JP3829629B2 - Combustion control device for internal combustion engine - Google Patents

Combustion control device for internal combustion engine Download PDF

Info

Publication number
JP3829629B2
JP3829629B2 JP2001030655A JP2001030655A JP3829629B2 JP 3829629 B2 JP3829629 B2 JP 3829629B2 JP 2001030655 A JP2001030655 A JP 2001030655A JP 2001030655 A JP2001030655 A JP 2001030655A JP 3829629 B2 JP3829629 B2 JP 3829629B2
Authority
JP
Japan
Prior art keywords
intake valve
intake
ignition timing
timing
changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001030655A
Other languages
Japanese (ja)
Other versions
JP2002235567A (en
Inventor
俊一 青山
信一 竹村
常靖 野原
孝伸 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001030655A priority Critical patent/JP3829629B2/en
Publication of JP2002235567A publication Critical patent/JP2002235567A/en
Application granted granted Critical
Publication of JP3829629B2 publication Critical patent/JP3829629B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、排気系に触媒が配設された火花点火式の内燃機関に関し、特に、冷機状態の際に触媒を速やかに活性化温度まで上昇させるための技術に関する。
【0002】
【従来の技術】
近年のガソリン機関に代表される火花点火式の内燃機関においては、一般的に、三元触媒等の排気浄化用の触媒が排気系に配設されている。しかしながら、今日の進化した触媒技術をもってしても、機関始動直後のように機関の冷却水温度や触媒温度が低く、触媒が所定の活性化温度に達していない機関冷機状態においては、暖機後の状態に比して、排気ガスに対する触媒の効果が大幅に制限されるのが現状である。
【0003】
この問題は古くから認識されており、触媒の早期活性化を図るために、触媒の活性化温度自体を低下させる手法や、二次空気を触媒の上流に導入して化学的に活性化の時期を早める技術等が知られている。しかしながら、基本的には、触媒が転換を開始する活性化温度まで触媒温度を如何に早く上昇させるかが重要である。そこで、点火時期を最良効率が得られる最適点火時期よりも遅角させて、燃焼開始時期をリタードさせることにより、排気温度を上昇させて、触媒温度を速やかに上昇させる手法が、燃費性能等に悪影響があるにもかかわらず、従来より試みられている。
【0004】
【発明が解決しようとする課題】
しかしながら、点火時期を最適点火時期よりも遅らせると、燃焼が不安定となり、甚だしい場合には失火に至り、未燃のHCが大量に放出されるなどのおそれがある。従って、このように点火時期を遅らせる際には、燃焼の改善が不可欠となる。燃焼改善を行う代表的な手法としては、吸気ポートにスワールコントロール弁(SCV)を設ける手法が挙げられる。
【0005】
ところで、低温時の燃焼改善等を図るために、吸気弁の作動特性を変化させる機構として、これまで公知となっている発明も多い。その幾つかを以下に列記する。
【0006】
第1に、特開平11−036906号公報には、吸気弁の作動角を連続的に変更可能な作動角変更機構が開示されている。この機構により機関低速時から高速時に至る幅広い運転領域で、燃焼性能の向上と、充填効率の最適化による燃費性能の向上と、を図ることができる。また、吸気弁の作動角の中心位相を可変制御する位相変更機構を上記の作動角変更機構と組み合わせることにより、吸気弁の開時期(以下、必要に応じてIVOと呼ぶ)及び吸気弁の閉時期(以下、必要に応じてIVCと呼ぶ)を個々に変更制御することも可能となる。
【0007】
第2に、実開昭62−116106号公報には、吸気弁のバルブリフト量及び開閉時期を2段階に切り替える切替機構が設けられている。クランキング時(始動時)には、バルブリフト量を小さくするとともにIVOを吸気下死点近傍まで遅らせており、吸気の絞り摩擦熱による温度上昇(燃料気化性)を図るとともに、小リフト化によるクランキング時の速度増加によって始動性の向上を図っている。しかしながら、機関始動後におけるIVOやIVCの制御についての記載がほとんど無く、特に点火時期を遅らせて排気温度を高める点については何ら記載されていない。
【0008】
第3に、特開平3−202640号公報には、吸気弁のバルブタイミングを2段階に変更可能な切替機構を設け、(暖機状態における)低回転・低負荷時には、排気温度を上昇させるために、IVCを遅らせるとともに、EVO(排気弁の開時期)を早め、膨張行程中の排気を早く流出させることが記載されている。しかしながら、この公報にも、点火時期を遅らせて排気温度を高める点についての記載はない。
【0009】
本発明は、排気系に排気浄化用の触媒を備えた火花点火式の内燃機関において、吸気弁の開時期及び閉時期を変更する吸気特性変更手段を有効に利用して、冷機状態における点火時期の大幅な遅角化を実現し、この点火時期の遅角化に伴う排気温度の上昇により、触媒の早期活性化を図り、排気浄化性能を大幅に向上させることを一つの目的としている。
【0010】
すなわち、冷機状態では、触媒が活性化温度に達するまでのあらゆる運転状態(例えば始動直後の冷機ハイアイドル状態、冷機加速状態、及び冷機定常運転状態等)において、燃費が過度に悪化したり失火等を招くことのない安定限界まで点火時期を遅角させることにより、排気温度の上昇に伴う触媒の早期活性化を図ることを目的としている。
【0011】
【課題を解決するための手段】
本発明に係る火花点火式の内燃機関の燃焼制御装置は、吸気弁の開時期及び閉時期を変更する吸気特性変更手段と、点火時期を変更する点火時期変更手段と、機関の冷機状態を検出する冷機検出手段と、を有し、かつ、排気系に排気浄化用の触媒が設けられている。この触媒としては、酸化触媒、三元触媒等の酸化還元触媒、及び還元触媒等が挙げられる。
【0012】
そして、上記冷機状態では、点火時期を最適な燃焼効率が得られる最適点火時期よりも遅角するとともに、この点火時期の遅角限界を拡大するように、吸気弁の開時期を遅角することを特徴としている。
【0013】
典型的には、上記冷機状態では、吸気弁の開時期(IVO)を排気上死点よりも遅角する。この場合、吸入行程に入っても初期には吸気が供給されないため、筒内の負圧は急速に増大する。さらにピストン速度は行程中央が最大であり、上死点から行程中央までは単調に増大する特性であるから、IVOを上死点よりも遅らせると、筒内の負圧は非常に大きくなるとともに、吸気弁が開弁した時の吸気流速が非常に大きくなる。筒内の負圧が増大すると、ポンプ損失が増大するものの、これに伴って吸気温度が上昇する。また、吸気流速の増加により、吸気ポートに噴射された燃料の霧化が十分に促進され、燃焼状態が改善される。更に、吸気流速の増加に伴う吸気の乱れ度合いの増加に対応して、燃焼速度そのものも上昇する。このように、吸気弁の開時期を遅角することにより、燃焼状態が改善され、その分、点火時期の遅角限界(リタード限界)を拡大(遅角化)することができる。
【0014】
このように、点火時期の最適点火時期からの遅角限界を拡大することによって、排気温度の上昇が促進され、排気系に設けられた触媒の温度上昇が促進されるため、触媒が早期に活性化され、排気浄化性能の著しい向上を図ることができる。
【0015】
具体的には、上記冷機状態では、ほぼ同じ運転条件の暖機状態よりも吸気弁の開時期を遅角する。つまり、冷機状態では、点火時期の遅角限界を最大限に拡大するために、ポンプ損失等の悪影響があるものの、吸気弁の開時期を可能な限り遅角させている。これに対し、暖機状態では、最適な燃費効率が得られるように、吸気弁の開時期が上記の冷機状態に比して進角した設定とされる。
【0016】
より好ましくは、上記冷機状態では、吸気弁の閉時期を吸気下死点近傍に設定する。この場合、実圧縮比が増加するとともに、吸入負圧も上昇するため、燃焼速度が増加し、点火時期の遅角限界を更に拡大することができる。
【0017】
このように、上記冷機状態では、失火等を招くことのない範囲で、機関運転状態に応じてIVO及び点火時期を可能な限り遅角させている。例えば、冷機状態において機関負荷が増加すると、作動角を拡大する必要があるため、機関負荷の増加に応じて吸気弁の開時期の遅角度合いが縮小され、これに伴って点火時期の遅角度合いも縮小されることになる。
【0018】
このような本発明によれば、点火時期を、通常の最適点火時期よりもクランク角度で20〜30°程度まで遅らせることが可能となり、例えば冷機ハイアイドル状態では圧縮上死点近傍まで遅角させることが可能となる。
【0019】
上記吸気特性変更手段は、典型的には、吸気弁の作動角及びバルブリフト量を変更する作動角変更機構と、吸気弁の作動角の中心位相を変更する位相変更機構と、を有している。そして、双方の機構を個々に駆動制御することにより、吸気弁の開時期と閉時期とを互いに独立して任意の値に制御することが可能となる。具体的には、冷機状態において、吸気弁の閉時期を下死点近傍に保持したまま、吸気弁の開時期を安定限界まで遅角させることが可能となる。
【0020】
また、上記冷機状態では、ほぼ同じ運転条件の暖機状態に比して、吸気弁のバルブリフト量を同等以下に設定することが好ましい。このようにバルブリフト量を小さくすると、吸気流路の開口面積が減少する分、吸気流速は増大する。特に、吸気弁とバルブシートとの間のノズル効果(最小絞り部)が増すため、吸気ポートに噴射された燃料の霧化が効果的に促進される。従って、燃焼改善による点火時期の更なる遅角化が可能となる。
【0021】
更に、暖機アイドル状態よりも機関回転数の高い冷機ハイアイドル状態では、暖機アイドル状態に比して、吸気弁の開時期及び閉時期ともに遅角させる必要があるため、主に吸気弁の作動角の中心位相を遅角させれば良い。
【0022】
上記作動角変更機構は、典型的には、クランクシャフトから伝達される回転動力により回転する駆動軸と、この駆動軸に揺動可能に取り付けられ、吸気弁に当接してこれを作動させる揺動カムと、上記駆動軸に偏心して設けられた偏心カムと、作動角の変更時に回転駆動される制御軸と、この制御軸に偏心して設けられた制御カムと、この制御カムに回転可能に取り付けられたロッカーアームと、このロッカーアームの一端と上記偏心カムとを連携する第1リンクと、上記ロッカーアームの他端と上記揺動カムとを連携する第2リンクと、を有している。
【0023】
この場合、機関運転状態に応じて制御軸を回動することにより、ロッカーアームの揺動中心となる制御カムの機関本体に対する位置が変化して、各リンクや揺動カム等の初期姿勢が変化する。この結果、クランク角度に対する吸気弁の作動角の中心位相が略一定のままで、吸気弁の作動角及びバルブリフト量が連続的に変化する。このような構成の作動角変更機構は、吸気弁を作動させる揺動カムが駆動軸と同軸上に配置されているため、揺動カムと駆動軸との軸ズレ等を生じるおそれがなく、制御精度に優れていると共に、ロッカーアームや各リンクを駆動軸の周囲に集約させて、機構のコンパクト化を図ることができる。また、偏心カムと第1リンクとの軸受部や、制御カムとロッカーアームとの軸受部のように、部材間の連結部の多くが面接触となっているため、潤滑が行いやすく、耐久性,信頼性にも優れている。更に、この作動角変更機構を、固定カム及びカムシャフトを備えた一般的な直動式動弁系に適用する場合にも、これら固定カム及びカムシャフトの位置に揺動カム及び駆動軸を配置すれば良く、レイアウトの変更が非常に少なくて済むため、その適用が極めて容易である。
【0024】
上記位相変更機構は、典型的には、上記作動角変更機構を介して吸気弁を開閉駆動する駆動軸に設けられた第1ギヤと、この駆動軸と同軸上に配設され、クランクシャフトと同期して回転するスプロケット又はプーリに設けられた第2ギヤと、これら第1ギヤ及び第2ギヤに噛合するヘリカルギヤを備えたプランジャと、位相変更時に上記プランジャを駆動軸の軸方向へ駆動する駆動手段と、を有している。
【0025】
【発明の効果】
本発明によれば、機関の冷機状態では、点火時期を最適点火時期よりも遅角するとともに、この点火時期の遅角限界を拡大するように、吸気弁の開時期を遅角することにより、冷機状態における点火時期の大幅な遅角化を実現し、この点火時期の遅角化に伴う排気温度の上昇により、触媒の早期活性化を図り、排気浄化性能を大幅に向上させることができる。
【0026】
【発明の実施の形態】
以下、本発明の好適な実施形態について、図面を参照して詳細に説明する。
【0027】
図1に示すように、この内燃機関1は、ガソリンを燃料とする火花点火式の自動車用内機機関であり、かつ、排気系の一部をなす排気通路2には排気浄化用の三元触媒等の触媒3が設けられている。また、この内燃機関1には、吸気弁4の開時期及び閉時期を変更する吸気時期変更手段として、吸気弁4の作動角及びバルブリフト量を連続的に変更可能な作動角変更機構5と、吸気弁4の作動角の中心位相を連続的に変更可能な位相変更機構6と、が設けられている。
【0028】
機関制御部としてのECU(エンジンコントロールユニット)7は、各種センサより検出又は推定されるエンジン回転数,エンジン負荷,吸入負圧,排気温度の他、水温センサ8により検出される機関冷却水温度,触媒温度センサ9により検出される触媒温度等に基づいて、各種の機関制御プログラムを記憶及び実行するメモリ及びCPUを備えた周知のマイクロコンピュータである。すなわち、ECU7は、機関運転状態に応じて各種アクチュエータ等へ制御信号を出力して、機関1の作動を統括的に制御している。
【0029】
より具体的には、ECU7は、作動角変更機構5を油圧駆動する作動角制御アクチュエータ10への供給油圧を切り替える第1油圧装置11へ制御信号を出力し、位相変更機構6を油圧駆動する位相制御アクチュエータ12への供給油圧を切り替える第2油圧装置13へ制御信号を出力し、かつ、各気筒毎に設けられた点火プラグ(図示省略)の火花点火時期を変更する点火時期制御装置(点火時期変更手段)14へ制御信号を出力する。この点火時期変更装置14により、例えば点火プラグによる火花点火時期が、最良効率を与える最適点火時期よりも遅角補正される。
【0030】
次に、図2〜4を参照して作動角変更機構5について説明する。この作動角変更機構5は、クランクシャフトから位相変更機構6を介して伝達される回転動力により軸周りに回転する駆動軸21と、この駆動軸21に揺動可能に取り付けられ、吸気弁4のバルブリフタ4aに当接してこれを押圧作動させる揺動カム22と、駆動軸21に偏心して一体的に設けられた偏心カム23と、作動角変更時に作動角制御アクチュエータ10により回転駆動される制御軸24と、この制御軸24に偏心して一体的に設けられた制御カム25と、この制御カム25に回転可能に取り付けられたロッカーアーム26と、このロッカーアーム26の一端と偏心カム23とを連携するリング状の第1リンク27と、ロッカーアーム26の他端と揺動カム22とを連携するロッド状の第2リンク28と、を有している。
【0031】
従って、クランクシャフトに連動して駆動軸21が回転すると、この駆動軸21の偏心カム23を中心として第1リンク27がほぼ並進作動し、この第1リンク27に連携するロッカーアーム26及び第2リンク28を介して揺動カム22が揺動し、吸気弁が開閉作動する。
【0032】
また、機関運転状態に応じて制御軸24を回動することにより、ロッカーアーム26の揺動中心となる制御カム25の機関本体に対する位置が変化して、各リンク27,28や揺動カム22等の初期姿勢が変化する。この結果、図3に示すように、クランク角度に対する吸気弁の作動角の中心位相が略一定のままで、吸気弁の作動角及びバルブリフト量が連続的に変化する。なお、図4の上段はゼロリフトの状態を示しており、下段はフルリフトの状態を示している。
【0033】
このような構成の作動角変更機構5は、吸気弁4のバルブリフタ4aを押し下げる揺動カム22が駆動軸21と同軸上に配置されているため、揺動カム22と駆動軸21との軸ズレ等を生じるおそれがなく、制御精度に優れていると共に、ロッカーアーム26や各リンク27,28を駆動軸21の周囲に集約させて、機構のコンパクト化を図ることができる。また、偏心カム23と第1リンク27との軸受部や、制御カム25とロッカーアーム26との軸受部のように、部材間の連結部の多くが面接触となっているため、潤滑が行いやすく、耐久性,信頼性にも優れている。更に、この作動角変更機構5を、固定カム及びカムシャフトを備えた一般的な直動式動弁系に適用する場合にも、これら固定カム及びカムシャフトの位置に揺動カム22及び駆動軸21を配置すれば良く、レイアウトの変更が非常に少なくて済むため、その適用が極めて容易である。
【0034】
図5は位相変更機構6を示している。この位相変更機構6は、駆動軸21(又はカムシャフト)の一端外周に固定又は一体的に取り付けられた内周側ギヤ(第1ギヤ)31と、カムプーリ(又はスプロケット)32の内周に固定又は一体的に取り付けられた外周側ギヤ(第2ギヤ)33と、これら内周側ギヤ31及び外周側ギヤ33にそれぞれ噛合するヘリカルギヤ34が内周及び外周にそれぞれ形成されたプランジャ35と、を有している。
【0035】
カムプーリ32は、駆動軸21の外周に同軸上に配設される。このカムプーリ(又はスプロケット)32には、これに巻き掛けられる図外のタイミングベルト(又はタイミングチェーン)を介してクランクシャフトから回転動力が伝達され、このクランクシャフトと同期して回転する。
【0036】
プランジャ35は、吸気弁の作動角の中心位相の変更時に位相制御アクチュエータ(駆動手段)12により駆動軸21の軸方向に進退駆動される。すなわち、油圧室36に油圧が供給されていない初期状態では、プランジャ35がリターンスプリング37のバネ力により遅角方向(図5の左方向)に付勢されており、吸気弁の作動角の中心位相が図5(b)の遅角側に保持される。一方、第2油圧装置13(図1,2参照)により油圧室36へ所定の作動油圧が供給されると、プランジャ35がリターンスプリング37のバネ力に抗して進角方向(図5の右方向)へ移動し、吸気弁の作動角の中心位相が図5(b)の進角側に変更される。そして、油圧室36内の油圧を適切に制御することにより、プランジャ35を任意の位置に移動,保持して、吸気弁の作動角の中心位相を実質的に任意の値に変更,保持することができる。
【0037】
このような作動角変更機構5と位相変更機構6とは、互いに干渉することなく併用することが可能である。そして、これら作動角変更機構5と位相変更機構6とを個々に駆動制御することにより、吸気弁の開時期(IVO)及び閉時期(IVC)を互いに独立して実質的に任意の値に制御することが可能である。
【0038】
図6は、機関の冷機状態における吸気弁の作動特性(IVO,IVC,バルブリフト量)と、排気温度の上昇効果と、の相関関係を示している。
【0039】
ここで、本実施形態の特徴として、冷機状態では、点火時期を可能な限り(燃焼が不安定となる安定限界まで)遅角させて、燃焼開始時期をリタードさせることにより、排気温度を速やかに上昇させて、排気通路2に設けられた触媒3の早期活性化を図っている。従って、図中の排温上昇効果は、点火時期の遅角限界すなわちリタード限界と置き換えることもできる。
【0040】
▲1▼IVOの遅角化(排気上死点よりも遅角させていく場合)
IVOを排気上死点よりも遅らせると、吸入行程に入っても初期には吸気が供給されないため、筒内の負圧は急速に増大する。つまり、ピストン速度は行程中央が最大であり、排気上死点から行程中央までは単調に増大する特性であるから、IVOを上死点よりも遅らせると、筒内の負圧が急激に大きくなるとともに、吸気弁が開弁した時の吸気流速が非常に大きくなる。筒内の負圧が増大すると、ポンプ損失が増大する反面、これに伴って吸気温度が上昇する。また、吸気流速の増加により、吸気ポートに噴射された燃料の霧化が十分に促進され、燃焼状態が改善される。更に、吸気流速の増加に伴う吸気の乱れ度合いの増加に対応して、燃焼速度そのものも上昇する。このように、IVOを排気上死点よりも遅らせていくと、燃焼状態が改善し、その分、点火時期のリタード限界の拡大(遅角化)が可能となって、排温上昇効果が向上する。
【0041】
▲2▼吸気弁の低リフト化
バルブリフト量を小さくすると、吸気流路の開口面積が減少する分、吸気流速は増大する。特に、吸気弁とバルブシートとの間のノズル効果(最小絞り部)が増すため、吸気ポートに噴射された燃料の霧化が効果的に促進され、点火時期のリタード限界(排温上昇効果)を拡大することができる。
【0042】
▲3▼IVCの遅角化(吸気下死点よりも遅角させていく場合)
IVCを吸気下死点よりも遅角させると、実圧縮比が低下する。これは筒内に吸入された混合気が、圧縮行程初期に吸気ポート内に逆流するためである。当然ながら、実圧縮比の低下に伴って充填効率も低下するため、吸入負圧も低下する。また、圧縮比の低下により圧縮時の混合気温度が低下するため、燃焼速度が遅くなる。更に、吸入負圧が低下するため、燃料の気化があまり促進されず、燃焼速度も低下する。このように、IVCを下死点よりも遅角させていくと、点火時期のリタード限界が低下(進角化)する傾向にある。
【0043】
▲4▼IVCの進角化(吸気下死点よりも進角させていく場合)
IVCを吸気下死点よりも進角させると、下死点よりも遅角させる場合と同様、実圧縮比の低下を招く。現象としてはIVCを遅角させる場合と異なり、筒内に吸入された混合気がIVCから下死点まで断熱膨張するため、下死点での混合気温度が低下することになる。当然ながら、充填効率の低下も伴うため、吸入負圧も低下する。従ってIVCを下死点よりも進角させていくと、燃焼速度は遅くなり、点火時期のリタード限界が低下する傾向にある。
【0044】
▲5▼IVCを吸気下死点近傍に設定する場合
この場合、上記のIVCを遅角又は進角させる場合とは逆に、実圧縮比の上昇に伴って吸入負圧が上昇するため、燃焼速度が増加する。従って、点火時期のリタード限界を拡大することができる。
【0045】
このようなことから、図7,8にも示すように、冷機状態では、主に点火時期の遅角限界を拡大する目的で、IVOを排気上死点よりも大きく遅角させている。具体的には、冷機状態では、ほぼ同じ運転条件(機関回転数,機関負荷,加速度等)の暖機状態よりもIVOを大幅に遅らせている。
【0046】
また、冷機状態では、主に点火時期のリタード限界を拡大する目的で、吸気弁の閉時期(IVC)を下死点近傍に設定しているとともに、ほぼ同じ運転条件(機関回転数,機関負荷,加速度等)の暖機状態に比して、作動角及びバルブリフト量を同等以下に設定している。
【0047】
図7及び図8を参照して個々の運転状態について詳述すると、クランキング等の冷機起動時(C1)には、主に始動性を向上するために、IVOを上死点後、IVCを下死点近傍とする初期設定が適用される。すなわち、IVOを上死点よりも遅角させることにより、主に吸気流速を増加させて燃焼を改善するとともに、主に実圧縮比を確保する目的でIVCを下死点近傍としている。なお、暖機アイドル状態(H2)においても、冷機起動時(C1)と同様の初期設定が適用される。従って、暖機アイドル状態で機関を停止する際に、吸気弁の作動特性を敢えて変化させる必要がない。
【0048】
冷機ハイアイドル状態(C2)では、暖機アイドル状態(H2)に比して、バルブリフト量及び作動角を同等以下として、主に中心位相φを遅角させている。言い換えると、冷機起動時(C1)に比して、IVCを吸気下死点近傍に保持したままで、IVOを大きく遅角させている。理由として、暖機アイドル状態(H2)でもIVOを上死点より遅角させているが、これはポンプ損失を減少させることを主たる目的としているため、その遅角の度合いは冷機ハイアイドル状態(C2)に比して小さい。これに対し、回転数が相対的に高い冷機ハイアイドル状態(C2)では、筒内負圧や吸気流速を増大させて燃焼を改善し、点火時期のリタード限界を拡大させて、排温上昇効果を最大限に得ることを主たる目的としており、従って、実圧縮比が過度に低下しない範囲で、IVOを可能な限り遅らせている。
【0049】
冷機定常走行状態(C3)では、冷機ハイアイドル状態(C2)に比して、吸入空気量が多くなるため、作動角を大きくする必要がある。また、上述したようにIVCは下死点近傍が望ましい。従って、冷機定常走行状態(C3)では、冷機ハイアイドル状態(C2)に比して、作動角を拡大した分、IVOの遅角度合いが緩和される。つまり、冷機状態では機関負荷の増加に応じてIVOの遅角度合いが縮小される。また、冷機定常走行状態(C3)では、ほぼ同じ運転条件の暖機R/L状態(H3)に比して、主に中心位相φを大きく遅角させた設定となっている。
【0050】
冷機加速状態(C4)では、冷機定常走行状態(C3)に比して、吸入空気量がさらに多くなる為、それに対応して作動角を増やす必要がある。この場合、大量の混合気が燃焼するため、IVCを下死点よりも多少遅らせる余裕が出てくる。従って、作動角の拡大分を、IVOの遅角度合いの緩和と、IVCの遅角化とに分配することになる。具体的には、冷機定常走行状態(C3)に対し、中心位相φをほぼ一定として、作動角のみを拡大すれば良い。ちなみに、暖機加速状態(H4a,H4b,H4c)では、冷機加速状態(C4)に比して、IVCが大幅に進角した設定とされる。
【0051】
図9は、冷機起動時(C1)から冷機ハイアイドル状態(C2)へ至る過渡期の具体的な制御状況を示すタイミングチャートである。
【0052】
クランキング時には、点火時期を最も始動し易い圧縮上死点前の最適点火時期に設定する必要がある。また、IVC及びIVOが図7(C1)に示す設定値となるように、吸気弁の作動角及び中心位相が設定されている。このクランキングから冷機ハイアイドル状態等の冷機状態へ移行すると、排気温度を速やかに上昇させて触媒の早期活性化を図るために、点火時期を可能な限り最適点火時期から遅角させていく。
【0053】
先ず冷機ハイアイドル状態(C2)では、クランキング時に比して、IVOを速やかにリタードさせる。具体的には、回転数に応じて作動角を僅かに縮小しつつ、中心位相を大きく遅角させる。これに伴って、IVCは下死点前から下死点後に移行するが、それでも下死点近傍に保たれており、実圧縮比への悪影響は小さい。そして、点火時期を燃焼状態に応じて最適点火時期から圧縮上死点近傍へ向けて遅角させていく。具体的には、時間の経過に伴って燃焼状態が良くなるため、点火時期を徐々にリタードさせる。
【0054】
図10は、冷機ハイアイドル(C2)から冷機緩加速(C3)を経て冷機定常走行(C4)へ移行した後、暖機状態へ達する場合の制御状況を示すタイミングチャートである。複雑な制御に見えるが、基本的には図7の各設定に従っている。
【0055】
緩加速状態(C3)のように、負荷が増加する状況では、上述したように作動角の拡大に伴ってIVOの遅角度合いが徐々に縮小されるため、点火時期の遅角限界も徐々に縮小される。つまり、負荷の増加に応じて点火時期が徐々に進角することとなる。触媒3が活性化温度つまり転換開始温度(T)に達すると、それ以降は徐々に点火リタードを解除すると共に、IVO、IVCも暖機後の設定に徐々に戻される。具体的には、燃費等の運転性能が最良となる暖機後の目標値へ向けて制御される。参考までに、暖機状態における点火時期(最適点火時期に相当)を破線(イ)で描いており、この暖機状態に比して冷機状態では点火時期が大幅にリタードされていることがわかる。
【0056】
また、図9,10に示すように、本実施形態では、作動応答性の向上等を図るために、作動角変更機構5による作動角の変更幅を最小限に抑制して、位相変更機構6による中心位相φの変更幅を相対的に多く設定している。そして、IVCを下死点近傍に保ちつつ、IVOを遅角限界へ向けてきめ細かく制御している。
【0057】
更に、図7に示すように、起動時及び機関停止時における初期設定(C1)では、IVOが上死点後、IVCが下死点近傍(下死点前)に設定されているため、主に中心位相を少し遅角させることによって、冷機ハイアイドル状態へ速やかに移行することができる。従って、極低温始動時のように、油圧アクチュエータ10,12等の応答性が極端に遅い場合でも、比較的早期に点火時期のリタード限界を拡大することが可能となる。
【0058】
図11はECU7により実行される制御の流れを示すフローチャートである。S10では、暖機状態か冷機状態かが判定(検出)される。具体的には、水温センサ8や触媒温度センサ9で検出される冷却水温や触媒温度が所定値以上かを判定し、YESであれば暖機状態、NOであれば冷機状態と判定される。続くS11又はS21では、予め個別に用意された冷機状態用又は暖機状態用の点火時期(IT),IVO,及びIVCの制御マップが読み込まれる。続くS12又はS22では、機関回転数やスロットル開度等の各種機関運転条件が検出される。この機関運転条件に応じて、S11又はS21で読み込まれた制御マップを参照することにより、IVO及びIVCが目標値となるように作動角変更機構5及び位相変更機構6が駆動制御されるとともに(S13及びS14、又はS23及びS24)、ITが目標値となるように点火時期変更装置14が駆動制御される(S15及びS16、又はS25及びS26)。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る内燃機関の燃焼制御装置を示す概略構成図。
【図2】上記実施形態の作動角変更機構を示す斜視対応図。
【図3】上記作動角変更機構による吸気弁の作動角及びバルブリフト量の変更特性を示す特性図。
【図4】上記作動角変更機構のゼロリフト及びフルリフトにおける最小又は最大揺動時の態様を示す作動説明図。
【図5】上記実施形態の位相変更機構に係る断面対応図及び特性図。
【図6】吸気弁の作動特性と、排温上昇効果との関係を示す説明図。
【図7】冷機状態における吸気弁の作動特性を示す説明図。
【図8】暖機状態における吸気弁の作動特性を示す説明図。
【図9】冷機始動時から冷機ハイアイドル状態へ移行する際のタイミングチャート。
【図10】冷機ハイアイドル状態から冷機加速状態及び冷機定常走行状態を経て暖機状態へ移行する際のタイミングチャート。
【図11】本実施形態に係る制御の流れを示すフローチャート。
【符号の説明】
2…排気通路(排気系)
3…触媒
4…吸気弁
5…作動角変更機構(吸気特性変更手段)
6…位相変更機構(吸気特性変更手段)
8…水温センサ(冷機検出手段)
9…触媒温度センサ(冷機検出手段)
14…点火時期変更装置(点火時期変更手段)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a spark ignition internal combustion engine in which a catalyst is disposed in an exhaust system, and more particularly to a technique for quickly raising a catalyst to an activation temperature in a cold state.
[0002]
[Prior art]
In a spark ignition type internal combustion engine represented by a recent gasoline engine, an exhaust purification catalyst such as a three-way catalyst is generally disposed in an exhaust system. However, even with today's advanced catalyst technology, the engine cooling water temperature and catalyst temperature are low, such as immediately after engine startup, and the engine has not reached the predetermined activation temperature. Compared to this state, the effect of the catalyst on the exhaust gas is greatly limited.
[0003]
This problem has been recognized for a long time, and in order to achieve early activation of the catalyst, a method of lowering the activation temperature of the catalyst itself, or the timing of chemical activation by introducing secondary air upstream of the catalyst Technology to speed up the process is known. However, basically it is important how quickly the catalyst temperature is raised to the activation temperature at which the catalyst begins to convert. Therefore, the method of increasing the exhaust gas temperature and increasing the catalyst temperature quickly by retarding the ignition timing from the optimal ignition timing at which the best efficiency can be obtained and retarding the combustion start timing can improve fuel efficiency. Despite the adverse effects, attempts have been made in the past.
[0004]
[Problems to be solved by the invention]
However, if the ignition timing is delayed from the optimal ignition timing, the combustion becomes unstable, and in a severe case, misfire may occur, and a large amount of unburned HC may be released. Therefore, when the ignition timing is delayed as described above, it is essential to improve the combustion. Improve combustion Typical An example of such a method is a method of providing a swirl control valve (SCV) in the intake port.
[0005]
By the way, in order to improve combustion at low temperatures and the like, there are many inventions that have been known so far as a mechanism for changing the operating characteristics of the intake valve. Some are listed below.
[0006]
First, Japanese Patent Application Laid-Open No. 11-036906 discloses an operating angle changing mechanism capable of continuously changing the operating angle of an intake valve. With this mechanism, it is possible to improve combustion performance and improve fuel efficiency performance by optimizing charging efficiency in a wide range of operation from low to high engine speeds. Also, by combining a phase change mechanism that variably controls the center phase of the intake valve operating angle with the above-described operating angle change mechanism, the intake valve opening timing (hereinafter referred to as IVO if necessary) and the closing of the intake valve are performed. It is also possible to individually change and control the timing (hereinafter referred to as IVC as necessary).
[0007]
Secondly, Japanese Utility Model Laid-Open No. 62-116106 is provided with a switching mechanism for switching the valve lift amount and opening / closing timing of the intake valve in two stages. During cranking (starting), the valve lift is reduced and the IVO is delayed to the vicinity of the bottom dead center of the intake to increase the temperature (fuel vaporization) due to the throttle frictional heat of the intake and to reduce the lift The startability is improved by increasing the speed during cranking. However, there is almost no description about the control of IVO and IVC after the engine is started, and there is no description about the point of raising the exhaust gas temperature by delaying the ignition timing.
[0008]
Thirdly, Japanese Patent Laid-Open No. 3-202640 provides a switching mechanism that can change the valve timing of the intake valve in two stages so as to raise the exhaust gas temperature during low rotation and low load (in a warm-up state). In addition, it is described that IVC is delayed and EVO (exhaust valve opening timing) is advanced so that the exhaust gas during the expansion stroke flows out quickly. However, this publication also does not describe the point of increasing the exhaust gas temperature by delaying the ignition timing.
[0009]
The present invention relates to a spark ignition type internal combustion engine having an exhaust gas purification catalyst in an exhaust system, and effectively uses an intake characteristic changing means for changing the opening timing and closing timing of an intake valve, thereby One of the objectives is to achieve early activation of the catalyst and greatly improve the exhaust purification performance by increasing the exhaust temperature accompanying the retarded ignition timing.
[0010]
That is, in the cold state, the fuel consumption is excessively deteriorated or misfired in all the operation states until the catalyst reaches the activation temperature (for example, the cold high idle state immediately after startup, the cold acceleration state, the cold steady operation state, etc.). It is an object of the present invention to achieve early activation of the catalyst as the exhaust temperature rises by retarding the ignition timing to the stability limit that does not lead to inconvenience.
[0011]
[Means for Solving the Problems]
A combustion control apparatus for a spark ignition type internal combustion engine according to the present invention includes an intake characteristic changing means for changing an opening timing and a closing timing of an intake valve, an ignition timing changing means for changing an ignition timing, and detecting a cold state of the engine And an exhaust purification catalyst is provided in the exhaust system. Examples of the catalyst include an oxidation catalyst, a redox catalyst such as a three-way catalyst, and a reduction catalyst.
[0012]
In the cold state, the ignition timing is retarded from the optimum ignition timing at which optimum combustion efficiency is obtained, and the opening timing of the intake valve is retarded so as to expand the retard limit of the ignition timing. It is characterized by.
[0013]
Typically, in the cold state, the intake valve opening timing (IVO) is retarded from the exhaust top dead center. In this case, since the intake air is not initially supplied even after the intake stroke is started, the negative pressure in the cylinder rapidly increases. Furthermore, since the piston speed is maximum at the stroke center and increases monotonically from the top dead center to the stroke center, if the IVO is delayed from the top dead center, the negative pressure in the cylinder becomes very large, The intake flow velocity when the intake valve is opened becomes very large. When the negative pressure in the cylinder increases, the pump loss increases, but the intake air temperature increases accordingly. Further, the increase in the intake flow velocity sufficiently promotes the atomization of the fuel injected into the intake port and improves the combustion state. Furthermore, the combustion speed itself increases corresponding to the increase in the degree of disturbance of the intake air accompanying the increase in the intake air flow velocity. Thus, by retarding the opening timing of the intake valve, the combustion state is improved, and accordingly, the retard limit of the ignition timing (retard limit) can be expanded (retarded).
[0014]
Thus, by increasing the retard limit of the ignition timing from the optimal ignition timing, the exhaust temperature rise is promoted, and the temperature rise of the catalyst provided in the exhaust system is promoted, so that the catalyst is activated early. The exhaust gas purification performance can be significantly improved.
[0015]
Specifically, in the cold state, the opening timing of the intake valve is retarded as compared with the warm-up state under substantially the same operating conditions. That is, in the cold state, in order to maximize the retard limit of the ignition timing, the intake valve opening timing is retarded as much as possible, although there is an adverse effect such as pump loss. On the other hand, in the warm-up state, the opening timing of the intake valve is set to be advanced as compared with the above-described cool-down state so that optimum fuel efficiency can be obtained.
[0016]
More preferably, in the cold state, the closing timing of the intake valve is set near the intake bottom dead center. In this case, since the actual compression ratio increases and the suction negative pressure also increases, the combustion speed increases and the retard limit of the ignition timing can be further expanded.
[0017]
As described above, in the cold state, the IVO and the ignition timing are retarded as much as possible in accordance with the engine operating state within a range that does not cause misfire. For example, when the engine load increases in the cold state, it is necessary to increase the operating angle. Therefore, the delay of the opening timing of the intake valve is reduced according to the increase of the engine load, and the ignition timing is retarded accordingly. The match will also be reduced.
[0018]
According to the present invention as described above, the ignition timing can be delayed by about 20 to 30 degrees in crank angle from the normal optimum ignition timing. For example, in the cold high idle state, the ignition timing is delayed to near the compression top dead center. It becomes possible.
[0019]
The intake characteristic changing means typically includes an operating angle changing mechanism that changes the operating angle and valve lift amount of the intake valve, and a phase changing mechanism that changes the center phase of the operating angle of the intake valve. Yes. Then, by individually driving and controlling both mechanisms, the opening timing and closing timing of the intake valve can be controlled to arbitrary values independently of each other. Specifically, in the cold state, it is possible to retard the opening timing of the intake valve to the stability limit while keeping the closing timing of the intake valve near the bottom dead center.
[0020]
In the cold state, it is preferable to set the valve lift amount of the intake valve to be equal to or less than that in the warm-up state under substantially the same operating conditions. When the valve lift amount is reduced in this way, the intake flow velocity increases as the opening area of the intake flow path decreases. In particular, since the nozzle effect (minimum throttle portion) between the intake valve and the valve seat is increased, atomization of the fuel injected into the intake port is effectively promoted. Accordingly, it is possible to further retard the ignition timing by improving combustion.
[0021]
Furthermore, in the cold high idle state where the engine speed is higher than that in the warm idle state, it is necessary to retard both the opening timing and closing timing of the intake valve compared to the warm idle state. What is necessary is just to retard the central phase of the operating angle.
[0022]
The operating angle changing mechanism is typically a drive shaft that is rotated by rotational power transmitted from a crankshaft, and a swing that is swingably attached to the drive shaft and that is in contact with an intake valve to operate it. A cam, an eccentric cam provided eccentric to the drive shaft, a control shaft rotated when the operating angle is changed, a control cam provided eccentric to the control shaft, and rotatably attached to the control cam A rocker arm, a first link that links one end of the rocker arm and the eccentric cam, and a second link that links the other end of the rocker arm and the swing cam.
[0023]
In this case, by rotating the control shaft according to the engine operating state, the position of the control cam, which is the rocking center of the rocker arm, with respect to the engine body changes, and the initial posture of each link, rocking cam, etc. changes. To do. As a result, the operation angle of the intake valve and the valve lift amount continuously change while the central phase of the operation angle of the intake valve with respect to the crank angle remains substantially constant. The operating angle changing mechanism having such a configuration has no possibility of causing an axis misalignment between the swing cam and the drive shaft because the swing cam for operating the intake valve is arranged coaxially with the drive shaft. In addition to being excellent in accuracy, the rocker arm and each link can be concentrated around the drive shaft to make the mechanism compact. Also, since many of the connecting parts between the members are in surface contact, such as the bearing part of the eccentric cam and the first link and the bearing part of the control cam and the rocker arm, it is easy to lubricate and durable. , Excellent reliability. Further, when this operating angle changing mechanism is applied to a general direct acting valve system having a fixed cam and a camshaft, a swing cam and a drive shaft are arranged at the positions of the fixed cam and the camshaft. This is very easy to apply because the layout can be changed very little.
[0024]
The phase change mechanism typically includes a first gear provided on a drive shaft that opens and closes the intake valve via the operating angle change mechanism, a coaxial gear disposed on the drive shaft, and a crankshaft. A second gear provided on a sprocket or pulley that rotates synchronously, a plunger having a helical gear meshing with the first gear and the second gear, and a drive for driving the plunger in the axial direction of the drive shaft when the phase is changed Means.
[0025]
【The invention's effect】
According to the present invention, in the cold state of the engine, by retarding the ignition timing from the optimal ignition timing and retarding the opening timing of the intake valve so as to expand the retard limit of the ignition timing, The ignition timing can be significantly retarded in the cold state, and the exhaust temperature can be increased due to the ignition timing retarding, whereby the catalyst can be activated early and the exhaust purification performance can be greatly improved.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0027]
As shown in FIG. 1, this internal combustion engine 1 is a spark ignition type automobile internal combustion engine that uses gasoline as fuel, and an exhaust passage 2 that forms part of the exhaust system has a three-way exhaust purification system. A catalyst 3 such as a catalyst is provided. The internal combustion engine 1 includes an operating angle changing mechanism 5 capable of continuously changing the operating angle and valve lift amount of the intake valve 4 as intake timing changing means for changing the opening timing and closing timing of the intake valve 4. A phase changing mechanism 6 capable of continuously changing the center phase of the operating angle of the intake valve 4 is provided.
[0028]
An ECU (engine control unit) 7 as an engine control unit includes an engine speed detected by various sensors, an engine load, an intake negative pressure, an exhaust temperature, an engine coolant temperature detected by a water temperature sensor 8, The microcomputer is a known microcomputer including a memory and a CPU for storing and executing various engine control programs based on the catalyst temperature detected by the catalyst temperature sensor 9. That is, the ECU 7 controls the operation of the engine 1 by outputting control signals to various actuators according to the engine operating state.
[0029]
More specifically, the ECU 7 outputs a control signal to the first hydraulic device 11 that switches the hydraulic pressure supplied to the operating angle control actuator 10 that hydraulically drives the operating angle changing mechanism 5, and the phase that hydraulically drives the phase changing mechanism 6. An ignition timing control device (ignition timing) that outputs a control signal to the second hydraulic device 13 that switches the hydraulic pressure supplied to the control actuator 12 and changes the spark ignition timing of a spark plug (not shown) provided for each cylinder. Change means) 14 to output a control signal. By this ignition timing changing device 14, for example, the spark ignition timing by the spark plug is corrected by retarding the optimum ignition timing that gives the best efficiency.
[0030]
Next, the operating angle changing mechanism 5 will be described with reference to FIGS. The operating angle changing mechanism 5 is attached to a drive shaft 21 that rotates around the shaft by rotational power transmitted from the crankshaft via the phase changing mechanism 6, and is swingably attached to the drive shaft 21. A swing cam 22 that contacts and presses the valve lifter 4a, an eccentric cam 23 that is provided integrally with the drive shaft 21, and a control shaft that is rotationally driven by the operating angle control actuator 10 when the operating angle is changed. 24, a control cam 25 that is eccentrically provided integrally with the control shaft 24, a rocker arm 26 rotatably attached to the control cam 25, one end of the rocker arm 26, and the eccentric cam 23 A ring-shaped first link 27 and a rod-shaped second link 28 that links the other end of the rocker arm 26 and the swing cam 22.
[0031]
Accordingly, when the drive shaft 21 is rotated in conjunction with the crankshaft, the first link 27 is substantially translated around the eccentric cam 23 of the drive shaft 21, and the rocker arm 26 and the second link linked to the first link 27. The swing cam 22 swings through the link 28, and the intake valve opens and closes.
[0032]
Further, by rotating the control shaft 24 in accordance with the engine operating state, the position of the control cam 25 serving as the rocking center of the rocker arm 26 with respect to the engine body changes, and the links 27 and 28 and the rocking cam 22 are changed. Etc. The initial posture changes. As a result, as shown in FIG. 3, the intake valve operating angle and the valve lift amount continuously change while the center phase of the intake valve operating angle with respect to the crank angle remains substantially constant. Note that the upper part of FIG. 4 shows a zero lift state, and the lower part shows a full lift state.
[0033]
In the operating angle changing mechanism 5 having such a configuration, the swing cam 22 that pushes down the valve lifter 4 a of the intake valve 4 is disposed coaxially with the drive shaft 21. The rocker arm 26 and the links 27 and 28 are gathered around the drive shaft 21 and the mechanism can be made compact. Further, since many of the connecting portions between the members are in surface contact, such as the bearing portion between the eccentric cam 23 and the first link 27 and the bearing portion between the control cam 25 and the rocker arm 26, lubrication is performed. Easy, durable and reliable. Further, when the operating angle changing mechanism 5 is applied to a general direct acting valve system having a fixed cam and a camshaft, the swing cam 22 and the drive shaft are located at the positions of the fixed cam and the camshaft. 21 can be arranged, and the layout can be changed very little, so that its application is very easy.
[0034]
FIG. 5 shows the phase changing mechanism 6. The phase change mechanism 6 is fixed to the inner periphery of the inner peripheral side gear (first gear) 31 and the cam pulley (or sprocket) 32 fixed to or integrally attached to the outer periphery of one end of the drive shaft 21 (or camshaft). Alternatively, an outer peripheral side gear (second gear) 33 that is integrally mounted, and a plunger 35 that has helical gears 34 that respectively mesh with the inner peripheral side gear 31 and the outer peripheral side gear 33 are formed on the inner periphery and the outer periphery, respectively. Have.
[0035]
The cam pulley 32 is coaxially disposed on the outer periphery of the drive shaft 21. Rotational power is transmitted to the cam pulley (or sprocket) 32 from a crankshaft via a timing belt (or timing chain) (not shown) wound around the cam pulley (or sprocket), and rotates in synchronization with the crankshaft.
[0036]
The plunger 35 is driven to advance and retract in the axial direction of the drive shaft 21 by the phase control actuator (drive means) 12 when the center phase of the operating angle of the intake valve is changed. That is, in an initial state where no hydraulic pressure is supplied to the hydraulic chamber 36, the plunger 35 is biased in the retarding direction (leftward in FIG. 5) by the spring force of the return spring 37, and the center of the operating angle of the intake valve The phase is held on the retarded angle side of FIG. On the other hand, when a predetermined operating hydraulic pressure is supplied to the hydraulic chamber 36 by the second hydraulic device 13 (see FIGS. 1 and 2), the plunger 35 moves in the advance direction against the spring force of the return spring 37 (right of FIG. 5). The central phase of the operating angle of the intake valve is changed to the advance side in FIG. Then, by appropriately controlling the hydraulic pressure in the hydraulic chamber 36, the plunger 35 can be moved and held at an arbitrary position, and the center phase of the operating angle of the intake valve can be changed and held at an arbitrary value. Can do.
[0037]
Such an operating angle changing mechanism 5 and the phase changing mechanism 6 can be used together without interfering with each other. Then, by individually driving and controlling the operating angle changing mechanism 5 and the phase changing mechanism 6, the intake valve opening timing (IVO) and closing timing (IVC) are controlled to be substantially arbitrary values independently of each other. Is possible.
[0038]
FIG. 6 shows the correlation between the operating characteristics (IVO, IVC, valve lift amount) of the intake valve and the effect of increasing the exhaust temperature when the engine is cold.
[0039]
Here, as a feature of the present embodiment, in the cold state, the ignition timing is retarded as much as possible (until the stability limit at which the combustion becomes unstable), and the combustion start timing is retarded, so that the exhaust temperature is quickly increased. The catalyst 3 provided in the exhaust passage 2 is activated early to be activated. Therefore, the exhaust temperature increasing effect in the figure can be replaced with the retard limit of the ignition timing, that is, the retard limit.
[0040]
(1) IVO retarded (when retarded from exhaust top dead center)
If the IVO is delayed from the exhaust top dead center, the intake pressure is not initially supplied even when the intake stroke is started, so the negative pressure in the cylinder rapidly increases. In other words, the piston speed is maximum at the center of the stroke and is a characteristic that increases monotonically from the exhaust top dead center to the center of the stroke. Therefore, if the IVO is delayed from the top dead center, the negative pressure in the cylinder increases rapidly. At the same time, the intake flow velocity when the intake valve is opened becomes very large. When the negative pressure in the cylinder increases, the pump loss increases, but the intake air temperature increases accordingly. Further, the increase in the intake flow velocity sufficiently promotes the atomization of the fuel injected into the intake port and improves the combustion state. Furthermore, the combustion speed itself increases corresponding to the increase in the degree of disturbance of the intake air accompanying the increase in the intake air flow velocity. In this way, if the IVO is delayed from the exhaust top dead center, the combustion state is improved, and the retard limit of the ignition timing can be expanded (retarded) accordingly, and the exhaust temperature rise effect is improved. To do.
[0041]
(2) Lower lift of intake valve
When the valve lift amount is reduced, the intake flow velocity increases as the opening area of the intake passage decreases. In particular, since the nozzle effect (minimum throttle) between the intake valve and the valve seat increases, atomization of the fuel injected into the intake port is effectively promoted, and the ignition timing retard limit (exhaust temperature rise effect) Can be enlarged.
[0042]
(3) retarding IVC (when retarding from the bottom dead center of intake)
If the IVC is retarded from the intake bottom dead center, the actual compression ratio decreases. This is because the air-fuel mixture sucked into the cylinder flows back into the intake port at the beginning of the compression stroke. As a matter of course, since the filling efficiency is lowered with a decrease in the actual compression ratio, the suction negative pressure is also lowered. Moreover, since the mixture temperature at the time of compression falls by the fall of a compression ratio, a combustion rate becomes slow. Furthermore, since the suction negative pressure is reduced, fuel vaporization is not promoted so much and the combustion speed is also reduced. Thus, when the IVC is retarded from the bottom dead center, the retard limit of the ignition timing tends to decrease (advance).
[0043]
(4) Advancement of IVC (when advanced from the bottom dead center of intake)
If the IVC is advanced from the intake bottom dead center, the actual compression ratio is reduced as in the case where the IVC is retarded from the bottom dead center. As a phenomenon, unlike the case where the IVC is retarded, the air-fuel mixture sucked into the cylinder adiabatically expands from the IVC to the bottom dead center, so that the air-fuel mixture temperature at the bottom dead center is lowered. Naturally, since the filling efficiency is also lowered, the suction negative pressure is also lowered. Accordingly, when the IVC is advanced from the bottom dead center, the combustion speed becomes slow and the retard limit of the ignition timing tends to decrease.
[0044]
(5) When IVC is set near the intake bottom dead center
In this case, contrary to the case where the IVC is retarded or advanced, the suction negative pressure increases as the actual compression ratio increases, so the combustion speed increases. Therefore, the retard limit of the ignition timing can be expanded.
[0045]
Therefore, as shown in FIGS. 7 and 8, in the cold state, IVO is mainly used for the purpose of expanding the retard limit of the ignition timing. exhaust The angle is delayed more than the top dead center. Specifically, in the cold state, the IVO is significantly delayed compared to the warm-up state under substantially the same operating conditions (engine speed, engine load, acceleration, etc.).
[0046]
In the cold state, the intake valve closing timing (IVC) is set near the bottom dead center mainly for the purpose of expanding the retard limit of the ignition timing, and almost the same operating conditions (engine speed, engine load). , Acceleration, etc.), the operating angle and valve lift amount are set to the same or less.
[0047]
Referring to FIG. 7 and FIG. 8, the individual operation states will be described in detail. At the time of cold machine start-up (C1) such as cranking, in order to mainly improve the startability, the IVO is set to the top dead center and the IVC The default setting near the bottom dead center is applied. That is, by retarding the IVO from the top dead center, the intake velocity is mainly increased to improve combustion, and the IVC is set near the bottom dead center mainly for the purpose of securing the actual compression ratio. Note that, in the warm-up idle state (H2), the same initial setting as that at the time of cold-start (C1) is applied. Therefore, when stopping the engine in the warm-up idle state, there is no need to change the operating characteristics of the intake valve.
[0048]
In the cold engine high idle state (C2), the valve lift amount and the operating angle are set equal to or less than those in the warm engine idle state (H2), and the center phase φ is mainly retarded. In other words, compared with the cold start (C1), the IVO is largely retarded while the IVC is held near the intake bottom dead center. The reason is that the IVO is retarded from the top dead center even in the warm-up idle state (H2), but this is mainly aimed at reducing the pump loss. Smaller than C2). On the other hand, in the cold high idle state (C2) where the rotational speed is relatively high, the in-cylinder negative pressure and the intake air flow velocity are increased to improve combustion, and the retard limit of the ignition timing is expanded to increase the exhaust temperature. Therefore, the IVO is delayed as much as possible within a range in which the actual compression ratio is not excessively lowered.
[0049]
In the cold running steady state (C3), the amount of intake air is larger than that in the cold high idle state (C2), so it is necessary to increase the operating angle. As described above, the IVC is preferably near the bottom dead center. Therefore, in the cold running steady state (C3), as compared with the cold machine high idle state (C2), the retarded angle of the IVO is alleviated as the operating angle is increased. That is, in the cold state, the IVO retarded angle is reduced as the engine load increases. Further, in the cold running steady state (C3), the center phase φ is set to be largely retarded compared to the warming up R / L state (H3) under substantially the same operating conditions.
[0050]
In the cold acceleration state (C4), the intake air amount is further increased as compared with the cold steady operation state (C3), and accordingly, it is necessary to increase the operating angle accordingly. In this case, since a large amount of air-fuel mixture burns, there is a margin for delaying IVC somewhat from the bottom dead center. Therefore, the increase in the operating angle is distributed to the relaxation of the IVO retardation and the retardation of the IVC. Specifically, it is only necessary to enlarge only the operating angle while keeping the center phase φ substantially constant with respect to the cold running state (C3). Incidentally, in the warm-up acceleration state (H4a, H4b, H4c), the IVC is set to be greatly advanced as compared with the cold-up acceleration state (C4).
[0051]
FIG. 9 is a timing chart showing a specific control state in the transition period from the cold start (C1) to the cold high idle state (C2).
[0052]
At the time of cranking, it is necessary to set the ignition timing to the optimum ignition timing before the compression top dead center that is most easily started. Further, the operating angle and the center phase of the intake valve are set so that IVC and IVO have the set values shown in FIG. 7C1. When shifting from the cranking to a cold state such as a cold high idle state, the ignition timing is retarded from the optimal ignition timing as much as possible in order to quickly raise the exhaust gas temperature and activate the catalyst early.
[0053]
First, in the cold machine high idle state (C2), the IVO is rapidly retarded as compared with the cranking. Specifically, the central phase is greatly retarded while the operating angle is slightly reduced according to the rotational speed. Along with this, IVC shifts from before the bottom dead center to after the bottom dead center, but is still kept in the vicinity of the bottom dead center, and the adverse effect on the actual compression ratio is small. Then, the ignition timing is retarded from the optimal ignition timing toward the compression top dead center according to the combustion state. Specifically, since the combustion state becomes better with the passage of time, the ignition timing is gradually retarded.
[0054]
FIG. 10 is a timing chart showing a control situation when a warm-up state is reached after a transition from a cold-high idle (C2) to a cold-running steady running (C4) through a cool-down slow acceleration (C3). Although it looks like complex control, it basically follows each setting in FIG.
[0055]
In a situation where the load increases as in the slow acceleration state (C3), the retard angle limit of the ignition timing gradually decreases as the operating angle increases as described above. Reduced. That is, the ignition timing is gradually advanced as the load increases. When the catalyst 3 reaches the activation temperature, that is, the conversion start temperature (T), the ignition retard is gradually released thereafter, and the IVO and IVC are gradually returned to the settings after warm-up. Specifically, control is performed toward a target value after warm-up in which driving performance such as fuel efficiency is the best. For reference, the ignition timing in the warm-up state (corresponding to the optimal ignition timing) is drawn with a broken line (b), and it can be seen that the ignition timing is significantly retarded in the cold state compared to this warm-up state. .
[0056]
In addition, as shown in FIGS. 9 and 10, in this embodiment, in order to improve the operation responsiveness and the like, the change angle of the operating angle by the operating angle changing mechanism 5 is suppressed to the minimum, and the phase changing mechanism 6 A relatively large change width of the center phase φ is set. Then, while keeping IVC in the vicinity of the bottom dead center, IVO is controlled finely toward the retard limit.
[0057]
Further, as shown in FIG. 7, in the initial setting (C1) at the time of starting and when the engine is stopped, the IVO is set after the top dead center and the IVC is set near the bottom dead center (before the bottom dead center). By slightly delaying the center phase, it is possible to quickly shift to the cold high idle state. Therefore, even when the responsiveness of the hydraulic actuators 10, 12, etc., is extremely slow, such as at the time of cryogenic start, the ignition timing retard limit can be expanded relatively early.
[0058]
FIG. 11 is a flowchart showing a flow of control executed by the ECU 7. In S10, it is determined (detected) whether the engine is in a warm state or a cold state. Specifically, it is determined whether the coolant temperature or the catalyst temperature detected by the water temperature sensor 8 or the catalyst temperature sensor 9 is equal to or higher than a predetermined value. If YES, the warm-up state is determined. If NO, the cool-down state is determined. In subsequent S11 or S21, the control maps of the ignition timing (IT), IVO, and IVC for the cold state or the warm-up state that are individually prepared in advance are read. In subsequent S12 or S22, various engine operating conditions such as engine speed and throttle opening are detected. By referring to the control map read in S11 or S21 according to the engine operating conditions, the operating angle changing mechanism 5 and the phase changing mechanism 6 are driven and controlled so that IVO and IVC become target values ( S13 and S14, or S23 and S24), and the ignition timing changing device 14 is driven and controlled so that IT becomes a target value (S15 and S16, or S25 and S26).
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a combustion control device for an internal combustion engine according to an embodiment of the present invention.
FIG. 2 is a perspective view showing the operating angle changing mechanism of the embodiment.
FIG. 3 is a characteristic diagram showing a change characteristic of an intake valve operating angle and a valve lift amount by the operating angle changing mechanism.
FIG. 4 is an operation explanatory view showing an aspect at the time of minimum or maximum swing in zero lift and full lift of the operating angle changing mechanism.
FIG. 5 is a cross-sectional view and a characteristic diagram according to the phase change mechanism of the embodiment.
FIG. 6 is an explanatory diagram showing the relationship between the operating characteristics of the intake valve and the exhaust temperature increase effect.
FIG. 7 is an explanatory diagram showing operating characteristics of the intake valve in a cold state.
FIG. 8 is an explanatory diagram showing operating characteristics of the intake valve in a warm-up state.
FIG. 9 is a timing chart when shifting from a cold start to a cold high idle state.
FIG. 10 is a timing chart at the time of transition from a cold high idle state to a warm state through a cold state acceleration state and a cold state steady running state.
FIG. 11 is a flowchart showing a control flow according to the present embodiment.
[Explanation of symbols]
2 ... Exhaust passage (exhaust system)
3 ... Catalyst
4 ... Intake valve
5 ... Working angle changing mechanism (intake characteristic changing means)
6. Phase change mechanism (intake characteristic change means)
8 ... Water temperature sensor (Cooling device detection means)
9 ... Catalyst temperature sensor (cooling device detection means)
14 ... Ignition timing changing device (ignition timing changing means)

Claims (9)

吸気弁の開時期及び閉時期を変更する吸気特性変更手段と、点火時期を変更する点火時期変更手段と、機関の冷機状態を検出する冷機検出手段と、を有し、かつ、排気系に排気浄化用の触媒が設けられた火花点火式の内燃機関の燃焼制御装置において、
上記吸気特性変更手段が、吸気弁の作動角及びバルブリフト量を変更する作動角変更機構と、吸気弁の作動角の中心位相を変更する位相変更機構と、を有し、
上記冷機状態では、点火時期を最適点火時期よりも遅角するとともに、この点火時期の遅角限界を拡大するように、ほぼ同じ運転条件の暖機状態に比して、吸気弁の開時期を遅角するとともに吸気弁のバルブリフト量を同等以下に設定することを特徴とする内燃機関の燃焼制御装置。
An intake characteristic changing means for changing the opening timing and closing timing of the intake valve, an ignition timing changing means for changing the ignition timing, and a cold machine detecting means for detecting the cold state of the engine, and having an exhaust in the exhaust system In a spark ignition internal combustion engine combustion control apparatus provided with a purification catalyst,
The intake characteristic changing means includes an operating angle changing mechanism for changing the operating angle and valve lift amount of the intake valve, and a phase changing mechanism for changing the center phase of the operating angle of the intake valve,
In the cold state, the ignition timing is retarded from the optimal ignition timing , and the intake valve opening timing is set to be larger than the warm-up state under almost the same operating conditions so as to expand the retard limit of the ignition timing. A combustion control device for an internal combustion engine characterized by retarding and setting a valve lift amount of an intake valve to be equal to or less than the same .
吸気弁の開時期及び閉時期を変更する吸気特性変更手段と、点火時期を変更する点火時期変更手段と、機関の冷機状態を検出する冷機検出手段と、を有し、かつ、排気系に排気浄化用の触媒が設けられた火花点火式の内燃機関の燃焼制御装置において、
上記吸気特性変更手段が、吸気弁の作動角及びバルブリフト量を変更する作動角変更機構と、吸気弁の作動角の中心位相を変更する位相変更機構と、を有し、
上記冷機状態では、点火時期を最適点火時期よりも遅角するとともに、この点火時期の遅角限界を拡大するように、吸気弁の開時期を遅角し、
かつ、暖機アイドル状態よりも機関回転数の高い冷機ハイアイドル状態では、上記暖機アイドル状態に比して、主に吸気弁の作動角の中心位相を遅角させることを特徴とする内燃機関の燃焼制御装置。
An intake characteristic changing means for changing the opening timing and closing timing of the intake valve, an ignition timing changing means for changing the ignition timing, and a cold machine detecting means for detecting the cold state of the engine, and having an exhaust in the exhaust system In a spark ignition internal combustion engine combustion control apparatus provided with a purification catalyst,
The intake characteristic changing means includes an operating angle changing mechanism for changing the operating angle and valve lift amount of the intake valve, and a phase changing mechanism for changing the center phase of the operating angle of the intake valve,
In the above cold state, with retarded from the optimum ignition timing of the ignition timing, so as to enlarge the retard limit of the ignition timing, retarded opening timing of the intake valve,
An internal combustion engine characterized by mainly retarding the center phase of the operating angle of the intake valve in the cold high idle state where the engine speed is higher than that in the warm idle state, compared to the warm idle state. Combustion control device.
上記冷機状態では、ほぼ同じ運転条件の暖機状態よりも吸気弁の開時期を遅角することを特徴とする請求項に記載の内燃機関の燃焼制御装置。 3. The combustion control apparatus for an internal combustion engine according to claim 2 , wherein in the cold state, the opening timing of the intake valve is retarded as compared with a warm state in which the operating conditions are substantially the same. 上記冷機状態では、吸気弁の開時期を排気上死点よりも遅角することを特徴とする請求項1〜3のいずれかに記載の内燃機関の燃焼制御装置。The combustion control device for an internal combustion engine according to any one of claims 1 to 3 , wherein in the cold state, the opening timing of the intake valve is retarded from the exhaust top dead center. 上記冷機状態では、吸気下死点に対する吸気弁の閉時期の遅角又は進角に比して、吸気弁の開時期を排気上死点から大きく遅角させる一方、この排気上死点からの吸気弁の開時期の遅角に比して、吸気弁の閉時期が吸気下死点から大きく離れることのないように、吸気弁の作動角及びその中心位相を可変制御することを特徴とする請求項1〜4のいずれかに記載の内燃機関の燃焼制御装置。In the cold state , the intake valve opening timing is greatly retarded from the exhaust top dead center as compared to the retard or advance of the intake valve closing timing relative to the intake bottom dead center. The operation angle of the intake valve and its center phase are variably controlled so that the closing timing of the intake valve does not greatly deviate from the intake bottom dead center as compared with the retard of the opening timing of the intake valve. The combustion control device for an internal combustion engine according to any one of claims 1 to 4. 上記冷機状態では、機関負荷の増加に応じて、吸気弁の開時期の遅角度合いを縮小するとともに、点火時期の遅角度合いを縮小することを特徴とする請求項1〜5のいずれかに記載の内燃機関の燃焼制御装置。In the above cold state, in response to the increase in the engine load, while reducing the retard degree of opening timing of the intake valves, to any of the preceding claims, characterized in that to reduce the retarding degree of the ignition timing A combustion control apparatus for an internal combustion engine as described. 暖機アイドル状態よりも機関回転数の高い冷機ハイアイドル状態では、上記暖機アイドル状態に比して点火時期を圧縮上死点へ向けて遅角させることを特徴とする請求項1〜6のいずれかに記載の内燃機関の燃焼制御装置。The high cold high idle state even with the engine rotational speed from the warm-up idle of claims 1 to 6, characterized in that retarding toward compression top dead center of the ignition timing as compared to the warm-up idle A combustion control apparatus for an internal combustion engine according to any one of the above. 上記作動角変更機構が、クランクシャフトから伝達される回転動力により回転する駆動軸と、この駆動軸に揺動可能に取り付けられ、吸気弁に当接してこれを作動させる揺動カムと、上記駆動軸に偏心して設けられた偏心カムと、作動角の変更時に回転駆動される制御軸と、この制御軸に偏心して設けられた制御カムと、この制御カムに回転可能に取り付けられたロッカーアームと、このロッカーアームの一端と上記偏心カムとを連携する第1リンクと、上記ロッカーアームの他端と上記揺動カムとを連携する第2リンクと、を有することを特徴とする請求項1〜7のいずれかに記載の内燃機関の燃焼制御装置。The operating angle changing mechanism includes a drive shaft that is rotated by the rotational power transmitted from the crankshaft, a swing cam that is swingably attached to the drive shaft, and that is in contact with the intake valve to operate it, and the drive An eccentric cam provided eccentric to the shaft, a control shaft driven to rotate when the operating angle is changed, a control cam provided eccentric to the control shaft, and a rocker arm rotatably attached to the control cam A first link that links one end of the rocker arm and the eccentric cam, and a second link that links the other end of the rocker arm and the swing cam . The combustion control device for an internal combustion engine according to any one of claims 7 to 9. 上記位相変更機構が、上記作動角変更機構を介して吸気弁を開閉駆動する駆動軸に設けられた第1ギヤと、この駆動軸と同軸上に配設され、クランクシャフトと同期して回転するスプロケット又はプーリに設けられた第2ギヤと、これら第1ギヤ及び第2ギヤに噛合するヘリカルギヤを備えたプランジャと、位相変更時に上記プランジャを駆動軸の軸方向へ駆動する駆動手段と、を有することを特徴とする請求項1〜8のいずれかに記載の内燃機関の燃焼制御装置。The phase change mechanism is provided on a drive shaft that opens and closes the intake valve via the operating angle change mechanism, and is disposed coaxially with the drive shaft and rotates in synchronization with the crankshaft. A second gear provided on the sprocket or pulley; a plunger provided with a helical gear meshing with the first gear and the second gear; and a drive means for driving the plunger in the axial direction of the drive shaft when the phase is changed. The combustion control device for an internal combustion engine according to any one of claims 1 to 8 .
JP2001030655A 2001-02-07 2001-02-07 Combustion control device for internal combustion engine Expired - Lifetime JP3829629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001030655A JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001030655A JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002235567A JP2002235567A (en) 2002-08-23
JP3829629B2 true JP3829629B2 (en) 2006-10-04

Family

ID=18894843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001030655A Expired - Lifetime JP3829629B2 (en) 2001-02-07 2001-02-07 Combustion control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3829629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473518B1 (en) * 2021-08-24 2022-10-18 Ford Global Technologies, Llc Methods for reducing cold start emissions for engines

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529555B2 (en) * 2004-06-22 2010-08-25 日産自動車株式会社 Control device for vehicle generator
JP4516401B2 (en) * 2004-10-18 2010-08-04 日立オートモティブシステムズ株式会社 Engine start control device
JP4525385B2 (en) * 2005-02-25 2010-08-18 トヨタ自動車株式会社 Variable valve mechanism control apparatus for internal combustion engine
JP4525406B2 (en) * 2005-03-25 2010-08-18 トヨタ自動車株式会社 Valve characteristic control device for internal combustion engine
JP4682697B2 (en) * 2005-05-25 2011-05-11 マツダ株式会社 Engine intake control device
JP4506566B2 (en) * 2005-05-31 2010-07-21 マツダ株式会社 Engine intake control device
JP4682713B2 (en) * 2005-06-13 2011-05-11 マツダ株式会社 Engine intake control device
JP2007138869A (en) * 2005-11-21 2007-06-07 Toyota Motor Corp Ignition timing control device for internal combustion engine
JP4839909B2 (en) * 2006-03-20 2011-12-21 日産自動車株式会社 Engine control device
KR100771821B1 (en) 2006-10-31 2007-10-30 지멘스 오토모티브 주식회사 Method for controlling variable valve timing apparatus for catalyst heating
JP4850744B2 (en) * 2007-02-13 2012-01-11 日立オートモティブシステムズ株式会社 Intake control device for internal combustion engine
EP2772633B1 (en) 2011-10-24 2019-11-20 Nissan Motor Co., Ltd Rotational speed control device and rotational speed control method for internal combustion engine
JP6131865B2 (en) * 2014-01-23 2017-05-24 トヨタ自動車株式会社 Control device for spark ignition internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11473518B1 (en) * 2021-08-24 2022-10-18 Ford Global Technologies, Llc Methods for reducing cold start emissions for engines

Also Published As

Publication number Publication date
JP2002235567A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
JP4416377B2 (en) Control device for internal combustion engine
JP4336444B2 (en) Variable valve operating device for internal combustion engine
JP3912147B2 (en) Variable valve operating device for internal combustion engine
JP4516401B2 (en) Engine start control device
JP3979081B2 (en) Combustion control system for internal combustion engine
JP4035963B2 (en) Control device for internal combustion engine
JP4581273B2 (en) Start-up control device for internal combustion engine
US20080255752A1 (en) Internal Combustion Engine Having Variable Valve Lift Mechanism
JP3829629B2 (en) Combustion control device for internal combustion engine
US20200232325A1 (en) Variable operation system for internal combustion engine, and control device therefor
JP4385509B2 (en) Control device for internal combustion engine for vehicle
JP4792882B2 (en) Control device for internal combustion engine
US9068483B2 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
US20090159027A1 (en) Variable valve actuating apparatus for internal combustion engine, and controller for variable valve actuating apparatus
JP2007239555A (en) Internal combustion engine
JP4345197B2 (en) Knocking control device for internal combustion engine
JP4366850B2 (en) Valve control device for internal combustion engine
JP2010059945A (en) Variable valve gear device for internal combustion engine
JP5515793B2 (en) Variable mechanism control system for internal combustion engine
JP4590746B2 (en) Variable valve operating device for internal combustion engine
JP4433591B2 (en) Variable valve operating device for internal combustion engine
JP4604358B2 (en) Internal combustion engine and control system thereof
JP2007303428A (en) Control device for cylinder direct injection type spark ignition internal combustion engine
JP5032000B2 (en) Internal combustion engine
JP2009097374A (en) Engine starting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060703

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3829629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120721

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130721

Year of fee payment: 7

EXPY Cancellation because of completion of term