。焼鈍条件は、焼鈍温度:810℃、均熱:60s、冷却速度:焼鈍温度から640℃まで約5℃/s、640℃〜室温までは約70℃/sである。その後、0.7%の圧下率で調質圧延を行い、試料の長手方向先端部から10m、中央部、末端部から10mの各位置から試験片を採取し、実施例1と同じ試験を行った。その結果を表6にまとめて示す。
【0041】
【表6】
Figure 0003834100
【0042】
これより、成分が本発明の範囲から外れているH、Nでは、粗圧延後のコイル巻取り巻戻しの有無に関わらずr値の絶対値は低く、端部の材質はさらに劣化してしまうが、鋼B、D、E、Gの本発明例では、端部材質はむしろ向上し、かつr値の絶対値も巻取り巻戻しを行わない場合に比べて高いことがわかる。
〔実施例4〕
表1中の鋼B、E、F、H、K、Mを用いて実施例1と同様の条件で熱間圧延を施し(巻取温度:590℃)、引き続き実機にて酸洗し、圧下率80%の冷間圧延を行い、ライン内焼鈍方式の連続溶融亜鉛めっきラインに通板した。このとき、最高加熱温度820℃間で加熱後、冷却し、470℃で慣用の溶融亜鉛めっきを行い(浴中Al濃度は0.12%)、さらに加熱して550℃で約15秒間の合金化処理を行った。さらに、0.7%の調質圧延を施して、機械的性質、めっき密着性を評価した。得られた結果を表7にまとめて示す。
【0043】
ここで、めっき密着性は、180密着曲げを行い、亜鉛皮膜の剥離状況を曲げ加工部に粘着テープを接着した後、これを剥がしてテープに付着した剥離めっき量から判定した。評価は、下記の5段階とした。
1:剥離大、2:剥離中、3:剥離小、4:剥離微量、5:剥離なし
【0044】
【表7】
Figure 0003834100
【0045】
表7から明らかなように、本発明の範囲によって製造された合金化溶融亜鉛めっき鋼板は、コイルの部位に関わらず優れた特性を示している。これに対して、比較鋼では、コイルの部位によるばらつきが大きかった。
【0046】
【発明の効果】
以上のように、本発明によれば熱延後の巻取温度を低温化することができ、しかもコイルの長手方向および幅方向に均一性に優れた材質が得られ、従来切捨てられていたコイル端部を製品とすることができる。また、本発明の高強度鋼板を自動車用として適用した場合には、板厚を軽減することができるため、燃費の向上をもたらし、近年大きな問題となっている地球環境問題にも貢献し得るので、その価値は大きい。
また、C、Si、Mn、P、S、Al、N、Tiを特定範囲含み、さらにTiを、Ti*=Ti−3.42Nとするとき、Ti*/S≧1で、かつTi*/C>9、または巻取り前の固溶Cの計算量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005の条件を満たす鋼を、1210℃以上1250℃以下で加熱し、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、特定温度の仕上圧延を施し、巻取り、MnSとして析出するS量の割合を規定し、冷間圧延し、再結晶温度以上で焼鈍することにより、Ti の析出を促進することができ、これにより長手方向端部側と中央部での引張強さ(TS)とランクフォード値(r)と曲げ剛性(El)の均一化をなした冷延鋼板を得ることができる効果がある。
また、前記に加え、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、仕上温度≧(Ar 3 −100)℃の仕上圧延を施して、先に行った粗バーの巻取り巻き戻しによる歪の導入効果によりTi の析出を促進することにより、長手方向端部側と中央部での引張強さとランクフォード値と曲げ剛性の均一化をなした冷延鋼板を得ることができる効果がある。 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet with very little workability variation in the coil. The use of the steel sheet produced according to the present invention is an automobile, home appliance, building material, etc., and when the high-strength steel sheet produced according to the present invention is applied for automobiles, the plate thickness can be reduced, This can improve fuel efficiency and contribute to global environmental problems that have become a major problem in recent years.
[0002]
[Prior art]
As disclosed in Japanese Patent Application Laid-Open No. 58-185752, an ultra-low carbon steel sheet has excellent workability and is widely used in applications such as automobiles. Moreover, the device for further improving workability has been made | formed by prescribing | regulating the component and manufacturing method of ultra-low carbon steel. For example, in JP-A-3-130323, JP-A-4-143228, and JP-A-4-116124, the amount of C, Mn, P, etc. in ultra-low carbon steel added with Ti is reduced as much as possible. Thus, it is disclosed that excellent workability can be obtained. However, in these inventions, there is no description from the viewpoint of improving the coil width and the yield at the end in the longitudinal direction.
[0003]
From the viewpoint of reducing the variation in material, there are those described in JP-A-3-170618 and JP-A-4-52229. However, these inventions need to increase the rolling reduction in finish hot rolling or increase the coiling temperature after hot rolling, which places a heavy load on the hot rolling process.
Therefore, the present inventors, as shown in JP-A-8-3686, Ti in the γ region.FourC2S2By actively utilizing the precipitation of steel, we established a technology to fix much of the solid solution C before winding and to remarkably improve the uniformity of workability. However, even with this method, TiFourC2S2In the case of high-temperature winding, the slightly dissolved solute C remaining in the central part of the coil forms fine carbides, which may cause the material to deteriorate rather than the end. It was.
[0004]
The problem of the deterioration of the end member quality is the same in the high workability high-strength cold-rolled steel sheet reinforced with P or Si. As technologies relating to these steel sheets, there are those represented by JP 59-31827, JP 59-38337, JP 57-57945, JP 61-276931, and the like. However, none has been devised to improve the coil width and the yield at the end in the longitudinal direction, nor is it a technique for actively utilizing Ti sulfide as in the present invention.
[0005]
[Problems to be solved by the invention]
In Ti-added ultra-low carbon steel, it is a normal method to ensure the material after cold rolling annealing by precipitating C as TiC by high temperature winding after hot rolling and reducing the solid solution C. It was. The same applies to the case of strengthening with P or Si. However, at the width end portion and the longitudinal end portion of the hot-rolled coil, cooling at the time of winding and after winding proceeds remarkably fast, so that TiC is not sufficiently precipitated, and the material deteriorates in these portions. There was a problem that. In order to solve this problem, a technology for promoting the precipitation of carbon sulfide in the γ region has been developed. However, it is difficult to completely remove solute C before winding, and therefore high temperature winding is required. If done, the solid solution C slightly remaining in the center of the coil may form fine carbides and the material quality may deteriorate, and it is difficult to ensure extremely high workability over the entire coil length under any winding conditions. Met.
[0006]
The present invention provides a method for producing a cold-rolled steel sheet, a hot-dip galvanized steel sheet, and an alloyed hot-dip galvanized steel sheet with very little deterioration of the end member quality in the coil width and the entire length in the longitudinal direction without depending on the coiling temperature. It is intended.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present inventors actively utilize S in an ultra-low carbon steel, optimize the ratio of Ti amount and S amount, and define the Mn amount. In addition, the inventors have earnestly studied to obtain a high r-value cold-rolled steel sheet having excellent workability uniformity by precipitating a specific precipitate by winding and rewinding after rough rolling.
[0008]
As a result, it was found that when S ≧ 0.004% and Ti * = Ti−3.42N, it is effective to satisfy Ti * / S ≧ 1 and Mn ≦ 0.15%. In addition, it is very effective for winding up and rewinding the coil after rough rolling to improve the uniformity of workability, and in order to sufficiently exhibit the effects of winding and rewinding, Ti * / C> 9 or the solid solution C amount L before winding obtained from the calculation (the larger value of (C-Ti * / 8) and (C-0.8S × 12/32)) is L <0.0005 It was found that satisfying is very important.
[0009]
Furthermore, the ratio K (= (S% as MnS) / (total S%)) of the amount of S precipitated as MnS out of the total amount of S after winding after hot rolling satisfies K ≦ 0.2. It has been found that it is extremely important in obtaining material uniformity. This is considered to be based on the following mechanism. That is, the amount precipitated as MnS out of the total amount of S is reduced as much as possible, and after rough rolling, the coil is once wound in the low temperature γ region, unwound, and strain is introduced to introduce Ti.FourC2S2By promoting the precipitation of the solid solution, the solid solution C is sufficiently reduced before the finish hot rolling is wound. As a result, even if the coil end is rapidly cooled during winding after hot rolling, a large amount of solid solution C remains at the coil end because the solid solution C is sufficiently fixed before winding. Or deterioration of the material due to the precipitation of fine carbides. In the case of the steel of the present invention, most of the C is Ti in the hot rolling process before winding.FourC2S2Therefore, a cold-rolled steel sheet having high workability over the entire coil length can be obtained without depending on the coiling temperature.
[0010]
  This invention is comprised based on the said knowledge, and the place made into the summary is as follows.
(1)mass%: C: 0.0005-0.007%, Si: 0.005-0.8%, Mn: 0.01-0.15%, P: 0.2% or less, S: 0.004- 0.02%, Al: 0.005 to 0.1%, N: 0.007% or less, and when Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1, And the calculated amount L of Ti * / C> 9 or solute C before winding (the larger value of (C-Ti * / 8) and (C-0.8S × 12/32)) is L < A steel that satisfies the condition of 0.0005 and contains Ti in a range of 0.01 to 0.1%, the balance being iron and inevitable impurities,1210 ° C or higherAfter heating at 1250 ° C. or lower and rough rolling, the coarse bar is wound into a coil shape and rewound, and then the finishing temperature ≧ (ArThree -100) ° C. finish rolling, winding in the temperature range from room temperature to 800 ° C., out of the total amount of S, the ratio of the amount of S that precipitates as MnS (= (S% as MnS) / (total S%) ) Is set to K ≦ 0.2, and after pickling, cold-rolled at a reduction ratio ≧ 60%, and further annealed at a recrystallization temperature or higher, to produce a cold-rolled steel sheet having excellent workability uniformity Method.
(2)The manufacturing method of the cold-rolled steel sheet excellent in the workability uniformity of the present invention is mass%, C: 0.0005 to 0.007%, Si: 0.005 to 0.8%, Mn: 0.01. -0.15%, P: 0.2% or less, S: 0.004-0.02%, Al: 0.005-0.1%, N: 0.007% or less, further Ti, When Ti * = Ti−3.42N, Ti * / S ≧ 1 and Ti * / C> 9, or the calculated amount L of solute C before winding ((C−Ti * / 8)) (The larger value of (C−0.8S × 12/32)) satisfies the condition of L <0.0005 and is contained in the range of Ti: 0.01 to 0.1%, the balance being iron and inevitable After heating the steel made of mechanical impurities at 1210 ° C. or more and 1250 ° C. or less and rough rolling, the coarse bar is wound into a coil shape and rewound, and then the finishing temperature ≧ (Ar Three -100) ° C. finish rolling, and the effect of introducing strain due to the winding and rewinding of the coarse bar performed previously is Ti 4 C 2 S 2 After promoting the precipitation of the steel, the steel sheet is wound in a temperature range from room temperature to 800 ° C., and the ratio K of the amount of S deposited as MnS out of the total amount of S (= (S% asMnS) / (total S%)) is set to K ≦ 0.2, pickled, cold-rolled at a reduction rate of ≧ 60%, and further annealed at a temperature higher than the recrystallization temperature. The tensile strength, the Rankford value, and the bending rigidity on the center side and the end side in the direction are made uniform.
[0011]
  (3)The present inventionAs a steel component,mass%, B: 0.0001 to 0.0030% is contained, (1)Or (2)Method for producing cold-rolled steel sheet with excellent workability uniformityConcerning. (4)The present inventionThe preceding item (1), characterized in that before finishing rolling, the trailing end of the preceding material and the leading end of the following material are joined to finish rolling.To any one of (3)Method for producing cold-rolled steel sheet with excellent workability uniformityConcerning.
[0012]
  (5)The present invention(1) to (4In place of annealing after cold rolling described in any one of (1), annealing is performed at a recrystallization temperature or higher in a continuous hot-dip galvanizing line having an in-line annealing furnace, and galvanizing is performed during the cooling process. Manufacturing method of hot-dip galvanized steel sheet with excellent workability uniformityConcerning. (6)The present inventionPrevious paragraph (5The method for producing an alloyed hot-dip galvanized steel sheet having excellent workability uniformity, characterized by further performing an alloying treatment in a temperature range of 400 to 600 ° C.Concerning.
[0013]
The method for producing a cold-rolled steel sheet according to the present invention is based on an ultra-low carbon steel to which Ti is added, or a steel reinforced with P or Si, and an amount of S, Mn, Ti, and a specific amount of sulfide. Cold rolling with excellent uniformity of workability in the longitudinal direction and width direction of the coil, after further rough rolling and by winding and rewinding to sufficiently precipitate C before winding after hot rolling A steel sheet is provided. The reason for limitation will be described below.
[0014]
First, the reasons for limiting chemical components will be described.
As the amount of C increases, the amount of Ti, which is a carbide forming element for fixing the C, must be increased. This increases the cost, and solid solution C remains at the end of the hot rolled coil. Moreover, since many fine carbides precipitate in the grains, the grain growth is hindered and the workability is deteriorated, so 0.007% is made the upper limit. From this viewpoint, 0.003% or less is preferable. Further, the lower limit of the amount of C is set to 0.0005% from the viewpoint of vacuum degassing cost.
[0015]
Since Si is effective as an inexpensive element for strengthening, it is used according to the intended strength level. However, if the amount exceeds 0.8%, YP rises rapidly, elongation decreases, and the plateability is remarkably impaired, so 0.8% is made the upper limit. For hot dip galvanization, it is preferable to set it as 0.3% or less from a viewpoint of plating property. When high strength (350 MPa or more in TS) is not required, 0.1% or less is more preferable. The lower limit of the Si amount is set to 0.005% for the reason of steelmaking cost.
[0016]
Mn is one of the most important elements in the present invention. That is, when Mn exceeds 0.15%, the precipitation amount of MnS increases, and as a result, TiFourC2S2Therefore, even if high temperature winding is performed, the cooling rate is high at the end of the hot rolled coil, a large amount of solid solution C remains, or a large amount of fine carbide precipitates. Deteriorate. Therefore, the upper limit of the Mn content is preferably 0.15%, and more preferably less than 0.10%. On the other hand, if the Mn content is less than 0.01%, hot cracking is induced and the steelmaking cost is increased, so the lower limit is made 0.01%.
[0017]
P, as well as Si, is actively utilized according to the intended strength level as an inexpensive strengthening element. However, if the amount of P exceeds 0.2%, it causes cracks during hot or cold working, and the secondary workability is remarkably deteriorated. Moreover, since the alloying speed of hot dip galvanization is remarkably retarded, the upper limit of the P content is set to 0.2%. From the above viewpoint, 0.08% or less is more preferable. If high strength is not required, 0.03% or less is more preferable.
[0018]
S is an extremely important element in the present invention, and its addition amount is set to 0.004 to 0.02%. When the amount of S is less than 0.004%, TiFourC2S2The amount of precipitation is not sufficient, and of course when winding at low temperature, even if winding at high temperature, a large amount of solid solution C remains at the end of the coil, or fine precipitation of TiC or NbC This hinders the grain growth during annealing and significantly deteriorates the workability. On the other hand, if the amount of S exceeds 0.02%, hot cracking is likely to occur, and TiFourC2S2Since MnS and TiS are precipitated more than the precipitation of the above, the same problem occurs, and the uniformity of workability is not ensured. From this point of view, the amount of S is more preferably 0.004 to 0.012%.
[0019]
By the way, the relationship between S and Ti content is important. When Ti * = Ti-3.42N, Ti * / S ≧ 1. If Ti * / S is less than 1, TiFourC2S2Is not sufficient, and a large amount of TiS or MnS is precipitated, so that it is difficult to precipitate C before winding after hot rolling. Therefore, at the end of the hot-rolled coil, even if the coiling temperature is increased, a large amount of solute C remains or fine carbides precipitate, resulting in extreme material deterioration. Ti * / S is preferably more than 1.2, and when further effect is desired, it is preferably 1.5 or more.
[0020]
Al needs to be added at least 0.005% as a deoxidizer. However, if it exceeds 0.1%, not only the cost is increased, but also inclusions are increased, and the workability is deteriorated.
N, like C, needs to increase the amount of nitride-forming elements such as Ti and Al as the amount increases, which increases the cost and causes deterioration of ductility due to an increase in precipitates. Therefore, the upper limit of the N amount is set to 0.007%. More preferably, it is 0.003% or less.
[0021]
Ti is added in an amount of 0.01 to 0.1%. If the amount of Ti is less than 0.01%, TiFourC2S2Can not be deposited before winding, and adding more than 0.1% not only saturates the effect of fixing C, but also ensures the peel resistance of the plating layer during press molding. It becomes difficult to do. TiFourC2S2From the viewpoint of sufficiently precipitating the Ti, it is preferable to add more than 0.025% Ti.
[0022]
It is important to satisfy the relationship of Ti * / C> 9 in order to precipitate all the solid solution C as a carbon sulfide during hot rolling, particularly during winding and unwinding after rough rolling. However, even if this relationship is not satisfied, if the solid solution C amount at the time of winding after finish rolling is less than 5 ppm, that is, the solid solution C amount L before winding ((C-Ti * / 8) determined by calculation). ) And (the larger value of (C−0.8S × 12/32)) satisfying the relationship L <0.0005, a sufficient effect can be obtained. In the formula of C−0.8S × 12/32, 0.8 is a coefficient indicating the amount of S that did not become MnS, and 12/32 represents the amount of S necessary for being combined with C 1: 1. It is a coefficient.
[0023]
Further, in order to secure the material at the coil end, the ratio K of S amount precipitated as MnS out of the total S amount after winding after hot rolling (= (S% as MnS) / (total S%) )) Must be K ≦ 0.2. Furthermore, from this viewpoint, it is desirable that K <0.15. This (S% as MnS) is obtained as follows. That is, the precipitate is electrolytically extracted with a solvent (for example, a non-aqueous solvent) that does not dissolve the sulfide. The obtained extraction residue is subjected to chemical analysis, and the amount of Mn is measured (= X (g)). At this time, if the amount of electrolysis of the entire sample is Y (g), (S% as MnS) = X / Y × 32/55 × 100 (%).
[0024]
B strengthens the grain boundary and improves the secondary workability, so it is added in the range of 0.0001 to 0.0030% as necessary. If the addition amount of B is less than 0.0001%, the effect is poor, and even if added over 0.003%, the effect is saturated and the ductility deteriorates.
The raw materials for obtaining the above components are not particularly limited, but scraps may be used as raw materials in addition to the method of preparing components by using iron ore as a raw material, using a blast furnace and a converter, and this may be melted in an electric furnace. . When scrap is used as all or part of the raw material, elements such as Cu, Cr, Ni, Sn, Sb, Zn, Pb, and Mo may be contained.
[0025]
Next, the reason for limitation regarding the manufacturing process will be described.
The slab used for hot rolling is not particularly limited. That is, what is necessary is just what was manufactured with the continuous casting slab or the thin slab caster. It is also compatible with processes such as continuous casting-direct rolling (CC-DR) in which hot rolling is performed immediately after casting.
[0026]
  The heating temperature in hot rolling is Ti4C2S2In order to increase the precipitation amount of as much as possible, it is essential to set the temperature to 1250 ° C. or less..
  After the rough rolling is completed, the rough bar is once wound into a coil shape. At this time, heating and holding at 1100 ° C. or less may be performed, or constant temperature holding may be performed in a coil box or the like. Further, it may be held in the atmosphere. From the viewpoint of surface properties, holding in an inert gas atmosphere may be performed. By introducing strain by winding and unwinding and holding in the low temperature γ region, Ti4C2S2Is significantly promoted, material deterioration of the width end portion and the longitudinal end portion of the hot rolled coil is significantly reduced, and the thickness accuracy of the hot rolled plate is also improved.
[0027]
The unwound coil remains as it is (ArThreeFinish rolling may be performed at a finishing temperature of −100) ° C. or higher, or finish hot rolling may be performed continuously by joining coarse bars. By performing finish rolling continuously by joining the rough bars, the portion corresponding to the coil end at the time of winding that causes material deterioration is reduced, so the yield is improved and the thickness accuracy of the hot rolled sheet is also improved. improves.
[0028]
The finish temperature in finish rolling is (Ar) to ensure press formability.Three−100) It is necessary to set the temperature to be equal to or higher.
The present invention has a feature that workability can be secured even when the coiling temperature after hot rolling is low. That is, according to the present invention, most of C is Ti during the process from hot-rolling heating to cooling after hot-rolling.FourC2S2As a result, the material does not greatly improve even if it is wound at a high temperature. Therefore, the winding may be performed at a temperature suitable for operation, and is performed in the range of room temperature to 800 ° C. Winding below room temperature only requires excessive equipment and has no special effect. Further, if the winding is performed at a temperature higher than 800 ° C., the crystal grains of the hot-rolled sheet become coarse, the surface oxide scale becomes thick, and the pickling cost increases, so the upper limit is set to 800 ° C. In order to avoid this viewpoint and the deterioration of the material due to the precipitation of the P compound, the winding is preferably performed at a temperature of 650 ° C. or lower. In order to completely avoid the precipitation of harmful compounds, it is more preferable to wind up at a temperature of 500 ° C. or lower. Furthermore, in order to shorten the time for the temperature to drop to around room temperature after winding, it is preferable to wind at 100 ° C. or lower. It goes without saying that manufacturing costs can be reduced by such low-temperature winding.
[0029]
The rolling reduction of cold rolling is 60% or more from the viewpoint of ensuring deep drawability.
The annealing temperature in the continuous annealing is set to the recrystallization temperature or higher in order to ensure workability.
The recrystallization annealing temperature in the continuous hot dip galvanizing line is also set to the recrystallization temperature or higher for the same reason. The hot dip galvanization is preferably performed at a temperature of 420 to 500 ° C. from the viewpoint of plating properties and plating adhesion. If the alloying treatment temperature thereafter is too low, the alloying reaction is too slow to impair productivity, and the corrosion resistance and weldability are deteriorated. On the other hand, if it is too high, the plating peel resistance is deteriorated. It is preferable to perform in the range. In order to obtain a plating layer with better adhesion, alloying is preferably performed in the range of 480 to 550 ° C.
[0030]
The heating rate in the continuous annealing or continuous hot dip galvanizing line is not particularly limited, and may be a normal rate or ultra rapid heating at 1000 ° C./s or more.
In addition to hot dip galvanization, various surface treatments such as electroplating may be performed.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described by way of examples.
[Example 1]
Ti-added ultra-low carbon steel having the chemical components shown in Tables 1 and 2 (continued in Table 1) is steeled in a converter, made into a slab with a continuous casting machine, heated at 1210 ° C, and rough rolled. After completion, the coil was wound into a coil shape and immediately rewound, followed by hot rolling to a finish temperature of 926 ° C. and a plate thickness of 3 mm, and cooling at a cooling rate of 25 ° C./s on the run-out table. 4 (continued in Table 3), the coil was wound around the coil at various winding temperatures. A sample was cut out from the longitudinal center of the coil and subjected to the following treatment. That is, after pickling in a laboratory, cold rolling to 0.8 mm was performed, and a heat treatment equivalent to continuous annealing was performed. The annealing conditions were annealing temperature: 790 ° C., soaking: 50 s, cooling rate: about 60 ° C./s to room temperature. Thereafter, temper rolling was performed at a reduction rate of 0.8%, and subjected to a tensile test. Here, the tensile test and the measurement of the average rankford value (hereinafter referred to as r value) were carried out using No. 5 test piece described in JIS Z 2201. The r value was evaluated at 15% elongation, and measured in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the 45 ° direction (D direction) with respect to the rolling direction. Calculated by the formula. The test results are summarized in Tables 3 and 4.
[0032]
r = (rL + 2rD + rC) / 4
[0033]
[Table 1]
Figure 0003834100
[0034]
[Table 2]
Figure 0003834100
[0035]
[Table 3]
Figure 0003834100
[0036]
[Table 4]
Figure 0003834100
[0037]
As is apparent from Tables 3 and 4, it is understood that the steel having the components of the present invention can provide an extremely excellent material at any winding temperature as long as the temperature is 800 ° C. or lower. On the other hand, it has been clarified that the quality of the comparative steel J is inferior when the winding is performed at a high temperature and the other comparative steels are low in the winding temperature.
[Example 2]
The material properties in the longitudinal direction of the cold rolled coils of steels A, B, E, H, J, and N used in Example 1 were investigated. The test results are summarized in Table 5.
[0038]
[Table 5]
Figure 0003834100
[0039]
As is apparent from Table 5, the steel manufactured according to the scope of the present invention exhibits excellent characteristics not only in the central part of the coil but also in the end part 10 m. On the other hand, in the comparative steel J, the material of the coil central portion is lower than the end portion, and in other comparative steels, the material is remarkably deteriorated as it becomes the coil end portion. The material became poor. It is clear that this tendency becomes more prominent at the end.
[0040]
Example 3
The slabs of steels B, D, E, G, H, and N in Tables 1 and 2 were heated at 1250 ° C, and after the rough rolling, coiled and immediately rewound, and then the finishing temperature was 915 ° C After finishing rolling to a plate thickness of 3 mm, cooling at a cooling rate of 20 ° C./s on the run-out table, coiled at 400 ° C. and heated at 1250 ° C., finishing temperature 915 ° C., plate thickness After performing hot rolling so as to be 3 mm, the sample was cut out from the longitudinal center of the coil wound at 400 ° C. after cooling at a cooling rate of 20 ° C./s on the run-out table. After pickling in the laboratory, it was cold rolled to 0.8 mm and subjected to a heat treatment equivalent to continuous annealing. The annealing conditions are annealing temperature: 810 ° C., soaking: 60 s, cooling rate: about 5 ° C./s from the annealing temperature to 640 ° C., and about 70 ° C./s from 640 ° C. to room temperature. Thereafter, temper rolling was performed at a rolling reduction of 0.7%, and specimens were taken from positions 10 m from the front end in the longitudinal direction, 10 m from the center, and 10 m from the end, and the same test as in Example 1 was performed. It was. The results are summarized in Table 6.
[0041]
[Table 6]
Figure 0003834100
[0042]
Thus, in H and N whose components are out of the scope of the present invention, the absolute value of the r value is low regardless of whether the coil is wound or unwound after rough rolling, and the material of the end portion is further deteriorated. However, in the present invention examples of steels B, D, E, and G, the end member quality is rather improved, and the absolute value of the r value is higher than that in the case where no rewinding / rewinding is performed.
Example 4
Using steels B, E, F, H, K, and M in Table 1, hot rolling was performed under the same conditions as in Example 1 (coiling temperature: 590 ° C.), then pickling with an actual machine, and rolling The steel sheet was cold-rolled at a rate of 80% and passed through a continuous hot-dip galvanizing line using an in-line annealing method. At this time, after heating at a maximum heating temperature of 820 ° C., cooling, performing conventional hot dip galvanizing at 470 ° C. (Al concentration in the bath is 0.12%), and further heating at 550 ° C. for about 15 seconds. The treatment was performed. Furthermore, 0.7% temper rolling was performed to evaluate mechanical properties and plating adhesion. The results obtained are summarized in Table 7.
[0043]
Here, the plating adhesion was determined by performing 180 contact bending and determining the peeling state of the zinc film from the amount of peeling plating adhered to the tape after peeling off the adhesive tape to the bent portion. Evaluation was made in the following five stages.
1: Large peeling, 2: During peeling, 3: Small peeling, 4: Small amount of peeling, 5: No peeling
[0044]
[Table 7]
Figure 0003834100
[0045]
As is apparent from Table 7, the alloyed hot-dip galvanized steel sheet produced according to the scope of the present invention exhibits excellent characteristics regardless of the coil part. On the other hand, in the comparative steel, the variation depending on the coil part was large.
[0046]
【The invention's effect】
  As described above, according to the present invention, the coiling temperature after hot rolling can be lowered, and a material having excellent uniformity in the longitudinal direction and the width direction of the coil can be obtained. The end can be a product. In addition, when the high-strength steel sheet of the present invention is applied to automobiles, the sheet thickness can be reduced, so that fuel efficiency is improved, and it can contribute to global environmental problems that have become a major problem in recent years. The value is great.
  Further, when C, Si, Mn, P, S, Al, N, Ti are included in a specific range, and Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1 and Ti * / C> 9, or the calculation amount L of solute C before winding (the larger value of (C-Ti * / 8) and (C-0.8S × 12/32)) is L <0.0005 Steel that satisfies the conditions is heated at 1210 ° C. or more and 1250 ° C. or less and rough-rolled, and then the coarse bar is wound into a coil shape and then rewound, and then finish rolling at a specific temperature is performed, winding and precipitation is performed as MnS. By defining the ratio of S amount, cold rolling, annealing at the recrystallization temperature or higher, Ti 4 C 2 S 2 The cold-rolled steel sheet with uniform tensile strength (TS), rankford value (r) and bending rigidity (El) at the longitudinal end side and the central portion can be promoted. There is an effect that can be obtained.
  In addition to the above, after rough rolling, the coarse bar is wound into a coil shape, and after rewinding, the finishing temperature ≧ (Ar Three -100) ° C. finish rolling, and the effect of introducing strain due to the winding and rewinding of the coarse bar performed previously is Ti 4 C 2 S 2 By promoting the precipitation, there is an effect that a cold-rolled steel sheet can be obtained in which the tensile strength, the Lankford value and the bending rigidity are uniformized at the end and the center in the longitudinal direction.

Claims (6)

質量%で、
C:0.0005〜0.007%、
Si:0.005〜0.8%、
Mn:0.01〜0.15%、
P:0.2%以下、
S:0.004〜0.02%、
Al:0.005〜0.1%、
N:0.007%以下
を含み、さらにTiを、Ti*=Ti−3.42Nとするとき、Ti*/S≧1で、かつTi*/C>9、または巻取り前の固溶Cの計算量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005の条件を満たし、かつTi:0.01〜0.1%の範囲で含有し、残部は鉄および不可避的不純物よりなる鋼を、1210℃以上1250℃以下で加熱し、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、仕上温度≧(Ar3 −100)℃の仕上圧延を施し、室温から800℃の温度範囲で巻取り、全S量のうち、MnSとして析出するS量の割合K(=(S% asMnS)/(全S%))をK≦0.2とし、酸洗後、圧下率≧60%で冷間圧延し、さらに再結晶温度以上で焼鈍することを特徴とする加工性の均一性に優れた冷延鋼板の製造方法。
% By mass
C: 0.0005 to 0.007%,
Si: 0.005 to 0.8%,
Mn: 0.01 to 0.15%,
P: 0.2% or less,
S: 0.004 to 0.02%,
Al: 0.005 to 0.1%,
N: When 0.007% or less is included and Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1 and Ti * / C> 9, or solid solution C before winding The amount of calculation L (the larger value of (C−Ti * / 8) and (C−0.8S × 12/32)) satisfies the condition of L <0.0005, and Ti: 0.01 to 0 .1% of steel, the balance being iron and inevitable impurities steel is heated at 1210 ° C. or more and 1250 ° C. or less, and after rough rolling, the coarse bar is wound into a coil shape and unwound, Finish rolling at a finishing temperature ≧ (Ar 3 -100) ° C., wound in a temperature range from room temperature to 800 ° C., and out of the total amount of S, the proportion K of S amount precipitated as MnS (= (S% asMnS) / (Total S%)) is set to K ≦ 0.2, and after pickling, it is cold-rolled at a reduction rate of ≧ 60%, and more than the recrystallization temperature. A method for producing a cold-rolled steel sheet having excellent workability uniformity, characterized by annealing at a temperature.
質量%で、
C:0.0005〜0.007%、
Si:0.005〜0.8%、
Mn:0.01〜0.15%、
P:0.2%以下、
S:0.004〜0.02%、
Al:0.005〜0.1%、
N:0.007%以下
を含み、さらにTiを、Ti*=Ti−3.42Nとするとき、Ti*/S≧1で、かつTi*/C>9、または巻取り前の固溶Cの計算量L((C−Ti*/8)と(C−0.8S×12/32)の大きい方の値)がL<0.0005の条件を満たし、かつTi:0.01〜0.1%の範囲で含有し、残部は鉄および不可避的不純物よりなる鋼を、1210℃以上1250℃以下で加熱し、粗圧延した後、粗バーをコイル状に巻取り、巻戻した後に、仕上温度≧(Ar 3 −100)℃の仕上圧延を施して、先に行った粗バーの巻取り巻き戻しによる歪の導入効果によりTi の析出を促進した後に、室温から800℃の温度範囲で巻取り、全S量のうち、MnSとして析出するS量の割合K(=(S% asMnS)/(全S%))をK≦0.2とし、酸洗後、圧下率≧60%で冷間圧延し、さらに再結晶温度以上で焼鈍することにより、コイル巻取りした鋼板の長手方向における中心部側と端部側における引張強さとランクフォード値と曲げ剛性の均一化をなしたことを特徴とする加工性の均一性に優れた冷延鋼板の製造方法。
% By mass
C: 0.0005 to 0.007%,
Si: 0.005 to 0.8%,
Mn: 0.01 to 0.15%,
P: 0.2% or less,
S: 0.004 to 0.02%,
Al: 0.005 to 0.1%,
N: 0.007% or less
In addition, when Ti is Ti * = Ti-3.42N, Ti * / S ≧ 1, and Ti * / C> 9, or a calculated amount L of solid solution C before winding ((C -Ti * / 8) and (the larger value of (C-0.8S × 12/32)) satisfy the condition of L <0.0005, and Ti: contained in the range of 0.01 to 0.1% The remainder is heated at 1210 ° C. or higher and 1250 ° C. or lower and steel is made of iron and unavoidable impurities. After rough rolling, the coarse bar is wound into a coil and unwound, and then the finishing temperature ≧ (Ar 3 -100) ° C. finish rolling is performed, and after the precipitation of Ti 4 C 2 S 2 is promoted by the effect of introducing strain due to the winding and unwinding of the rough bar performed earlier, the winding is performed in the temperature range from room temperature to 800 ° C. , Ratio K of S amount precipitated as MnS out of total S amount (= (S% asMnS) / (total S%)) is set to K ≦ 0.2, pickled, cold-rolled at a reduction rate of ≧ 60%, and further annealed at a temperature higher than the recrystallization temperature. A method for producing a cold-rolled steel sheet having excellent workability uniformity, characterized in that the tensile strength, the Lankford value and the bending rigidity are uniformized in the center side and the end side in the direction .
鋼成分として、さらに、質量%で、B:0.0001〜0.0030%を含有することを特徴とする請求項1または2に記載の加工性の均一性に優れた冷延鋼板の製造方法。The method for producing a cold-rolled steel sheet having excellent workability uniformity according to claim 1 or 2 , further comprising, as a steel component, B: 0.0001 to 0.0030% by mass %. . 仕上圧延前に、先行材の後端部と後行材の先端部を接合して仕上圧延に供することを特徴とする請求項1〜3のいずれか1項に記載の加工性の均一性に優れた冷延鋼板の製造方法。The finish end of the preceding material and the end of the succeeding material are joined to the finish rolling before the finish rolling, so that the uniformity of workability according to any one of claims 1 to 3 is achieved. A method for producing an excellent cold-rolled steel sheet. 請求項1〜のいずれか1項に記載の冷間圧延後の焼鈍に代えて、ライン内焼鈍炉を有する連続溶融亜鉛めっきラインで再結晶温度以上で焼鈍を施し、冷却過程中に亜鉛めっきを施すことを特徴とする加工性の均一性に優れた溶融亜鉛めっき鋼板の製造方法。It replaces with the annealing after the cold rolling of any one of Claims 1-4 , it anneals above the recrystallization temperature with the continuous hot-dip galvanizing line which has an in-line annealing furnace, and galvanizes during a cooling process. A method for producing a hot-dip galvanized steel sheet having excellent workability uniformity. 請求項に記載の亜鉛めっき後に、さらに400〜600℃の温度範囲で合金化処理を施すことを特徴とする加工性の均一性に優れた合金化溶融亜鉛めっき鋼板の製造方法。6. A method for producing an alloyed hot-dip galvanized steel sheet having excellent workability uniformity, further comprising performing an alloying treatment in a temperature range of 400 to 600 [deg.] C. after galvanizing according to claim 5 .
JP11164696A 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity Expired - Fee Related JP3834100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11164696A JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11164696A JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Publications (2)

Publication Number Publication Date
JPH09296221A JPH09296221A (en) 1997-11-18
JP3834100B2 true JP3834100B2 (en) 2006-10-18

Family

ID=14566603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11164696A Expired - Fee Related JP3834100B2 (en) 1996-05-02 1996-05-02 Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity

Country Status (1)

Country Link
JP (1) JP3834100B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW567233B (en) * 2001-03-05 2003-12-21 Kiyohito Ishida Free-cutting tool steel

Also Published As

Publication number Publication date
JPH09296221A (en) 1997-11-18

Similar Documents

Publication Publication Date Title
JP3958921B2 (en) Cold-rolled steel sheet excellent in paint bake-hardening performance and room temperature aging resistance and method for producing the same
JP5636727B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP5504643B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP2005528519A5 (en)
EP0767247A1 (en) Cold-rolled steel sheet and hot-dipped galvanized steel sheet excellent in uniform workability, and process for producing the sheets
JP5835624B2 (en) Steel sheet for hot pressing, surface-treated steel sheet, and production method thereof
JP2576894B2 (en) Hot-dip galvanized high-tensile cold-rolled steel sheet excellent in press formability and method for producing the same
JP5397141B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
JP3882679B2 (en) Manufacturing method of high-strength hot-dip galvanized cold-rolled steel sheet with excellent deep-drawability with good plating appearance
JP6210179B2 (en) High strength steel plate and manufacturing method thereof
CN113166837B (en) High-strength steel sheet and method for producing same
JP3834100B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability uniformity
JPH06122940A (en) Cold rolled steel sheet and galvanized cold rolled steel sheet having excellent baking hardenability and also cold monaging property and production thereof
JPH06116650A (en) Production of cold rolled steel sheet or hot dip galvanized cold rolled steel sheet excellent in baking hardenability and non-aging characteristic
JPH0657337A (en) Production of high strength galvannealed steel sheet excellent in formability
JPH06122939A (en) Cold rolled steel sheet or galvanized cold rolled steel sheet excellent in baking hardenability and formability and production thereof
JP3293015B2 (en) Cold rolled steel sheet with excellent workability uniformity
JP3291639B2 (en) Cold rolled steel sheet excellent in workability uniformity and method for producing the same
JP2755014B2 (en) Method for producing high-strength cold-rolled steel sheet for deep drawing with excellent secondary work brittleness resistance
JPH08283909A (en) Cold rolled steel sheet excellent in uniformity of workability and its production
JPH06322441A (en) Production of high strength steel plate having baking hardenability
JPH05179402A (en) High strength hot-dip galvanized steel material excellent in stability of material as well as in workability and its production
JP4325233B2 (en) Composite structure type high-tensile cold-rolled steel sheet and hot-dip galvanized steel sheet excellent in deep drawability and strain age hardenability, and methods for producing them
JP2002069533A (en) Method for producing hot dip galvanized steel sheet
JPH10287930A (en) Production of thin steel sheet excellent in uniformity of workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees