JP3830063B2 - Optical axis compensator - Google Patents

Optical axis compensator Download PDF

Info

Publication number
JP3830063B2
JP3830063B2 JP26924497A JP26924497A JP3830063B2 JP 3830063 B2 JP3830063 B2 JP 3830063B2 JP 26924497 A JP26924497 A JP 26924497A JP 26924497 A JP26924497 A JP 26924497A JP 3830063 B2 JP3830063 B2 JP 3830063B2
Authority
JP
Japan
Prior art keywords
optical axis
laser beam
optical system
beam irradiation
correction unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26924497A
Other languages
Japanese (ja)
Other versions
JPH1194551A (en
Inventor
文夫 大友
純一 古平
一毅 大佛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP26924497A priority Critical patent/JP3830063B2/en
Publication of JPH1194551A publication Critical patent/JPH1194551A/en
Application granted granted Critical
Publication of JP3830063B2 publication Critical patent/JP3830063B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水平或は鉛直或は所定角度の基準面を形成する測量機、測定機に用いられる光軸補償装置に関するものである。
【0002】
【従来の技術】
従来基準面を形成する測量機、測定機に於いて光軸を自動補償するものの中には液体の形成する絶対水平面を利用した液面反射方式の光軸補償装置、或は傾斜に対応した液体の傾斜により楔形の変化を利用した液体透過方式の光軸自動補償装置があった。
【0003】
図4に於いて、従来の液面反射方式の光軸補償装置について説明する。
【0004】
図中1は測定機等機器の本体に設けられた液体封入容器であり、該液体封入容器1に封入された透明液体によって自由液面2が形成されている。又、該自由液面2には光源3から発した光束がコリメートレンズ4を介して所要の角度で投射され、投射された光束は前記自由液面2により全反射される様になっている。該自由液面2により反射された光束は反射鏡11により鉛直方向に反射される様になっている。
【0005】
前記自由液面2は測定機本体の傾斜に拘らず水平面であり、測定機本体、即ち液体封入容器1が傾斜することで前記光束の自由液面2への入射角が変化し、この入射角の変化は液体封入容器1の傾斜により一義的に決定され、更に自由液面2での反射角は入射角により一義的に決定される。従って、反射光束の光軸上に光学部材5,6から成るアナモフィック光学系7及び凸レンズ8,9から成るビームエキスパンダ10を配することにより反射光束の光軸を補正することで常に鉛直な反射光軸が得られる。
【0006】
この鉛直な反射光を利用して鉛直基準線、水平基準線が得られ、或は水平基準線を回転させて水平基準面が形成される。
【0007】
【発明が解決しようとする課題】
上記した光軸補償装置では光軸の自動補償は液面の傾斜と光学系によっている為、補償精度及び光学的制約等から補償範囲が極めて狭く精々10分程度の角度補償しかできなかった。従って、測定機本体の傾斜を自動補償可能な範囲迄予め手作業で補正しておかなければならず、更に後発的な理由により自動補償可能な範囲を越えた場合はその都度手作業で修正しなければならないという不便さがあり、煩雑であると共に作業性が悪いという問題があった。
【0008】
本発明は斯かる実情に鑑み、高精度の複雑な機構及び制御装置を必要とせず、光学系による補償可能な範囲を越えた範囲迄自動的に補償できる光軸補償装置を提供しようとするものである。
【0009】
【課題を解決するための手段】
本発明は、自由液面を形成する透明液体を封入した液体封入容器に所定の角度で光束を入射させると共に前記自由液面で反射させ、入射光軸に対する前記自由液面の角度変化に基づく反射射出光軸の変化により光軸補償を行う光軸補正部と、該光軸補正部を具備し補償された光束を照射するレーザ光線照射光学系と、該レーザ光線照射光学系を2軸方向に傾動自在に支持するジンバル機構と、前記レーザ光線照射光学系に設けられた振動減衰器とを有し、前記レーザ光線照射光学系は傾動中心より下方に重心を有し、重力の作用で水平姿勢を保持し、前記光軸補正部は保持された姿勢で前記光軸補償を行う光軸補償装置に係り、又前記レーザ光線照射光学系は、補償された光束を鉛直方向に偏向した後、水平方向に偏向して照射する光軸補償装置に係るものである。
【0010】
光軸補償装置を具備する装置本体が傾斜すると、レーザ光線照射光学系が重力の作用により装置本体に対して水平又は略水平に相対変位し、光軸補償装置の光軸補正部が光軸を光学的に補正する。
【0011】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態を説明する。
【0012】
図1で示される光軸補償装置は、支持機構部12、レーザ光線照射光学系13から主に構成されている。
【0013】
先ず、支持機構部12について説明する。
【0014】
装置本体(図示せず)に外枠15を固定し、該外枠15に第1軸16を介して内枠17を回転自在に設け、該内枠17に前記第1軸16の軸心と直交する軸心を有する第2軸18からなるジンバル機構を介して前記レーザ光線照射光学系13を回転自在に設ける。
【0015】
前記レーザ光線照射光学系13からは鉛直下方に垂軸19が設けられ、該垂軸19の下端に揺動球面板21を固着する。該揺動球面板21は球面の一部を円形に切取った形状をし、該揺動球面板21は錘として機能し、前記レーザ光線照射光学系13の重心位置は前記第1軸16、第2軸18の下方に位置する。而して、前記レーザ光線照射光学系13は前記第1軸16、第2軸18により水平2軸方向に自在に傾動し得るので、重力の作用で常時同じ姿勢、即ち水平状態に維持される。
【0016】
前記揺動球面板21の揺れを制御する為、適宜な間隔を設け、上下に上固定球面板22及び下固定球面板23を配置する。前記上固定球面板22は固定部材24により、前記下固定球面板23は固定部材25によりそれぞれ装置本体に固定される。前記上固定球面板22の中央には前記垂軸19が遊貫する逃孔26が穿設されており、前記垂軸19は前記逃孔26の範囲内で自在に揺動可能となっている。
【0017】
前記上固定球面板22、下固定球面板23は磁石或は電磁コイルとなっており、上固定球面板22と下固定球面板23との間には磁場或は電場が形成されている。前記揺動球面板21は磁性体或は電磁コイルであり、前記揺動球面板21が上固定球面板22、下固定球面板23との間を移動した場合に移動速度に比例した抵抗が発生する様になっている。而して、揺動球面板21、上固定球面板22、下固定球面板23は振動減衰器27を構成する。
【0018】
次に、前記レーザ光線照射光学系13について説明する。
【0019】
該レーザ光線照射光学系13は光軸補正部30とレーザ光線射出部31から成り、前記光軸補正部30は逆V字状の光路を有すると共に前記レーザ光線射出部31は鉛直方向の光軸を有している。
【0020】
前記逆V字状の光路は補正部ブロック32の内部に形成され、上部に液体封入容器1が形成され、該液体封入容器1内部には自由液面2を形成する透明液体14が封入されている。
【0021】
前記液体封入容器1は略逆3角形状であり、一方の斜面には入射窓33が設けられ、他方の斜面には射出窓34が設けられ、前記入射窓33を通して前記自由液面2に斜め下方からレーザ光線を入射させる光源ユニット35が設けられている。
【0022】
該光源ユニット35は投射光軸上に位置する光源3、コリメートレンズ4を具備し、該コリメートレンズ4はレンズホルダ36に保持され、前記補正部ブロック32に取付けられる。
【0023】
該レンズホルダ36は球面部37と該球面部37の周囲に広がるフランジ部38を具備し、前記球面部37は前記補正部ブロック32に形成された円錐凹部39に当接し、前記レンズホルダ36は前記球面部37を中心に自在に傾動可能となっている。前記レンズホルダ36は固定板40を介して前記補正部ブロック32に取付けられる。前記固定板40は固定螺子41により前記補正部ブロック32に固定されている。前記固定板40には前記フランジ部38を押す押し螺子42が螺着している。前記球面部37を円錐凹部39に当接させた状態を維持し、前記固定螺子41をいくらか緩め、押し螺子42を調整することにより前記コリメートレンズ4の光軸の角度の調整が可能となっている。
【0024】
前記光源3は光源ホルダ43に保持され、前記レンズホルダ36に嵌合固着される。
【0025】
前記自由液面2で反射され、前記射出窓34より射出する反射レーザ光線の反射光軸上に楔プリズム44,45から成るアナモフィック光学系46が設けられると共に該アナモフィック光学系46を透過したレーザ光線を鉛直方向に反射する反射鏡47が設けられ、該反射鏡47で反射されたレーザ光線の射出光軸上に凸レンズ48,49から成るビームエキスパンダ50が設けられている。
【0026】
前記レーザ光線射出部31は前記ビームエキスパンダ50の射出側に連接される。前記ビームエキスパンダ50と同軸のレーザ光線射出部鏡筒52が前記補正部ブロック32に固着され、前記レーザ光線射出部鏡筒52に回動ブロック53が軸受54を介して回転自在に設けられている。前記回動ブロック53には従動ギア55が固着されていると共にレーザ光線の射出光軸を水平方向に変向するペンタプリズム56が設けられている。
【0027】
前記レーザ光線射出部鏡筒52にモータ支持金具57を介して回動モータ58が取付けられ、該回動モータ58の出力軸に嵌着した駆動ギア59は前記従動ギア55と噛合している。而して、前記回動モータ58を駆動することで前記駆動ギア59、従動ギア55を介して前記回動ブロック53が鉛直軸心を中心に回転する様になっている。
【0028】
以下、作動を説明する。
【0029】
光軸補償装置が設けられている測量機、即ち全構成が傾斜すると前記レーザ光線照射光学系13は前記第1軸16の軸心と前記第2軸18の軸心の交点Oを中心に自在に揺動可能であり、且レーザ光線照射光学系13の重心は前記交点Oより下方にあるので、レーザ光線照射光学系13は前記全構成の傾斜に拘らず常に水平となる。
【0030】
又、前記振動減衰器27はレーザ光線照射光学系13の揺動を抑制し、早期に停止させ、該レーザ光線照射光学系13を安定させる。前記レーザ光線照射光学系13は支持機構部12により常時水平になる様支持されるが、前記第1軸16の支持部、第2軸18の支持部には僅かながら摩擦抵抗があり、この摩擦抵抗の為精度の高い水平は得にくい。この為僅かに傾斜が残るが、この傾斜は前記透明液体14を利用した前記光軸補正部30の自動補償の範囲内となる。レーザ光線射出部31の光軸は光学的に鉛直に補正され、更にペンタプリズム56により水平方向に変更される。而して、前記レーザ光線射出部31から照射されるレーザ光線は水平となる。前記回動モータ58を駆動して前記ペンタプリズム56を回転し、照射しているレーザ光線を回転することで水平基準面が形成される。
【0031】
尚、上記実施の形態は液体自由液面反射式の光軸補償装置について説明したが図3に示す様な、液体の楔形状変化を利用した透過型の光軸補償装置に於いても実施が可能である。
【0032】
液体封入容器1は自由液面2を挾み対向する位置に入射窓33、射出窓34を有し、光源3から射出されたレーザ光線は、前記入射窓33、透明液体14、射出窓34を透過して射出されていく。前記液体封入容器1が傾斜すると前記自由液面2が液体封入容器1に対して相対的に傾斜し、透明液体14は楔形状となり自由液面2を射出する光軸に偏差が生じ、この光軸の偏差を利用して光軸補償が行われる。
【0033】
尚、上記実施の形態ではレーザ光線照射光学系13をジンバル構造の支持機構部12により支持したが、レーザ光線照射光学系13を摩擦抵抗の少ない球面軸受で支持してもよく、或はピボット軸受で支持する等の様に、一点で支持する様にしてもよい。
【0034】
【発明の効果】
以上述べた如く本発明によれば、光学系の光軸補償を支持機構部により水平又は略水平に保持する様にしたので、光学系の光軸補償を大きく越える範囲迄自動補償が可能となり、而も支持機構部は簡単な構造で高精度を要求する構造、部品が存在しないので、安価で而も耐久性が高いという優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す立断面図である。
【図2】同前本発明の実施の形態を示す側面図である。
【図3】本発明の他の実施の形態の部分断面図である。
【図4】自由液面を利用した光軸補償装置の説明図である。
【符号の説明】
1 液体封入容器
2 自由液面
3 光源
7 アナモフィック光学系
10 ビームエキスパンダ
11 反射鏡
12 支持機構部
13 レーザ光線照射光学系
21 揺動球面板
22 上固定球面板
23 下固定球面板
27 振動減衰器
30 光軸補正部
31 レーザ光線射出部
35 光源ユニット
46 アナモフィック光学系
56 ペンタプリズム
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surveying instrument that forms a reference plane of horizontal, vertical, or a predetermined angle, and an optical axis compensator used in the measuring instrument.
[0002]
[Prior art]
Among conventional surveying instruments that form a reference surface, and those that automatically compensate the optical axis, a liquid surface reflection type optical axis compensator using an absolute horizontal plane formed by the liquid, or a liquid that supports tilt There is a liquid transmission type automatic optical axis compensator using a wedge shape change due to the inclination of the optical axis.
[0003]
With reference to FIG. 4, a conventional liquid surface reflection type optical axis compensator will be described.
[0004]
In the figure, 1 is a liquid enclosure provided in the main body of a measuring instrument or the like, and a free liquid level 2 is formed by the transparent liquid enclosed in the liquid enclosure 1. Further, a light beam emitted from the light source 3 is projected onto the free liquid surface 2 through a collimator lens 4 at a required angle, and the projected light beam is totally reflected by the free liquid surface 2. The light beam reflected by the free liquid surface 2 is reflected by the reflecting mirror 11 in the vertical direction.
[0005]
The free liquid surface 2 is a horizontal plane regardless of the inclination of the measuring machine main body, and the incident angle of the light flux on the free liquid surface 2 changes as the measuring machine main body, that is, the liquid enclosure 1 is inclined. Is uniquely determined by the inclination of the liquid enclosure 1 and the reflection angle at the free liquid surface 2 is uniquely determined by the incident angle. Accordingly, the anamorphic optical system 7 including the optical members 5 and 6 and the beam expander 10 including the convex lenses 8 and 9 are disposed on the optical axis of the reflected light beam, thereby correcting the optical axis of the reflected light beam so that vertical reflection is always performed. An optical axis is obtained.
[0006]
A vertical reference line and a horizontal reference line are obtained by using this vertical reflected light, or a horizontal reference plane is formed by rotating the horizontal reference line.
[0007]
[Problems to be solved by the invention]
In the optical axis compensator described above, automatic compensation of the optical axis depends on the inclination of the liquid surface and the optical system, so that the compensation range is extremely narrow due to the compensation accuracy and optical restrictions, and only angle compensation of about 10 minutes can be performed. Therefore, it is necessary to manually correct the tilt of the measuring instrument to the extent that it can be automatically compensated, and if it exceeds the range that can be automatically compensated for later reasons, it must be corrected manually each time. There is an inconvenience that it has to be, there is a problem that it is cumbersome and workability is poor.
[0008]
SUMMARY OF THE INVENTION In view of such circumstances, the present invention aims to provide an optical axis compensator that can automatically compensate up to a range beyond the range that can be compensated by an optical system without requiring a complicated mechanism and control device with high accuracy. It is.
[0009]
[Means for Solving the Problems]
The present invention is free liquid surface the is reflected by the free liquid surface with a light beam is incident at a predetermined angle to the liquid-filled sealed containers transparent liquid forming a based on the angle change of the free liquid surface with respect to the incident optical axis reflection An optical axis correction unit that performs optical axis compensation by changing the emission optical axis, a laser beam irradiation optical system that includes the optical axis correction unit and irradiates a compensated light beam , and the laser beam irradiation optical system in two axial directions. A gimbal mechanism that supports tilting and a vibration attenuator provided in the laser beam irradiation optical system. The laser beam irradiation optical system has a center of gravity below the center of tilting, and is in a horizontal posture by the action of gravity. The optical axis correction unit performs the optical axis compensation in a held posture, and the laser beam irradiation optical system deflects the compensated light beam in the vertical direction, optical axis compensating for irradiation by deflecting in a direction It relates to the location.
[0010]
When the apparatus main body having the optical axis compensator is tilted, the laser beam irradiation optical system is displaced relative to the apparatus main body horizontally or substantially horizontally by the action of gravity, and the optical axis correction unit of the optical axis compensator shifts the optical axis. Correct optically.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
The optical axis compensator shown in FIG. 1 mainly includes a support mechanism unit 12 and a laser beam irradiation optical system 13.
[0013]
First, the support mechanism unit 12 will be described.
[0014]
An outer frame 15 is fixed to an apparatus main body (not shown), an inner frame 17 is rotatably provided on the outer frame 15 via a first shaft 16, and the axis of the first shaft 16 is connected to the inner frame 17. The laser beam irradiation optical system 13 is rotatably provided through a gimbal mechanism including a second shaft 18 having an orthogonal axis.
[0015]
A vertical axis 19 is provided vertically downward from the laser beam irradiation optical system 13, and an oscillating spherical plate 21 is fixed to the lower end of the vertical axis 19. The oscillating spherical plate 21 has a shape obtained by cutting a part of the spherical surface into a circular shape, the oscillating spherical plate 21 functions as a weight, and the position of the center of gravity of the laser beam irradiation optical system 13 is the first axis 16, Located below the second shaft 18. Thus, since the laser beam irradiation optical system 13 can be freely tilted in the two horizontal axes by the first shaft 16 and the second shaft 18, it is always maintained in the same posture, that is, in a horizontal state by the action of gravity. .
[0016]
In order to control the shaking of the oscillating spherical plate 21, an upper fixed spherical plate 22 and a lower fixed spherical plate 23 are arranged above and below at an appropriate interval. The upper fixed spherical plate 22 is fixed to the apparatus main body by a fixing member 24, and the lower fixed spherical plate 23 is fixed to the apparatus main body by a fixing member 25, respectively. In the center of the upper fixed spherical plate 22, an escape hole 26 through which the vertical shaft 19 penetrates is formed, and the vertical shaft 19 can freely swing within the range of the escape hole 26. .
[0017]
The upper fixed spherical plate 22 and the lower fixed spherical plate 23 are magnets or electromagnetic coils, and a magnetic field or an electric field is formed between the upper fixed spherical plate 22 and the lower fixed spherical plate 23. The oscillating spherical plate 21 is a magnetic material or an electromagnetic coil. When the oscillating spherical plate 21 moves between the upper fixed spherical plate 22 and the lower fixed spherical plate 23, a resistance proportional to the moving speed is generated. It is supposed to do. Thus, the oscillating spherical plate 21, the upper fixed spherical plate 22, and the lower fixed spherical plate 23 constitute a vibration attenuator 27.
[0018]
Next, the laser beam irradiation optical system 13 will be described.
[0019]
The laser beam irradiation optical system 13 includes an optical axis correction unit 30 and a laser beam emission unit 31. The optical axis correction unit 30 has an inverted V-shaped optical path, and the laser beam emission unit 31 has an optical axis in the vertical direction. have.
[0020]
The inverted V-shaped optical path is formed inside the correction unit block 32, the liquid enclosure 1 is formed at the top, and the transparent liquid 14 forming the free liquid surface 2 is enclosed inside the liquid enclosure 1. Yes.
[0021]
The liquid enclosure 1 has a substantially inverted triangular shape, and an incident window 33 is provided on one inclined surface, and an emission window 34 is provided on the other inclined surface, and oblique to the free liquid surface 2 through the incident window 33. A light source unit 35 is provided for allowing a laser beam to enter from below.
[0022]
The light source unit 35 includes a light source 3 and a collimating lens 4 positioned on the projection optical axis. The collimating lens 4 is held by a lens holder 36 and attached to the correction unit block 32.
[0023]
The lens holder 36 includes a spherical portion 37 and a flange portion 38 that extends around the spherical portion 37, the spherical portion 37 abuts on a conical recess 39 formed in the correction unit block 32, and the lens holder 36 is It can be freely tilted around the spherical surface portion 37. The lens holder 36 is attached to the correction unit block 32 via a fixed plate 40. The fixing plate 40 is fixed to the correction unit block 32 by a fixing screw 41. A push screw 42 that presses the flange portion 38 is screwed to the fixing plate 40. The angle of the optical axis of the collimating lens 4 can be adjusted by maintaining the spherical portion 37 in contact with the conical recess 39, slightly loosening the fixing screw 41, and adjusting the push screw 42. Yes.
[0024]
The light source 3 is held by a light source holder 43 and is fitted and fixed to the lens holder 36.
[0025]
An anamorphic optical system 46 composed of wedge prisms 44 and 45 is provided on the reflection optical axis of the reflected laser beam reflected by the free liquid surface 2 and emitted from the exit window 34 and transmitted through the anamorphic optical system 46. Is provided in a vertical direction, and a beam expander 50 including convex lenses 48 and 49 is provided on the emission optical axis of the laser beam reflected by the reflecting mirror 47.
[0026]
The laser beam emitting unit 31 is connected to the exit side of the beam expander 50. A laser beam emitting unit barrel 52 coaxial with the beam expander 50 is fixed to the correction unit block 32, and a rotating block 53 is rotatably provided on the laser beam emitting unit barrel 52 via a bearing 54. Yes. A follower gear 55 is fixed to the rotating block 53, and a pentaprism 56 for changing the optical axis of the laser beam in the horizontal direction is provided.
[0027]
A rotation motor 58 is attached to the laser beam emitting portion barrel 52 via a motor support bracket 57, and a drive gear 59 fitted to the output shaft of the rotation motor 58 is engaged with the driven gear 55. Thus, by driving the rotation motor 58, the rotation block 53 rotates about the vertical axis via the drive gear 59 and the driven gear 55.
[0028]
The operation will be described below.
[0029]
A surveying instrument provided with an optical axis compensator, that is, when the entire configuration is tilted, the laser beam irradiation optical system 13 can freely move around the intersection O of the axis of the first axis 16 and the axis of the second axis 18. Since the center of gravity of the laser beam irradiation optical system 13 is below the intersection point O, the laser beam irradiation optical system 13 is always horizontal regardless of the inclination of the entire configuration.
[0030]
Further, the vibration attenuator 27 suppresses the oscillation of the laser beam irradiation optical system 13 and stops it at an early stage, thereby stabilizing the laser beam irradiation optical system 13. The laser beam irradiation optical system 13 is supported by the support mechanism 12 so as to be always horizontal, but the support portion of the first shaft 16 and the support portion of the second shaft 18 have a slight frictional resistance. Because of the resistance, it is difficult to obtain a high level of accuracy. For this reason, a slight inclination remains, but this inclination falls within the range of automatic compensation of the optical axis correction unit 30 using the transparent liquid 14. The optical axis of the laser beam emitting unit 31 is optically corrected vertically and further changed in the horizontal direction by the pentaprism 56. Thus, the laser beam emitted from the laser beam emitting unit 31 is horizontal. The horizontal reference plane is formed by driving the rotation motor 58 to rotate the pentaprism 56 and rotating the irradiating laser beam.
[0031]
In the above embodiment, the liquid free surface reflection type optical axis compensator has been described. However, the present invention can also be implemented in a transmission type optical axis compensator utilizing a wedge shape change of liquid as shown in FIG. Is possible.
[0032]
The liquid enclosure 1 has an entrance window 33 and an exit window 34 at positions facing the free liquid level 2, and the laser beam emitted from the light source 3 passes through the entrance window 33, the transparent liquid 14, and the exit window 34. It passes through and is injected. When the liquid enclosure 1 is inclined, the free liquid surface 2 is inclined relative to the liquid enclosure 1, the transparent liquid 14 is wedge-shaped and a deviation occurs in the optical axis that emits the free liquid surface 2. Optical axis compensation is performed using the axis deviation.
[0033]
In the above embodiment, the laser beam irradiation optical system 13 is supported by the support mechanism portion 12 having a gimbal structure. However, the laser beam irradiation optical system 13 may be supported by a spherical bearing having a low frictional resistance, or a pivot bearing. You may make it support at one point like support by.
[0034]
【The invention's effect】
As described above, according to the present invention, since the optical axis compensation of the optical system is held horizontally or substantially horizontal by the support mechanism portion, automatic compensation can be performed up to a range that greatly exceeds the optical axis compensation of the optical system. Since the supporting mechanism section has a simple structure and requires no high precision, there are no parts and parts, so that it has an excellent effect of being inexpensive and highly durable.
[Brief description of the drawings]
FIG. 1 is an elevational sectional view showing an embodiment of the present invention.
FIG. 2 is a side view showing an embodiment of the present invention.
FIG. 3 is a partial cross-sectional view of another embodiment of the present invention.
FIG. 4 is an explanatory diagram of an optical axis compensator using a free liquid level.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Liquid enclosure 2 Free liquid surface 3 Light source 7 Anamorphic optical system 10 Beam expander 11 Reflective mirror 12 Support mechanism part 13 Laser beam irradiation optical system 21 Oscillation spherical plate 22 Upper fixed spherical plate 23 Lower fixed spherical plate 27 Vibration attenuator 30 Optical axis correction unit 31 Laser beam emitting unit 35 Light source unit 46 Anamorphic optical system 56 Penta prism

Claims (2)

自由液面を形成する透明液体を封入した液体封入容器に所定の角度で光束を入射させると共に前記自由液面で反射させ、入射光軸に対する前記自由液面の角度変化に基づく反射射出光軸の変化により光軸補償を行う光軸補正部と、該光軸補正部を具備し補償された光束を照射するレーザ光線照射光学系と、該レーザ光線照射光学系を2軸方向に傾動自在に支持するジンバル機構と、前記レーザ光線照射光学系に設けられた振動減衰器とを有し、前記レーザ光線照射光学系は傾動中心より下方に重心を有し、重力の作用で水平姿勢を保持し、前記光軸補正部は保持された姿勢で前記光軸補償を行うことを特徴とする光軸補償装置。A light beam is incident at a predetermined angle on a liquid enclosure containing a transparent liquid forming a free liquid surface and reflected by the free liquid surface, and a reflected emission optical axis based on an angle change of the free liquid surface with respect to an incident optical axis. An optical axis correction unit that performs optical axis compensation by change, a laser beam irradiation optical system that includes the optical axis correction unit and irradiates a compensated light beam , and supports the laser beam irradiation optical system so as to be tiltable in two axial directions. And a vibration attenuator provided in the laser beam irradiation optical system, the laser beam irradiation optical system has a center of gravity below the tilt center, and maintains a horizontal posture by the action of gravity , The optical axis compensation device, wherein the optical axis correction unit performs the optical axis compensation in a held posture . 前記レーザ光線照射光学系は、補償された光束を鉛直方向に偏向した後、水平方向に偏向して照射する請求項1の光軸補償装置。2. The optical axis compensator according to claim 1, wherein the laser beam irradiation optical system deflects the compensated light beam in the vertical direction and then deflects it in the horizontal direction for irradiation .
JP26924497A 1997-09-16 1997-09-16 Optical axis compensator Expired - Fee Related JP3830063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26924497A JP3830063B2 (en) 1997-09-16 1997-09-16 Optical axis compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26924497A JP3830063B2 (en) 1997-09-16 1997-09-16 Optical axis compensator

Publications (2)

Publication Number Publication Date
JPH1194551A JPH1194551A (en) 1999-04-09
JP3830063B2 true JP3830063B2 (en) 2006-10-04

Family

ID=17469663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26924497A Expired - Fee Related JP3830063B2 (en) 1997-09-16 1997-09-16 Optical axis compensator

Country Status (1)

Country Link
JP (1) JP3830063B2 (en)

Also Published As

Publication number Publication date
JPH1194551A (en) 1999-04-09

Similar Documents

Publication Publication Date Title
EP1463919B1 (en) Servo-controlled automatic level and plumb tool
JP3799579B2 (en) Position measuring device
JPH1038571A (en) Rotary laser device
KR100510890B1 (en) Inclined light irradiating apparatus
JP3830063B2 (en) Optical axis compensator
JP3937268B2 (en) Laser equipment
JP2001074457A (en) Laser surveying instrument
EP0895057B1 (en) Optical axis tilt compensator
JPH0430492Y2 (en)
JP3619370B2 (en) Laser surveying equipment
JP3069896B2 (en) Laser planar
JP2509510Y2 (en) Plane setting device
JP3208727B2 (en) Laser projection device for horizontal reference plane
JPH11325891A (en) Laser level apparatus
JP3482011B2 (en) Laser surveying equipment
JP3683964B2 (en) Laser surveying equipment
JP4267971B2 (en) Laser beam sighting device and optical axis compensation method
JPS641723B2 (en)
JP3106417B2 (en) Automatic inclination correction device for surveying machines
JPS63222214A (en) Apparatus for automatic correction of inclination error in surveying equipment
JPH01158311A (en) Automatic correcting apparatus of two-dimensional slant error in surveying instrument
JP3500683B2 (en) Vertical laser projector
JP3179582B2 (en) Exchange base with laser plummet
JPH0886650A (en) Laser surveying instrument
JP3538312B2 (en) Laser surveying equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060707

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees