JP3831970B2 - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP3831970B2
JP3831970B2 JP08582296A JP8582296A JP3831970B2 JP 3831970 B2 JP3831970 B2 JP 3831970B2 JP 08582296 A JP08582296 A JP 08582296A JP 8582296 A JP8582296 A JP 8582296A JP 3831970 B2 JP3831970 B2 JP 3831970B2
Authority
JP
Japan
Prior art keywords
fuel
fuel injection
flow rate
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08582296A
Other languages
Japanese (ja)
Other versions
JPH09250412A (en
Inventor
敦哉 岡本
樹志 中島
二郎 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP08582296A priority Critical patent/JP3831970B2/en
Publication of JPH09250412A publication Critical patent/JPH09250412A/en
Application granted granted Critical
Publication of JP3831970B2 publication Critical patent/JP3831970B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel-Injection Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の燃料噴射装置に関し、特に燃料圧力の脈動防止構造に関する。
【0002】
【従来の技術】
今日の内燃機関は複数の気筒を有するのが一般的で、各気筒の燃料噴射弁に燃料を分配する分配配管が設けられている。この分配配管が設けられた内燃機関において燃料噴射弁のノズル開閉時に発生する水撃波が燃料噴射弁の燃料導入路より分配配管に伝幡し、分配配管内で燃料圧力の脈動が発生する。燃料圧力の脈動により分配配管が機械的に振動し、この振動がエンジン騒音を起こすという問題があった。その対策として分配配管の肉厚を厚くして剛性を高め、分配配管の機械的な振動を抑えることが考えられるが、実際には相当肉厚を厚くする必要があり現実的ではない。そこで実開昭60−3271号公報には分配配管壁にて内側を流れる燃料と分配配管壁の外側の大気とを隔てる可動体を設けるとともに、この可動体をスプリングにより分配配管内に向けて付勢せしめるようにした燃料圧力脈動防止装置が開示されている。この燃料圧力脈動防止装置では分配配管内の燃料圧力の脈動をスプリングの付勢力で吸収することで、燃料圧力の脈動の防止効果を得ている。
【0003】
【発明が解決しようとする課題】
しかしながら上記実開昭60−3271号公報記載の燃料圧力脈動防止装置は分配配管壁の内側を流れる燃料と分配配管壁の外側大気とを可動体が隔てる構造のため燃料の漏れ防止等で構造が複雑であり、必ずしも実用的とは言えない。
【0004】
そこで本発明では、燃料圧力の脈動を防止する効果が十分で、しかも構造が簡単な内燃機関の燃料噴射装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
請求項1記載の発明によれば、燃料噴射弁の燃料導入路と燃料を各燃料噴射弁に分配する分配配管とで燃料通路を形成し、上記燃料導入路の先端のノズル部より燃料を噴射せしめる内燃機関の燃料噴射装置において、上記分配配管と上記燃料噴射弁の燃料導入路の境界域に上記分配配管から上記燃料導入路へ流れる燃料の流量を制御する流量制御手段を設け、該流量制御手段は、上記燃料通路のうち上記流量制御手段から上記燃料噴射弁の上記ノズル部までの容積と上記燃料通路の全容積の差の上記全容積に対する比率と、上記流量制御手段で制御される燃料の流量の上記燃料噴射弁の上記ノズル部から噴射される燃料の流量に対する比率とが等しくなるように設定することを特徴とする。
【0006】
かかる構成とすることにより、ノズル部の開閉で上記燃料通路に圧力波が発生するが、上記分配配管を伝幡する圧力波と上記燃料噴射弁の燃料導入路を伝幡する圧力波が等しくなる。したがってこれらの圧力波が上記境界域で反射しても上記境界域における燃料の圧力分布は変化しない。この結果、上記燃料通路を流れる燃料の流量が変動せず、上記燃料通路において燃料圧力が脈動することが防止される。
【0007】
請求項2記載の発明によれば、上記流量制御手段を上記分配配管と上記燃料噴射弁の接続部に設けることにより、圧力波の多重反射が発生しにくく燃料圧力の脈動を防止する高い効果が得られる。
【0008】
請求項3記載の発明によれば、上記流量制御手段を上記分配配管と上記燃料噴射弁の境界域の燃料通路に設けたオリフィスで形成することにより、上記燃料通路のうち上記境界域から上記ノズル部までの容積と上記燃料通路の全容積の差の上記全容積に対する比率と、上記オリフィスで制御される燃料の流量の上記燃料噴射弁の上記ノズル部における燃料の流量に対する比率とが等しくなるように設定することが上記オリフィスの径を設定するだけで簡単にできる。
【0009】
請求項4記載の発明によれば、上記オリフィスの上記燃料噴射弁側の出口の周縁部を上記燃料噴射弁側が拡径するテーパ状に形成することにより、上記ノズル部から混入した空気が上記周縁部に案内され上記オリフィスを通過して上記分配配管の方へ逃がすことができる。これにより燃料の噴射不良が防止できる。
【0010】
【発明の実施の形態】
(第1実施形態)
本発明の内燃機関の燃料噴射装置を図1に示す。図1(A)は全体図で、本発明の内燃機関の燃料噴射装置は、内燃機関1にその各気筒ごとに燃料を噴射する燃料噴射弁たるインジェクタ2と、これらに燃料を分配する分配配管たるデリバリパイプ3が付設してある。デリバリパイプ3は上流側が燃料フィルタ6を介して燃料タンク52内の燃料ポンプ51と接続してあり、燃料タンク52の燃料がデリバリパイプ3内に供給されるようになっている。一方デリバリパイプ3の下流側はプレッシャレギュレータ7と接続してあり、燃料ポンプ51から供給される燃料の圧力を一定に保つようになっている。
【0011】
図1(B)はインジェクタ2とデリバリパイプ3の一部の詳細を示す断面図で、デリバリパイプ3壁に接続部たる横穴31が形成してあり、デリバリパイプ3壁の外側の表面には横穴31を囲み円筒上の段部32が設けてある。段部32にはインジェクタ2が嵌合してある。インジェクタ2はデリバリパイプ3から直角方向に立ち上がる略棒状体で、その内部には長手方向に燃料導入路2aが形成してある。燃料導入路2aは、一端がデリバリパイプ3と連通し、他端がインジェクタ2の先端のノズル部21に達している。燃料タンク5から燃料がデリバリパイプ3およびインジェクタ2の燃料導入路2aよりなる燃料通路Pを通ってノズル部21に供給され、ノズル部21から図略の上記気筒の吸気管内に向けて噴射するようになっている。
【0012】
またインジェクタ2は、燃料導入路2aにノズル部21を開閉するノズルニードル22と、これを電動で作動せしめるソレノイド23が設けてある。
【0013】
デリバリパイプ3とインジェクタ2の接続部4は、デリバリパイプ3の横穴31とインジェクタ2の間に空間が形成してあり、そこに本発明の特徴部分である円盤状のオリフィス8Aが設けてある。オリフィス8Aの流通孔81はデリバリパイプ3とインジェクタ2の燃料導入路2aの間の燃料の流通を規制しており、流通孔81の径がオリフィス8Aを通過する燃料の流量をQr 、インジェクタ2のノズル部21から噴射される燃料の流量(噴射流量)をQi 、インジェクタ2の燃料導入路2aの容積とデリバリパイプ3の容積の比率を1:kとして次式(1)を満たすように設定してある。すなわちオリフィス8を通過する燃料の流量Qr のノズル部21から噴射される噴射流量Qi に対する比率がデリバリパイプ3の容積のインジェクタ2の燃料導入管2aおよびデリバリパイプ3の全容積に対する比率と等しくなるように設定している。
Qr /Qi =k/(k+1)………(1)
【0014】
本発明の燃料噴射装置の作動をシミュレーションにより説明する。本発明の燃料噴射装置の作動の説明に先立ち、比較のため図5〜図7に示す従来の燃料噴射装置のシミュレーションの結果について説明する。
【0015】
図5はシミュレーションのモデルとインジェクタのノズル部が開いた後の燃料通路における燃料の圧力分布を示すもので、燃料通路9はインジェクタの燃料導入路(以下、インジェクタ側通路という)92、デリバリパイプ(以下、デリバリパイプ側通路という)94を直列に接続したもので、インジェクタ側通路92の端部にインジェクタのノズル部91が設けてあり、デリバリパイプ側通路94の端部(以下、閉端という)95は閉鎖している。インジェクタ側通路92、デリバリパイプ側通路94は図に示すようにそれぞれ長さがLで等しく、断面積が接続部96を境に異なるようにしてある。インジェクタ側通路92の断面積とデリバリパイプ側通路94の断面積の比率が1:kとしてあり、インジェクタ側通路92の容積とデリバリパイプ側通路94の容積も1:kである。図の(a),(b),(c),(d)はインジェクタ側通路92とデリバリパイプ側通路94の燃料の圧力分布を時間T/4(=L/a、a:燃料中の音速)おきに時系列的に追跡したものである。時間t=0にノズル部21において燃料の噴射(噴射流量Qi =Q0 )が起きると、デリバリパイプ側通路94の方向へ進行する圧力波(負圧)が発生する。圧力波の大きさは、インジェクタ側通路92の断面積をA、燃料密度をρとしてρa×(燃料の流速)であるから次式(2)で表される。
P0 =ρaQ0 /A………(2)
【0016】
図の(a)はノズル部91において燃料の噴射が生じた直後(t=ΔT)の状態で、圧力波がノズル部91から接続部96に向けて音速aで伝幡する。圧力波が接続部96に達すると接続部96における燃料の流量Qr が生じるが、燃料通路の断面積がデリバリパイプ側通路94ではAからkAに拡大するため接続部96における燃料の流量Qr は噴射流量Qi より大きな値となる。接続部96における燃料の流量Qr は次式(3)で表される。これによりデリバリパイプ側通路94を接続部96から閉端95の方向に伝幡する圧力波(負圧)は大きさが変化する。圧力波の大きさP1は次式(4)で表される。
Qr =2kQ0 /(1+k)………(3)
P1 =ρa×{2kQ0 /(1+k)}/kA=2P0 /(1+k)…(4)
【0017】
一方、接続部96における燃料の流量Qr が発生するためインジェクタ側通路92にはノズル部91の噴射流量Qi に対する余剰の流量(Qr −Qi )が生じる。余剰の流量(Qr −Qi )は次式(5)で表される。これにより接続部からノズル部21へ進行する圧力波(正圧)が発生する。圧力波の大きさP2 は、次式(6)で表される。
Qr −Qi =(k−1)Q0 /(1+k)………(5)
P2 =(k−1)P0 /(1+k)………(6)
【0018】
このようにノズル部91で発生した圧力波が、接続部96においてデリバリパイプ側通路94を閉端95の方向へ伝幡する圧力波と、接続部96で反射しインジェクタ側通路92をノズル部91の方向へ伝幡する圧力波に変化する(図の(b)、t=T/4+ΔT)。その一方の圧力波はノズル部91に達するとノズル部91で反射して再び接続部96の方向に伝幡する。多方、デリバリパイプ側通路94を伝幡する圧力波もデリバリパイプ側通路94の閉端95で反射して再び接続部96の方向に伝幡する。(図の(c)、t=T/2+ΔT)。
【0019】
そしてこれら圧力波が接続部96に達すると、その時の燃料の圧力分布はこれら圧力波が発生した時の圧力分布と逆転しており、インジェクタ側通路92の燃料の圧力が高くなる。しかして接続部96における燃料の流量Qr は再び0になる。そして接続部96からノズル部91へ進行する圧力波(負圧)が発生し、インジェクタ側通路92を伝幡する(図の(d)、t=3T/4+ΔT)。この圧力波の大きさはP0 で、ノズル部91に達すると反射して再び接続部96に向けて伝幡する。図の(d)の圧力分布は燃料の圧力が図の(a)の圧力に比して4P0 /(k+1)低いことを除けば図の(a)の状態と同一で、図の(a)、(b)、(c)、(d)が繰り返される。
【0020】
図6は接続部96、ノズル部91における燃料の圧力の経時変化を示すもので、上記のごとく接続部96では圧力波が接続部96で反射をする時間T/2ごとに階段状に低下していき、ノズル部91では周期Tのパルス状の振動を伴いつつ階段状に低下していく。図7は接続部96、ノズル部91における燃料の流量Qr ,Qi を示すもので、ノズル部91において燃料の流量が一定であっても、接続部96では過剰な流量の燃料が流れる期間と、流量が0の期間とが交互に現れる周期Tの振動現象が見られる。この結果、デリバリパイプにおいて燃料の圧力の脈動が生じる。
【0021】
次に本発明の燃料噴射装置の燃料圧力をシミュレーションした結果を図2により説明する。インジェクタ側通路92とデリバリパイプ側通路94の接続部96にオリフィス93を設けたことで接続部96における燃料の流量Qr が上記式(1)に従うことを条件としたものである。オリフィス93以外の条件はすべて図5に示したものと同じである。。図の(a),(b),(c),(d)はインジェクタ側通路92、デリバリパイプ側通路94の燃料の圧力分布を時系列的に追跡したものである。t=0でノズル部91において燃料の噴射(噴射流量Qi =Q0 )が生じると、従来の燃料噴射装置と同様に圧力波(負圧)が発生し、接続部96の方向に伝幡する(図の(a))。
【0022】
圧力波が接続部96に達すると、接続部96において燃料の流量Qr が発生するが燃料の流量Qr はオリフィス93により制御がされてその大きさが次式(7)で表される。これによりデリバリパイプ側通路94を伝幡する圧力波は次式(8)で表される大きさP3に変化する。この圧力波はデリバリパイプ側通路94を閉端95方向へ伝幡する。
Qr =kQ0 /(1+k)………(7)
P3=ρa×{kQ0 /(1+k)}/kA=P0 /(1+k)……(8)
【0023】
一方、インジェクタ側通路92にはノズル部96における噴射流量Qi と接続部96における燃料の流量Qr の差の流量(Qi −Qr )が発生する。差の流量(Qi −Qr )は次式(9)で表される。これにより接続部96からノズル部91の方向へ進行する圧力波(負圧)が発生する。圧力波の大きさP4は、次式(10)で表される。
Qi −Qr =Q0 −Qr =Q0 /(1+k)………(9)
P4=P0 /(1+k)………(10)
【0024】
このようにノズル部91で発生した圧力波が、接続部96においてデリバリパイプ側通路94を閉端95の方向へ伝幡する圧力波と、接続部96で反射しインジェクタ側通路92をノズル部21の方向へ伝幡する圧力波に変化する(図の(b)、t=T/4+ΔT)。これらの圧力波の大きさP1 ,P2 はいずれもP0 /(1+k)である。その一方のデリバリパイプ側通路94を伝幡する圧力波は閉端95で反射して再び接続部96の方向に伝幡する。多方、インジェクタ側通路92を伝幡する圧力波はノズル部91に達すると反射して再び接続部96の方向に伝幡する。(図の(c)、t=T/2+ΔT)。
【0025】
これらの圧力波が接続部96に達した時、燃料の圧力分布はこれらの圧力波が発生した時と同じである。そして再度反射が起きるが、ノズル部91、閉端95で反射した各圧力波は大きさが同じ(P1 =P2 )であるから接続部96における燃料の流量Qr および燃料の圧力に影響を与えない。したがって再度反射が起きた後の圧力波は大きさを保持したまま、それぞれデリバリパイプ側通路94、インジェクタ側通路92を閉端95、ノズル部91に向かって伝幡する(図の(d)、t=3T/4+ΔT)。図の(d)の示す圧力分布は燃料の圧力が図の(b)の燃料の圧力に比してP0 /(k+1)低いことを除けば図の(b)の状態と同一で、図の(b)、(c)が繰り返される。
【0026】
図3は接続部96、ノズル部91における燃料の圧力の経時変化を示すもので、上記のごとくいずれも圧力波が接続部96で反射をする時間T/2ごとに階段状に低下していく。そして1回に低下する大きさは圧力波の大きさを示しており、接続部96、ノズル部91とで同じになっている。図4は接続部96、ノズル部91における燃料の流量を示すもので、接続部96においても圧力波によって燃料の圧力分布が変化しないから燃料の流量が一定に保たれる。この結果、燃料の圧力の脈動が低減できる。
【0027】
(第2実施形態)
図8は別の実施形態を示すもので、基本的には図1の装置と同じである。図中、図1と同一番号を付したものは実質的に同じ作用をするので相違点を中心に説明する。オリフィス8Bをインジェクタ2の燃料導入路2aのややノズル部21側に設けてあり、オリフィス8Bの流通孔82の径を、オリフィス8Bで制御される燃料の流量のノズル部21における燃料の噴射流量に対する比率が、デリバリパイプ3とインジェクタ2の燃料導入路2aよりなる全容積のノズル部21からオリフィス8Bまでの燃料導入路2aの容積の比率となるように設定してある。このようにオリフィス8Bの位置がデリバリパイプ3とインジェクタ2の燃料導入路2aの接続部4ではなく、本実施形態のごとく接続部4に近いデリバリパイプ3とインジェクタ2の燃料導入路2aの境界域であれば燃料の圧力脈動を防止する良好な効果が得られる。
【0028】
(第3実施形態)
図9はさらに別の実施形態を示すもので、基本的には図1の装置と同じであり万一ノズル部21から空気が混入しても燃料の噴射不良が起こらないようにしたものである。図中、図1と同一番号を付したものは実質的に同じ作用をするので相違点を中心に説明する。デリバリパイプ3の横穴31とインジェクタ2の間の空間に設けたオリフィス8Cは肉厚の円型で、流通孔83のインジェクタ2側の出口83aに凹部84が形成してあり、凹部84はインジェクタ2側が拡径したテーパ状をしている。流通孔83の径が第1実施形態の式(1)を満たすように設定してある。
【0029】
本実施形態は燃料の圧力脈動を防止する良好な効果が得られるとともに、ノズル部21より混入した空気がオリフィス8Cの凹部84のテーパ状の表面に案内されて流通孔83からデリバリパイプ3へ抜けるため、空気がインジェクタ2の燃料導入路2aに溜まることがなく燃料の噴射不良が防止される。
【0030】
なお上記各実施形態は流量制御手段を燃料通路に形成したオリフィスで形成したが燃料の流量を制御できるものであれば実施が可能である。
【図面の簡単な説明】
【図1】(A)は本発明の内燃機関の燃料噴射装置の全体概要図であり、(B)は本発明の内燃機関の燃料噴射装置の要部の拡大断面図である。
【図2】本発明の内燃機関の燃料噴射装置の作動を説明する概念図である。
【図3】(A)、(B)は本発明の内燃機関の燃料噴射装置の作動を説明する第1、第2のグラフである。
【図4】(A)、(B)は本発明の内燃機関の燃料噴射装置の作動を説明する第3、第4のグラフである。
【図5】従来の内燃機関の燃料噴射装置の作動を説明する概念図である。
【図6】(A)、(B)は従来の内燃機関の燃料噴射装置の作動を説明する第1、第2のグラフである。
【図7】(A)、(B)は従来の内燃機関の燃料噴射装置の作動を説明する第3、第4のグラフである。
【図8】本発明の別の内燃機関の燃料噴射装置の要部の拡大断面図である。
【図9】本発明の更に別の内燃機関の燃料噴射装置の要部の拡大断面図である。
【符号の説明】
1 内燃機関
2 インジェクタ(燃料噴射弁)
2a 燃料導入路
21 ノズル部
3 デリバリパイプ(分配配管)
4 接続部
8A,8B,8C オリフィス(流量制御手段)
83a 出口
P 燃料通路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection device for an internal combustion engine, and more particularly to a fuel pressure pulsation prevention structure.
[0002]
[Prior art]
Today's internal combustion engines generally have a plurality of cylinders, and a distribution pipe for distributing fuel to the fuel injection valves of each cylinder is provided. In the internal combustion engine provided with the distribution pipe, a water hammer wave generated when the nozzle of the fuel injection valve is opened and closed is transmitted from the fuel introduction path of the fuel injection valve to the distribution pipe, and fuel pressure pulsation is generated in the distribution pipe. The distribution piping mechanically vibrates due to the pulsation of fuel pressure, and this vibration causes engine noise. As a countermeasure, it is conceivable to increase the thickness of the distribution pipe to increase the rigidity and suppress mechanical vibration of the distribution pipe. However, in practice, it is necessary to increase the thickness of the distribution pipe, which is not practical. Therefore, Japanese Utility Model Laid-Open No. 60-3271 provides a movable body that separates the fuel flowing inside the distribution piping wall from the air outside the distribution piping wall, and attaches the movable body to the distribution piping by a spring. An apparatus for preventing fuel pressure pulsation is disclosed. In this fuel pressure pulsation prevention device, the pulsation of the fuel pressure in the distribution pipe is absorbed by the biasing force of the spring, thereby obtaining the effect of preventing the pulsation of the fuel pressure.
[0003]
[Problems to be solved by the invention]
However, the fuel pressure pulsation prevention device described in Japanese Utility Model Laid-Open No. 60-3271 has a structure for preventing fuel leakage because the movable body separates the fuel flowing inside the distribution pipe wall from the atmosphere outside the distribution pipe wall. It is complicated and not necessarily practical.
[0004]
Accordingly, an object of the present invention is to provide a fuel injection device for an internal combustion engine, which is sufficiently effective in preventing pulsation of fuel pressure and has a simple structure.
[0005]
[Means for Solving the Problems]
According to the first aspect of the present invention, a fuel passage is formed by the fuel introduction path of the fuel injection valve and the distribution pipe that distributes the fuel to each fuel injection valve, and the fuel is injected from the nozzle portion at the tip of the fuel introduction path. In the fuel injection device for an internal combustion engine, a flow rate control means for controlling a flow rate of fuel flowing from the distribution pipe to the fuel introduction path is provided in a boundary region between the distribution pipe and the fuel introduction path of the fuel injection valve. The means includes a ratio of a difference between a volume of the fuel passage from the flow control means to the nozzle portion of the fuel injection valve and a total volume of the fuel passage to the total volume, and a fuel controlled by the flow control means. The ratio of the flow rate to the flow rate of fuel injected from the nozzle portion of the fuel injection valve is set to be equal.
[0006]
With this configuration, a pressure wave is generated in the fuel passage by opening and closing the nozzle portion, but the pressure wave transmitted through the distribution pipe is equal to the pressure wave transmitted through the fuel introduction path of the fuel injection valve. . Therefore, even if these pressure waves are reflected from the boundary area, the fuel pressure distribution in the boundary area does not change. As a result, the flow rate of the fuel flowing through the fuel passage does not fluctuate, and the fuel pressure is prevented from pulsating in the fuel passage.
[0007]
According to the second aspect of the present invention, by providing the flow rate control means at the connection portion between the distribution pipe and the fuel injection valve, multiple reflections of pressure waves are unlikely to occur, and a high effect of preventing fuel pressure pulsation can be obtained. can get.
[0008]
According to a third aspect of the present invention, the flow rate control means is formed by an orifice provided in a fuel passage in a boundary region between the distribution pipe and the fuel injection valve, so that the nozzle from the boundary region in the fuel passage is formed. The ratio of the difference between the total volume of the fuel passage and the total volume of the fuel passage to the total volume, and the ratio of the flow rate of fuel controlled by the orifice to the flow rate of fuel in the nozzle portion of the fuel injector It can be easily set by simply setting the diameter of the orifice.
[0009]
According to a fourth aspect of the present invention, the peripheral portion of the outlet on the fuel injection valve side of the orifice is formed in a tapered shape whose diameter is enlarged on the fuel injection valve side, so that air mixed in from the nozzle portion can be It is guided to the part and can pass through the orifice and escape to the distribution pipe. This prevents fuel injection failure.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 shows a fuel injection device for an internal combustion engine according to the present invention. FIG. 1A is an overall view, and a fuel injection device for an internal combustion engine according to the present invention includes an injector 2 that is a fuel injection valve that injects fuel into the internal combustion engine 1 for each cylinder, and a distribution pipe that distributes the fuel to these injectors. A barrel delivery pipe 3 is attached. The delivery pipe 3 is connected to the fuel pump 51 in the fuel tank 52 through the fuel filter 6 on the upstream side, and the fuel in the fuel tank 52 is supplied into the delivery pipe 3. On the other hand, the downstream side of the delivery pipe 3 is connected to the pressure regulator 7 so that the pressure of the fuel supplied from the fuel pump 51 is kept constant.
[0011]
FIG. 1B is a cross-sectional view showing details of a portion of the injector 2 and the delivery pipe 3, in which a lateral hole 31 that is a connecting portion is formed on the wall of the delivery pipe 3, and a lateral hole is formed on the outer surface of the delivery pipe 3 wall. A stepped portion 32 on a cylinder is provided. The injector 2 is fitted to the stepped portion 32. The injector 2 is a substantially rod-like body that rises in a direction perpendicular to the delivery pipe 3, and a fuel introduction path 2a is formed in the inside thereof in the longitudinal direction. One end of the fuel introduction path 2 a communicates with the delivery pipe 3, and the other end reaches the nozzle portion 21 at the tip of the injector 2. Fuel is supplied from the fuel tank 5 to the nozzle portion 21 through the fuel passage P including the delivery pipe 3 and the fuel introduction passage 2a of the injector 2, and is injected from the nozzle portion 21 into the intake pipe of the cylinder (not shown). It has become.
[0012]
The injector 2 is provided with a nozzle needle 22 for opening and closing the nozzle portion 21 in the fuel introduction path 2a and a solenoid 23 for operating the nozzle needle 22 electrically.
[0013]
In the connecting portion 4 between the delivery pipe 3 and the injector 2, a space is formed between the lateral hole 31 of the delivery pipe 3 and the injector 2, and a disc-shaped orifice 8A, which is a characteristic part of the present invention, is provided there. The flow hole 81 of the orifice 8A regulates the flow of fuel between the delivery pipe 3 and the fuel introduction path 2a of the injector 2. The flow hole 81 has a diameter Qr which indicates the flow rate of fuel passing through the orifice 8A. The flow rate (injection flow rate) of the fuel injected from the nozzle unit 21 is set to Qi, and the ratio of the volume of the fuel introduction path 2a of the injector 2 to the volume of the delivery pipe 3 is set to 1: k so as to satisfy the following formula (1). It is. That is, the ratio of the flow rate Qr of the fuel passing through the orifice 8 to the injection flow rate Qi injected from the nozzle portion 21 is equal to the ratio of the volume of the delivery pipe 3 to the total volume of the fuel introduction pipe 2a of the injector 2 and the delivery pipe 3. Is set.
Qr / Qi = k / (k + 1) (1)
[0014]
The operation of the fuel injection device of the present invention will be described by simulation. Prior to the description of the operation of the fuel injection device of the present invention, the result of simulation of the conventional fuel injection device shown in FIGS. 5 to 7 will be described for comparison.
[0015]
FIG. 5 shows a simulation model and the fuel pressure distribution in the fuel passage after the injector nozzle is opened. The fuel passage 9 includes an injector fuel introduction passage (hereinafter referred to as an injector side passage) 92, a delivery pipe ( (Hereinafter referred to as delivery pipe side passage) 94 is connected in series, and the nozzle portion 91 of the injector is provided at the end portion of the injector side passage 92, and the end portion of the delivery pipe side passage 94 (hereinafter referred to as the closed end). 95 is closed. As shown in the drawing, the injector side passage 92 and the delivery pipe side passage 94 have the same length L, and the cross-sectional areas are different from each other at the connection portion 96. The ratio of the cross-sectional area of the injector-side passage 92 to the cross-sectional area of the delivery pipe-side passage 94 is 1: k, and the volume of the injector-side passage 92 and the volume of the delivery pipe-side passage 94 is also 1: k. (A), (b), (c), and (d) of FIG. 5 show the fuel pressure distribution in the injector side passage 92 and the delivery pipe side passage 94 for time T / 4 (= L / a, a: speed of sound in the fuel. ) Every other time tracked. When fuel injection (injection flow rate Qi = Q0) occurs at the nozzle portion 21 at time t = 0, a pressure wave (negative pressure) traveling in the direction of the delivery pipe side passage 94 is generated. The magnitude of the pressure wave is expressed by the following equation (2) because ρa × (fuel flow velocity) where A is the cross-sectional area of the injector side passage 92 and ρ is the fuel density.
P0 = ρaQ0 / A (2)
[0016]
(A) of a figure is a state immediately after fuel injection in the nozzle part 91 (t = (DELTA) T), and a pressure wave is transmitted from the nozzle part 91 toward the connection part 96 at the speed of sound a. When the pressure wave reaches the connection portion 96, a fuel flow rate Qr is generated in the connection portion 96. However, since the cross-sectional area of the fuel passage increases from A to kA in the delivery pipe side passage 94, the fuel flow rate Qr in the connection portion 96 is injected. The value is larger than the flow rate Qi. The fuel flow rate Qr at the connecting portion 96 is expressed by the following equation (3). As a result, the magnitude of the pressure wave (negative pressure) that propagates the delivery pipe side passage 94 in the direction from the connecting portion 96 to the closed end 95 changes. The magnitude P1 of the pressure wave is expressed by the following equation (4).
Qr = 2kQ0 / (1 + k) (3)
P1 = ρa × {2kQ0 / (1 + k)} / kA = 2P0 / (1 + k) (4)
[0017]
On the other hand, since a fuel flow rate Qr is generated in the connecting portion 96, an excessive flow rate (Qr-Qi) with respect to the injection flow rate Qi of the nozzle portion 91 is generated in the injector side passage 92. The surplus flow rate (Qr-Qi) is expressed by the following equation (5). As a result, a pressure wave (positive pressure) traveling from the connecting portion to the nozzle portion 21 is generated. The pressure wave magnitude P2 is expressed by the following equation (6).
Qr-Qi = (k-1) Q0 / (1 + k) (5)
P2 = (k-1) P0 / (1 + k) (6)
[0018]
The pressure wave generated in the nozzle portion 91 in this way is transmitted through the delivery pipe side passage 94 in the direction of the closed end 95 at the connection portion 96 and reflected by the connection portion 96 to cause the injector side passage 92 to pass through the nozzle portion 91. It changes to a pressure wave transmitted in the direction of ((b) in the figure, t = T / 4 + ΔT). When one pressure wave reaches the nozzle part 91, it is reflected by the nozzle part 91 and propagates again in the direction of the connection part 96. In many cases, the pressure wave transmitted through the delivery pipe side passage 94 is also reflected by the closed end 95 of the delivery pipe side passage 94 and transmitted again in the direction of the connection portion 96. ((C) in the figure, t = T / 2 + ΔT).
[0019]
When these pressure waves reach the connecting portion 96, the fuel pressure distribution at that time is reversed from the pressure distribution when these pressure waves are generated, and the fuel pressure in the injector-side passage 92 becomes higher. Accordingly, the fuel flow rate Qr at the connection portion 96 becomes 0 again. Then, a pressure wave (negative pressure) traveling from the connecting portion 96 to the nozzle portion 91 is generated and propagates through the injector side passage 92 ((d) in the figure, t = 3T / 4 + ΔT). The magnitude of this pressure wave is P 0, and when it reaches the nozzle portion 91, it is reflected and propagates again toward the connecting portion 96. The pressure distribution in (d) in the figure is the same as that in (a) in the figure except that the fuel pressure is 4P0 / (k + 1) lower than the pressure in (a). , (B), (c), (d) are repeated.
[0020]
FIG. 6 shows the change over time in the fuel pressure at the connecting part 96 and the nozzle part 91. As described above, the connecting part 96 decreases in a stepped manner at every time T / 2 when the pressure wave is reflected at the connecting part 96. The nozzle portion 91 gradually decreases in a stepped manner with a pulse-like vibration having a period T. FIG. 7 shows the flow rates Qr and Qi of the fuel in the connection portion 96 and the nozzle portion 91. Even when the fuel flow rate is constant in the nozzle portion 91, a period during which an excessive flow rate of fuel flows in the connection portion 96; A vibration phenomenon with a period T in which the flow rate is alternately alternating with the period of 0 can be seen. As a result, fuel pressure pulsation occurs in the delivery pipe.
[0021]
Next, the result of simulating the fuel pressure of the fuel injection device of the present invention will be described with reference to FIG. By providing the orifice 93 at the connection portion 96 between the injector side passage 92 and the delivery pipe side passage 94, the fuel flow rate Qr at the connection portion 96 is in accordance with the above equation (1). All the conditions other than the orifice 93 are the same as those shown in FIG. . (A), (b), (c), and (d) in the figure follow the pressure distribution of the fuel in the injector side passage 92 and the delivery pipe side passage 94 in time series. When fuel injection (injection flow rate Qi = Q0) occurs at the nozzle portion 91 at t = 0, a pressure wave (negative pressure) is generated as in the conventional fuel injection device, and is transmitted in the direction of the connecting portion 96 ( (A) in the figure).
[0022]
When the pressure wave reaches the connection portion 96, a fuel flow rate Qr is generated at the connection portion 96. The fuel flow rate Qr is controlled by the orifice 93, and the magnitude thereof is expressed by the following equation (7). As a result, the pressure wave transmitted through the delivery pipe side passage 94 changes to a size P3 expressed by the following equation (8). This pressure wave propagates in the delivery pipe side passage 94 toward the closed end 95.
Qr = kQ0 / (1 + k) (7)
P3 = ρa × {kQ0 / (1 + k)} / kA = P0 / (1 + k) (8)
[0023]
On the other hand, a flow rate (Qi−Qr) of the difference between the injection flow rate Qi at the nozzle portion 96 and the fuel flow rate Qr at the connection portion 96 is generated in the injector side passage 92. The difference flow rate (Qi-Qr) is expressed by the following equation (9). As a result, a pressure wave (negative pressure) traveling from the connecting portion 96 toward the nozzle portion 91 is generated. The magnitude P4 of the pressure wave is expressed by the following equation (10).
Qi-Qr = Q0-Qr = Q0 / (1 + k) (9)
P4 = P0 / (1 + k) (10)
[0024]
The pressure wave generated in the nozzle portion 91 in this way is transmitted through the delivery pipe side passage 94 in the direction of the closed end 95 at the connection portion 96 and reflected by the connection portion 96 to cause the injector side passage 92 to pass through the nozzle portion 21. It changes to a pressure wave transmitted in the direction of ((b) in the figure, t = T / 4 + ΔT). The magnitudes P1 and P2 of these pressure waves are both P0 / (1 + k). The pressure wave transmitted through one delivery pipe side passage 94 is reflected by the closed end 95 and transmitted again in the direction of the connecting portion 96. In many cases, the pressure wave transmitted through the injector-side passage 92 is reflected when reaching the nozzle portion 91 and is transmitted again in the direction of the connecting portion 96. ((C) in the figure, t = T / 2 + ΔT).
[0025]
When these pressure waves reach the connection 96, the fuel pressure distribution is the same as when these pressure waves are generated. Reflection occurs again, but the pressure waves reflected by the nozzle portion 91 and the closed end 95 have the same magnitude (P1 = P2), and therefore do not affect the fuel flow rate Qr and the fuel pressure at the connection portion 96. . Accordingly, the pressure wave after the reflection again occurs, while maintaining the magnitude, is transmitted through the delivery pipe side passage 94 and the injector side passage 92 toward the closed end 95 and the nozzle portion 91 ((d) in the figure, t = 3T / 4 + ΔT). The pressure distribution shown in (d) of the figure is the same as the state of (b) in the figure except that the fuel pressure is P0 / (k + 1) lower than the fuel pressure in (b). (B) and (c) are repeated.
[0026]
FIG. 3 shows the change over time in the fuel pressure at the connection part 96 and the nozzle part 91. As described above, both decrease in a stepped manner at every time T / 2 when the pressure wave is reflected at the connection part 96. . And the magnitude | size which falls at once has shown the magnitude | size of the pressure wave, and is the same with the connection part 96 and the nozzle part 91. FIG. FIG. 4 shows the flow rate of fuel in the connecting portion 96 and the nozzle portion 91. In the connecting portion 96, the fuel pressure distribution is not changed by the pressure wave, so that the fuel flow rate is kept constant. As a result, fuel pressure pulsation can be reduced.
[0027]
(Second Embodiment)
FIG. 8 shows another embodiment, which is basically the same as the apparatus of FIG. In the figure, the same reference numerals as those in FIG. 1 have substantially the same function, so that the differences will be mainly described. The orifice 8B is provided slightly on the nozzle portion 21 side of the fuel introduction path 2a of the injector 2, and the diameter of the flow hole 82 of the orifice 8B is set to the fuel injection flow rate in the nozzle portion 21 of the fuel flow rate controlled by the orifice 8B. The ratio is set so as to be the ratio of the volume of the fuel introduction path 2a from the nozzle portion 21 of the entire volume consisting of the delivery pipe 3 and the fuel introduction path 2a of the injector 2 to the orifice 8B. Thus, the position of the orifice 8B is not the connection part 4 between the delivery pipe 3 and the fuel introduction path 2a of the injector 2, but the boundary area between the delivery pipe 3 and the fuel introduction path 2a of the injector 2 as in this embodiment. Then, the favorable effect which prevents the pressure pulsation of a fuel is acquired.
[0028]
(Third embodiment)
FIG. 9 shows still another embodiment, which is basically the same as the apparatus of FIG. 1, and prevents fuel injection failure even if air is mixed from the nozzle portion 21. . In the figure, the same reference numerals as those in FIG. 1 have substantially the same function, so that the differences will be mainly described. The orifice 8C provided in the space between the horizontal hole 31 of the delivery pipe 3 and the injector 2 is a thick circular shape, and a recess 84 is formed at the outlet 83a on the injector 2 side of the flow hole 83, and the recess 84 is formed in the injector 2. The side is tapered with its diameter expanded. The diameter of the flow hole 83 is set so as to satisfy the expression (1) of the first embodiment.
[0029]
In the present embodiment, a good effect of preventing the pressure pulsation of the fuel is obtained, and air mixed from the nozzle portion 21 is guided to the tapered surface of the concave portion 84 of the orifice 8C and escapes from the circulation hole 83 to the delivery pipe 3. Therefore, air does not accumulate in the fuel introduction path 2a of the injector 2, and fuel injection failure is prevented.
[0030]
In each of the above embodiments, the flow rate control means is formed by an orifice formed in the fuel passage, but can be implemented as long as the flow rate of the fuel can be controlled.
[Brief description of the drawings]
FIG. 1A is an overall schematic diagram of a fuel injection device for an internal combustion engine according to the present invention, and FIG. 1B is an enlarged cross-sectional view of a main part of the fuel injection device for an internal combustion engine according to the present invention.
FIG. 2 is a conceptual diagram illustrating the operation of a fuel injection device for an internal combustion engine according to the present invention.
FIGS. 3A and 3B are first and second graphs for explaining the operation of a fuel injection device for an internal combustion engine according to the present invention. FIGS.
4A and 4B are third and fourth graphs for explaining the operation of the fuel injection device for the internal combustion engine of the present invention. FIG.
FIG. 5 is a conceptual diagram illustrating the operation of a conventional fuel injection device for an internal combustion engine.
FIGS. 6A and 6B are first and second graphs for explaining the operation of a conventional fuel injection device for an internal combustion engine. FIGS.
7A and 7B are third and fourth graphs for explaining the operation of a conventional fuel injection device for an internal combustion engine.
FIG. 8 is an enlarged cross-sectional view of a main part of another fuel injection device for an internal combustion engine according to the present invention.
FIG. 9 is an enlarged cross-sectional view of a main part of a fuel injection device for still another internal combustion engine of the present invention.
[Explanation of symbols]
1 Internal combustion engine 2 Injector (fuel injection valve)
2a Fuel introduction path 21 Nozzle part 3 Delivery pipe (distribution pipe)
4 Connection 8A, 8B, 8C Orifice (flow rate control means)
83a Exit P Fuel passage

Claims (4)

内燃機関の複数の気筒のそれぞれに燃料噴射弁を設け、供給される燃料を各燃料噴射弁に分配する分配配管を設け、上記燃料を上記分配配管から上記燃料噴射弁の燃料導入路を経て該燃料導入路の先端のノズル部に輸送し、該ノズル部から上記燃料が噴射される内燃機関の燃料噴射装置において、上記分配配管および上記燃料導入路よりなる燃料通路の途中であって上記分配配管と上記燃料導入路の境界域に上記分配配管から上記燃料導入路へ流れる燃料の流量を制御する流量制御手段を設け、該流量制御手段は、上記燃料通路のうち上記流量制御手段から上記燃料噴射弁の上記ノズル部までの容積と上記燃料通路の全容積の差の上記全容積に対する比率と、上記流量制御手段で制御される燃料の流量の上記燃料噴射弁の上記ノズル部から噴射される燃料の流量に対する比率とが等しくなるように設定したことを特徴とする内燃機関の燃料噴射装置。A fuel injection valve is provided in each of the plurality of cylinders of the internal combustion engine, a distribution pipe for distributing the supplied fuel to each fuel injection valve is provided, and the fuel is supplied from the distribution pipe to the fuel injection path of the fuel injection valve. In a fuel injection device for an internal combustion engine that is transported to a nozzle portion at the tip of a fuel introduction path and injects the fuel from the nozzle portion, the distribution pipe is in the middle of a fuel passage formed by the distribution pipe and the fuel introduction path. And a flow rate control means for controlling the flow rate of the fuel flowing from the distribution pipe to the fuel introduction path at a boundary region between the fuel introduction path and the flow rate control means from the flow rate control means in the fuel passage. a ratio of the total volume of the difference of the total volume of the volume and the fuel passage to the nozzle portion of the valve, injection from the nozzle portion of the flow rate of the fuel injection valve of the fuel which is controlled by the flow control means The fuel injection system for an internal combustion engine, characterized in that set so that the ratio becomes equal to the fuel to the flow rate to be. 請求項1記載の内燃機関の燃料噴射装置において、上記流量制御手段を上記境界域の上記分配配管と上記燃料噴射弁の接続部に設けた内燃機関の燃料噴射装置。  2. The fuel injection device for an internal combustion engine according to claim 1, wherein the flow rate control means is provided at a connection portion between the distribution pipe and the fuel injection valve in the boundary region. 請求項1または2いずれかに記載の内燃機関の燃料噴射装置において、上記流量制御手段を上記分配配管と上記燃料噴射弁の境界域の燃料通路に設けたオリフィスで形成した内燃機関の燃料噴射装置。  3. The fuel injection device for an internal combustion engine according to claim 1, wherein the flow rate control means is formed by an orifice provided in a fuel passage in a boundary region between the distribution pipe and the fuel injection valve. . 請求項3記載の内燃機関の燃料噴射装置において、上記オリフィスの上記燃料噴射弁側の出口の周縁部を上記燃料噴射弁側が拡径するテーパ状に形成した内燃機関の燃料噴射装置。  4. The fuel injection device for an internal combustion engine according to claim 3, wherein a peripheral portion of the outlet of the orifice on the fuel injection valve side is formed in a tapered shape with a diameter increasing on the fuel injection valve side.
JP08582296A 1996-03-14 1996-03-14 Fuel injection device for internal combustion engine Expired - Lifetime JP3831970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08582296A JP3831970B2 (en) 1996-03-14 1996-03-14 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08582296A JP3831970B2 (en) 1996-03-14 1996-03-14 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH09250412A JPH09250412A (en) 1997-09-22
JP3831970B2 true JP3831970B2 (en) 2006-10-11

Family

ID=13869555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08582296A Expired - Lifetime JP3831970B2 (en) 1996-03-14 1996-03-14 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3831970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007049357A1 (en) * 2007-10-15 2009-04-16 Robert Bosch Gmbh Fuel injection device
DE102012220491A1 (en) * 2012-11-09 2014-05-15 Robert Bosch Gmbh Fuel injection valve and fuel injection system with a fuel injection valve

Also Published As

Publication number Publication date
JPH09250412A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
RU2490483C2 (en) Fuel dosing device
JPS63147967A (en) Fuel injection system
US4211191A (en) Fuel supplying device for internal combustion engine
JP3831970B2 (en) Fuel injection device for internal combustion engine
JPS6060009B2 (en) Intake system for multi-cylinder internal combustion engine
US4467774A (en) Apparatus for recirculating the exhaust gas of an internal combustion engine
US4608948A (en) Air intake device of an internal combustion engine
JP3542211B2 (en) Accumulation type fuel injection device
JP3395371B2 (en) Fuel injection device
JP4076685B2 (en) Engine fuel supply system
JP3873235B2 (en) Flow limiter
JP2789872B2 (en) Fuel injection device for onboard internal combustion engine
JP2549383B2 (en) Engine intake system
JP2873104B2 (en) Gas engine fuel supply system
JPS6032376Y2 (en) Internal combustion engine intake system with air flow meter
JP2002537516A (en) Metering unit for metering liquids or gases
JP3552457B2 (en) Merging device
JPH0510224A (en) Internal combustion engine equipped with fuel injection valve device
KR200155325Y1 (en) Air control duct of intake pipe
JPS6030471Y2 (en) Fuel injection engine intake system
JP2514944Y2 (en) Fuel injector
JPH089369Y2 (en) Secondary air supply device for internal combustion engine
JPS60113066A (en) Fuel supply device in internal-combustion engine
JP2000192819A (en) Fuel injection device for multicylinder internal combustion engine
JPS6267271A (en) Exhaust gas reflux device for engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060710

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090728

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100728

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130728

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term