JP3829182B2 - Support for uniformly supporting catalyst and method for producing the same - Google Patents

Support for uniformly supporting catalyst and method for producing the same Download PDF

Info

Publication number
JP3829182B2
JP3829182B2 JP2002055182A JP2002055182A JP3829182B2 JP 3829182 B2 JP3829182 B2 JP 3829182B2 JP 2002055182 A JP2002055182 A JP 2002055182A JP 2002055182 A JP2002055182 A JP 2002055182A JP 3829182 B2 JP3829182 B2 JP 3829182B2
Authority
JP
Japan
Prior art keywords
metal compound
catalyst
carrier
uniformly supported
active gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002055182A
Other languages
Japanese (ja)
Other versions
JP2003251202A (en
Inventor
潤子 内澤
存 小渕
哲哉 難波
明彦 大井
紀夫 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002055182A priority Critical patent/JP3829182B2/en
Publication of JP2003251202A publication Critical patent/JP2003251202A/en
Application granted granted Critical
Publication of JP3829182B2 publication Critical patent/JP3829182B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、金属化合物のコーティング膜をその表面に有する触媒を均一に担持させた担体およびその製造方法に関するものである。
【0002】
【従来の技術】
触媒を担持する基材表面に、触媒金属または触媒金属と共存する金属化合物のコーティング膜を形成する方法としては、従来、以下のようなものがあったが、それぞれ問題点を有していた。
・ゾルゲル法(特開平7-257941):基板表面に金属アルコキシド溶液を付着させ、これを加水分解した後、焼成する方法である。出発物質として用いる金属アルコキシドとして製造されているものは特定金属に限られ、汎用性が低い。
・真空蒸着法(特開昭54-58717):真空チャンバー内に基板を配置しこの基板を加熱保持した状態でチャンバー内に原料ガスを導入するとともにプラズマや電子ビーム等により原料ガスを励起して金属蒸気を発生させ、これにより生成した金属や金属化合物微粒子を堆積させて成膜する方法。成膜のための基板を真空状態に置かなければならず、特殊な装置を必要とする。また、蒸着源からの距離により膜厚に変化が生じるため広い範囲に均一な膜を得ることが困難である。
・化学蒸着法(特開平8-133877):薄膜材料としてのハロゲン化物、硫化物、水素化合物などを高温中で熱分解、酸化、還元、重合あるいは気相化学反応などをさせたのち、金属分子を基板上に沈着させて膜を形成させる方法。蒸気圧の高い化合物を原料として用いる必要があるため、高価であり汎用性に乏しい。また、蒸発した原料は多くが有害であり、取り扱いが難しい。
【0003】
【発明が解決しようとする課題】
本発明は上記の問題点を鑑みてなされたものであり、触媒を担持する基材が複雑な形状したものであっても、基材表面に、均一にかつ容易にかつ安全に得られる触媒又は触媒と共存する金属化合物(以下触媒等という)の膜及びその製造方法を提供する。
【0004】
【課題を解決するための手段】
上記の問題点を解決するために研究を行った結果、目的とする触媒等の金属化合物の金属成分を含む第一の金属化合物を溶質とする溶液を触媒を担持する基材(セラミック基材)にコーティングあるいは含浸させた後、該溶質と反応して第二の金属化合物の沈殿を生じせしめる気体に暴露させることにより、該触媒等の第二の金属化合物の沈殿が触媒を担持する基材(セラミック基材)の表面に生成および固定され、触媒を担持する基材(セラミック基材)上で均一なコーティング膜として得られることができることを見いだした。
【0005】
【本発明の実施の形態】
本発明で用いる第一の金属化合物としては、特に制限はないが、例えばRe,Pt,Pd,Rh,Ir,Au,Ru,Hf,Ag,Os,Cu,Mg,Ca,Sr,Ba,Zn,Cd,Hg,Al,Ga,In,Y,B,Si,Ge,Sn,Pb,Ti,Zr,As,Sb,Bi,V,Nb,Ta,Se,Cr,Mo,W,Mn,Fe,Co,Ni,La,Ce,Sm、Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu等の水に可溶性の化合物の1種又は2種以上が用いられる。
溶質中の第一の金属化合物と沈殿反応させる気体の組み合わせは、第一の金属化合物が不溶性の第二の金属化合物に化学変化する組み合わせであればどのようなものであっても良い。
本発明において、活性気体とは、第一の金属化合物と反応性があり、溶剤(水)に不溶性の第二の金属化合物を生ぜしめる気体という。
このような組み合わせは、第一の金属化合物が硝酸塩、硫酸塩、塩化物、カルボン酸塩、酸性コロイド溶液、リン酸塩などの酸性塩である場合には、アンモニア等の塩基性ガスの組み合わせが考えられ、さらに中和により水酸化物等の沈殿する全ての組み合わせが含まれる。
また該第一の金属化合物の塩基性コロイド溶液とCO2、HCl等の酸性ガスとの組み合わせ、即ち中和反応により沈殿を生ずる全ての組み合わせが含まれる。
さらに具体的には、Ca(OH)2、Sr(OH)2、Ba(OH)2と二酸化炭素との組み合わせ、即ち不溶性の炭酸塩を生ずるものやAgNO3とHCl等の組み合わせ、即ち不溶性のハロゲン化合物を生ずるもの、金属硝酸塩とH2Sの組み合わせ、即ち不溶性の硫化物を生ずるもの等が挙げられる。
【0006】
コーティング膜をその上に形成させるセラミック基材としては、一般的な触媒担体や構造材、例えば、アルミナ、シリカ、チタニア、ジルコニア、シリカ−アルミナ、アルミナ−ジルコニア、アルミナ−チタニア、シリカ−チタニア、シリカ−ジルコニア、チタニア−ジルコニア、炭化珪素、コージェライト、ムライト等のセラミックス、これらを塗布した陶器、磁器、ガラス、硬質ガラス、ステンレス、耐腐食性合金からなる群れより選ばれる1種又は2種以上の材料で作られる。
本発明においては、第二の金属化合物沈着膜を有する触媒とは、第二の金属化合物そのものが触媒として作用する場合、第二の金属化合物を焼成したものが触媒として作用する場合、第二の金属化合物がさらに別の化合物と反応して触媒として作用する場合などが含まれる。
【0007】
本発明の実施の形態をまとめると以下のとおりである。
(1) 第一の金属化合物を溶質として含む溶液をセラミック基材に含浸させた後、セラミック基材を該溶質と反応して沈殿を生じせしめる活性気体に暴露させ、セラミック基材の表面に得られる第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(2) 第一の金属成分が、Re,Pt,Pd,Rh,Ir,Au,Ru,Hf,Ag,Os,Cu,Mg,Ca,Sr,Ba,Zn,Cd,Hg,Al,Ga,In,Y,B,Si,Ge,Sn,Pb,Ti,Zr,As,Sb,Bi,V,Nb,Ta,Se,Cr,Mo,W,Mn,Fe,Co,Ni,La,Ce,Sm、Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luから選ばれる水に可溶性の化合物の1種もしくは2種以上である上記1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(3) 第一の金属化合物の溶液が酸性であり、活性気体が塩基性である上記1又は2記載の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(4) 第一の金属化合物の溶液が金属成分の硝酸塩、硫酸塩、塩化物、カルボン酸塩、酸性コロイド溶液、リン酸塩から選ばれる1種又は2種以上であり、活性気体がアンモニアガスである上記3の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(5) 第一の金属化合物の溶液が塩基性であり、活性気体が酸性である上記1又は2記載の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(6) 第一の金属化合物の溶液が金属成分の塩基性コロイド溶液であり、活性気体がCO2、HClである上記5記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(7) 第一の金属化合物の溶液がCa(OH)2、Sr(OH)2、Ba(OH)2であり、活性気体が二酸化炭素である上記5記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(8) 第一の金属化合物の溶液がAgNO3であり、活性気体がHClである上記1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(9) 第一の金属化合物の溶液が金属硝酸塩であり、活性気体がH2Sである上記1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。
(10) 触媒が、陶器、磁器、ガラス、硬質ガラス、ステンレス、耐腐食性合金からなる群れより選ばれる1種又は2種以上の材料で作られる部材の表面を覆っている上記1ないし上記9のいずれかひとつに記載した触媒を均一に担持させた担体。
(11) 第一の金属化合物がチタニアゾルであり、活性気体がアンモニア蒸気であり、第二の金属化合物がチタニアであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである上記4に記載した触媒を均一に担持させた担体。
(12) 第一の金属化合物が硝酸アルミニウムであり、活性気体がアンモニア蒸気であり、第二の金属化合物がアルミナであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである上記4に記載した触媒を均一に担持させた担体。
(13) 第一の金属化合物が水酸化バリウムであり、活性気体が二酸化炭素であり、第二の金属化合物が酸化バリウムであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである上記7に記載した触媒を均一に担持させた担体。
(14) 第一の金属化合物を溶質として含む溶液を、セラミック基材に含浸させた後、該溶質と反応して沈殿を生じせしめる活性気体に暴露させ、セラミック基材の表面に、第二の金属化合物沈着膜を生成および固定することを特徴とする触媒を均一に担持させた担体の製造方法。
(15) 固定が焼成により行われる上記14に記載した触媒を均一に担持させた担体の製造方法。
【0008】
【実施例】
以下、本発明を添付図面を参照して説明するが、本発明はこれに限定されるものではない。本発明の一つの例として、基材として炭化珪素(SiC、気孔平均径10μm)を用いたフィルターを用いた。実施例1〜3および比較例1〜3は、いずれもこのフィルターを用いて行った。
実施例1
SiC基材(図1a、15x15x150mm、重量約30g)を容器に垂直に立て、ハニカム底面と容器との間に0.5mm程度の隙間を開け、そこへ濃度および全容積を調整したチタニアコロイドゾル液(TiO2=10wt%、酸性)を導入し、同基材へ含浸させた。
その後、アンモニア蒸気中に一晩放置してチタニアゾル水溶液を中和し、空気中で乾燥させ、600℃で1時間焼成し担持した。
このようにしてチタニアを0.3mmol/g含有する試料を得た。その後、チタニアを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
分析の結果、得られたTi濃度(SiC中のSiに対するモル濃度)の標準偏差および変動係数(%)を計算した。
【0009】
実施例2
実施例1のチタニアコロイドゾルを硝酸アルミニウム水溶液(1.3M、酸性)に代えた他は、実施例1と同様にしてアルミナ担持基材を得た。
実施例1と同様に、アルミナを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
【0010】
実施例3
水酸化バリウム水溶液(0.125M、塩基性)7ccに実施例1と同様のSiC基材を窒素中、温度20℃で浸漬し、その水溶液を基材に含浸させた後、二酸化炭素雰囲気中に一晩放置して水酸化バリウム水溶液を反応させた。その後空気中で乾燥させ、600℃で1時間焼成した。
実施例1と同様に、炭酸バリウムを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
【0011】
比較例1
実施例1と同様に基材にチタニアコロイドゾル水溶液を含浸させた後、中和処理工程を経ずにそのまま空気中で乾燥させ、同様に焼成処理を行った。その後、実施例1と同様に、チタニアを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
比較例2
実施例2と同様に基材に硝酸アルミニウム水溶液を含浸させた後、中和処理工程を経ずにそのまま空気中で乾燥させ、同様に焼成処理を行った。
実施例2と同様に、アルミナを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
比較例3
実施例3と同様に基材に水酸化バリウム水溶液を含浸させた後、二酸化炭素処理工程を経ずにそのまま窒素中で乾燥させ、同様に焼成処理を行った。
実施例3と同様に、炭酸バリウムを担持したSiC基材を高さ方向に対して垂直に約1.5cmの間隔で切断し、各切断面における担持元素の分布をエネルギー分散型X線分光装置(EDX)を備えた走査型電子顕微鏡 (SEM)により、高さ方向に対して垂直な各切断面(図1b)において基材の稜線(▲1▼)、側面中央(▲2▼)、中央(▲3▼)および内部(▲4▼、▲5▼)に相当する箇所の分析を行った。
これらの結果を表1に示す。また、実施例3におけるバリウムの分布を比較例3と合わせて図2に示す。
【0012】
【表1】

Figure 0003829182
【0013】
【発明の効果】
表1および図2に示した結果から、気体による沈殿生成処理を経ることにより、いずれも金属酸化物分布の均一性が向上した。本発明により、複雑な形状したセラミックス基材であっても、その表面に金属化合物の膜を均一にかつ容易にかつ安全に得られる触媒を均一に担持させた担体及びその製造方法を提供できた。
【図面の簡単な説明】
【図1】使用したSiC基材における触媒金属濃度の測定個所を示す図
【図2】酸化バリウム担持SiC基材(8x8セル)内のバリウム濃度の分布図
a:N2中乾燥したもの
b:二酸化炭素暴露による沈殿処理後乾燥したもの
【符号の説明】
▲1▼座標(1,1) 点 =フィルターの角
▲2▼座標(1,4) 点=辺の中心
▲3▼座標(4,4)=フィルターの中心
▲4▼座標(4,2)点
▲5▼座標(2,2) 点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carrier on which a catalyst having a metal compound coating film on its surface is uniformly supported and a method for producing the same.
[0002]
[Prior art]
Conventionally, methods for forming a coating film of a catalyst compound or a metal compound coexisting with a catalyst metal on the surface of a substrate supporting the catalyst have the following methods, but each has a problem.
Sol-gel method (Japanese Patent Laid-Open No. 7-257941): A method in which a metal alkoxide solution is attached to the substrate surface, hydrolyzed, and then fired. What is manufactured as a metal alkoxide used as a starting material is limited to a specific metal, and its versatility is low.
・ Vacuum deposition method (Japanese Patent Laid-Open No. 54-58717): A substrate is placed in a vacuum chamber and the substrate is heated and held, and then the source gas is introduced into the chamber and the source gas is excited by plasma or an electron beam. A method of forming a film by generating metal vapor and depositing metal or metal compound fine particles generated thereby. The substrate for film formation must be placed in a vacuum state, and a special apparatus is required. In addition, since the film thickness varies depending on the distance from the vapor deposition source, it is difficult to obtain a uniform film over a wide range.
・ Chemical vapor deposition method (Japanese Patent Laid-Open No. 8-133877): After metal halides, sulfides, hydrogen compounds, etc. as thin film materials are thermally decomposed, oxidized, reduced, polymerized or vapor-phase chemical reaction is performed at high temperature, then metal molecules A method of forming a film by depositing on a substrate. Since it is necessary to use a compound having a high vapor pressure as a raw material, it is expensive and lacks versatility. Also, many of the evaporated materials are harmful and difficult to handle.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above problems, and even if the base material carrying the catalyst has a complicated shape, the catalyst can be obtained uniformly, easily and safely on the surface of the base material. Provided are a film of a metal compound (hereinafter referred to as a catalyst or the like) coexisting with a catalyst and a method for producing the same.
[0004]
[Means for Solving the Problems]
As a result of researches to solve the above problems, a base material (ceramic base material) carrying a catalyst with a solution containing a first metal compound containing a metal component of a metal compound such as a target catalyst as a solute After coating or impregnating the catalyst, the substrate is exposed to a gas that reacts with the solute to cause precipitation of the second metal compound, whereby the second metal compound precipitate such as the catalyst carries the catalyst ( It has been found that a uniform coating film can be obtained on a substrate (ceramic substrate) that is generated and fixed on the surface of a ceramic substrate) and carries a catalyst.
[0005]
[Embodiments of the Invention]
The first metal compound used in the present invention is not particularly limited. For example, Re, Pt, Pd, Rh, Ir, Au, Ru, Hf, Ag, Os, Cu, Mg, Ca, Sr, Ba, Zn , Cd, Hg, Al, Ga, In, Y, B, Si, Ge, Sn, Pb, Ti, Zr, As, Sb, Bi, V, Nb, Ta, Se, Cr, Mo, W, Mn, Fe , Co, Ni, La, Ce, Sm, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, etc. One or more of water-soluble compounds are used.
The combination of the first metal compound in the solute and the gas that undergoes precipitation reaction may be any combination that chemically changes the first metal compound into an insoluble second metal compound.
In the present invention, the active gas is a gas that is reactive with the first metal compound and produces a second metal compound that is insoluble in the solvent (water).
In such a combination, when the first metal compound is an acid salt such as nitrate, sulfate, chloride, carboxylate, acidic colloid solution, or phosphate, a combination of a basic gas such as ammonia is used. Further, all combinations in which hydroxides and the like are precipitated by neutralization are included.
Further, combinations of the basic colloidal solution of the first metal compound and an acidic gas such as CO 2 and HCl, that is, all combinations that cause precipitation by a neutralization reaction are included.
More specifically, a combination of Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and carbon dioxide, that is, an insoluble carbonate, or a combination of AgNO 3 and HCl, that is, insoluble. Examples include those that generate halogen compounds, and combinations of metal nitrates and H 2 S, that is, those that generate insoluble sulfides.
[0006]
The ceramic base material on which the coating film is formed includes a general catalyst carrier or a structural material such as alumina, silica, titania, zirconia, silica-alumina, alumina-zirconia, alumina-titania, silica-titania, silica. -One or more selected from the group consisting of ceramics such as zirconia, titania-zirconia, silicon carbide, cordierite, mullite, ceramics coated with these, porcelain, glass, hard glass, stainless steel, and corrosion-resistant alloys Made of material.
In the present invention, the catalyst having the second metal compound deposited film means that when the second metal compound itself acts as a catalyst, when the second metal compound calcined acts as a catalyst, The case where a metal compound reacts with another compound and acts as a catalyst is included.
[0007]
Embodiments of the present invention are summarized as follows.
(1) After impregnating a ceramic substrate with a solution containing the first metal compound as a solute, the ceramic substrate is exposed to an active gas that reacts with the solute to cause precipitation, and is obtained on the surface of the ceramic substrate. A carrier on which a catalyst having a second metal compound deposited film is uniformly supported.
(2) The first metal component is Re, Pt, Pd, Rh, Ir, Au, Ru, Hf, Ag, Os, Cu, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga, In, Y, B, Si, Ge, Sn, Pb, Ti, Zr, As, Sb, Bi, V, Nb, Ta, Se, Cr, Mo, W, Mn, Fe, Co, Ni, La, Ce, The second metal compound as described in 1 above, which is one or more of water-soluble compounds selected from Sm, Pr, Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A carrier on which a catalyst having a deposited film is uniformly supported.
(3) The support | carrier which carry | supported uniformly the catalyst which has the 2nd metal compound deposit film of said 1 or 2 whose solution of a 1st metal compound is acidic and whose active gas is basic.
(4) The solution of the first metal compound is one or more selected from nitrates, sulfates, chlorides, carboxylates, acidic colloidal solutions, and phosphates of metal components, and the active gas is ammonia gas. A carrier on which the catalyst having the second metal compound deposition film of 3 above is uniformly supported.
(5) The support | carrier which carry | supported the catalyst which has the 2nd metal compound deposition film | membrane of said 1 or 2 said 1 or 2 whose solution of a 1st metal compound is basic and an active gas is acidic.
(6) The first metal compound solution is a basic colloidal solution of metal components, and the catalyst having the second metal compound deposited film described in 5 above, wherein the active gas is CO 2 or HCl, is uniformly supported. Carrier.
(7) The second metal compound deposition film as described in 5 above, wherein the solution of the first metal compound is Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 and the active gas is carbon dioxide. A carrier on which a catalyst having the catalyst is uniformly supported.
(8) a solution of AgNO 3 first metal compound, a carrier inert gas is allowed to uniformly support the catalyst having a second metal compound deposited film described in the above 1 is HCl.
(9) A carrier on which a catalyst having the second metal compound deposited film described in 1 above is uniformly supported, wherein the solution of the first metal compound is a metal nitrate and the active gas is H 2 S.
(10) The above 1 to 9 above, wherein the catalyst covers the surface of a member made of one or more materials selected from the group consisting of ceramics, porcelain, glass, hard glass, stainless steel, and corrosion resistant alloys. A carrier on which the catalyst described in any one of the above is uniformly supported.
(11) The first metal compound is titania sol, the active gas is ammonia vapor, the second metal compound is titania, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which the prepared catalyst is uniformly supported.
(12) The first metal compound is aluminum nitrate, the active gas is ammonia vapor, the second metal compound is alumina, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which the described catalyst is uniformly supported.
(13) The first metal compound is barium hydroxide, the active gas is carbon dioxide, the second metal compound is barium oxide, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which the catalyst described in 7 is uniformly supported.
(14) After impregnating the ceramic substrate with a solution containing the first metal compound as a solute, the ceramic substrate is exposed to an active gas that reacts with the solute to cause precipitation, and the second surface is exposed to the second surface. A method for producing a carrier on which a catalyst is uniformly supported, characterized by producing and fixing a metal compound deposited film.
(15) A method for producing a carrier on which the catalyst described in the above (14) is uniformly supported by calcination.
[0008]
【Example】
Hereinafter, the present invention will be described with reference to the accompanying drawings, but the present invention is not limited thereto. As an example of the present invention, a filter using silicon carbide (SiC, average pore diameter of 10 μm) as a substrate was used. Examples 1 to 3 and Comparative Examples 1 to 3 were all performed using this filter.
Example 1
A titania colloidal sol solution (Fig. 1a, 15x15x150mm, weight approx. 30g) is set up perpendicular to the container, a gap of about 0.5mm is made between the bottom of the honeycomb and the container, and the concentration and total volume are adjusted there ( TiO 2 = 10 wt%, acidic) was introduced and impregnated into the same substrate.
Then, it was left in ammonia vapor overnight to neutralize the titania sol aqueous solution, dried in the air, baked at 600 ° C. for 1 hour and supported.
In this way, a sample containing 0.3 mmol / g titania was obtained. Thereafter, the SiC substrate carrying titania was cut at intervals of about 1.5 cm perpendicular to the height direction, and the distribution of the supported elements on each cut surface was scanned with an energy dispersive X-ray spectrometer (EDX). Using a scanning electron microscope (SEM), the ridge line (▲ 1 ▼), the center of the side (▲ 2 ▼), the center (▲ 3 ▼) and the inside of each cut surface (Fig. 1b) perpendicular to the height direction The part corresponding to (4), (5) was analyzed.
As a result of the analysis, the standard deviation and coefficient of variation (%) of the obtained Ti concentration (molar concentration relative to Si in SiC) were calculated.
[0009]
Example 2
An alumina-supported substrate was obtained in the same manner as in Example 1 except that the titania colloidal sol of Example 1 was replaced with an aqueous aluminum nitrate solution (1.3 M, acidic).
In the same manner as in Example 1, an alumina-supported SiC substrate was cut at an interval of about 1.5 cm perpendicular to the height direction, and the distribution of supported elements on each cut surface was determined by an energy dispersive X-ray spectrometer (EDX). ) With a scanning electron microscope (SEM) equipped with a ridge line (▲ 1 ▼), side center (▲ 2 ▼), center (▲ 3) and the inside ((4), (5)) were analyzed.
[0010]
Example 3
A SiC substrate similar to that of Example 1 was immersed in nitrogen in 7 cc of an aqueous barium hydroxide solution (0.125M, basic) at a temperature of 20 ° C. in nitrogen, and the substrate was impregnated with the aqueous solution. The barium hydroxide aqueous solution was allowed to react with standing overnight. Thereafter, it was dried in air and calcined at 600 ° C. for 1 hour.
In the same manner as in Example 1, a SiC base material supporting barium carbonate was cut at an interval of about 1.5 cm perpendicular to the height direction, and the distribution of supported elements on each cut surface was determined by an energy dispersive X-ray spectrometer ( Using a scanning electron microscope (SEM) equipped with EDX), the ridgeline (▲ 1 ▼), the center of the side (▲ 2 ▼), the center ( (3)) and locations corresponding to the inside (4, 5) were analyzed.
[0011]
Comparative Example 1
The substrate was impregnated with a titania colloidal sol aqueous solution in the same manner as in Example 1, and then dried in the air as it was without passing through the neutralization treatment step, followed by firing treatment in the same manner. Thereafter, as in Example 1, the SiC substrate supporting titania was cut at intervals of about 1.5 cm perpendicular to the height direction, and the distribution of the supported elements on each cut surface was determined by an energy dispersive X-ray spectrometer. Using a scanning electron microscope (SEM) equipped with (EDX), the ridgeline (▲ 1 ▼), the center of the side (▲ 2 ▼), the center of each cut surface (Fig. 1b) perpendicular to the height direction The analysis was made on the locations corresponding to (3) and inside (4) and (5).
Comparative Example 2
After impregnating the base material with an aqueous aluminum nitrate solution in the same manner as in Example 2, it was dried in the air as it was without passing through the neutralization treatment step, and was similarly fired.
In the same manner as in Example 2, an alumina-supported SiC substrate was cut at an interval of about 1.5 cm perpendicular to the height direction, and the distribution of supported elements on each cut surface was determined by an energy dispersive X-ray spectrometer (EDX). ) With a scanning electron microscope (SEM) equipped with a ridge line (▲ 1 ▼), side center (▲ 2 ▼), center (▲ 3) and the inside ((4), (5)) were analyzed.
Comparative Example 3
The base material was impregnated with an aqueous barium hydroxide solution in the same manner as in Example 3, and then dried in nitrogen as it was without passing through the carbon dioxide treatment step, and was similarly fired.
In the same manner as in Example 3, a SiC base material supporting barium carbonate was cut at an interval of about 1.5 cm perpendicular to the height direction, and the distribution of supported elements on each cut surface was determined by an energy dispersive X-ray spectrometer ( Using a scanning electron microscope (SEM) equipped with EDX), the ridgeline (▲ 1 ▼), the center of the side (▲ 2 ▼), the center ( (3)) and locations corresponding to the inside (4, 5) were analyzed.
These results are shown in Table 1. Further, the distribution of barium in Example 3 is shown in FIG.
[0012]
[Table 1]
Figure 0003829182
[0013]
【The invention's effect】
From the results shown in Table 1 and FIG. 2, the uniformity of the metal oxide distribution was improved in all through the precipitation generation treatment with gas. According to the present invention, it is possible to provide a carrier in which a catalyst capable of uniformly and easily and safely obtaining a metal compound film is uniformly supported on the surface of a ceramic substrate having a complicated shape, and a method for producing the same. .
[Brief description of the drawings]
FIG. 1 is a diagram showing measurement points of catalytic metal concentration in a used SiC substrate. FIG. 2 is a distribution diagram of barium concentration in a barium oxide-supporting SiC substrate (8 × 8 cell). A: dried in N 2 b: Dried after precipitation treatment by carbon dioxide exposure [Explanation of symbols]
(1) Coordinate (1, 1) Point = Filter corner (2) Coordinate (1, 4) Point = Center of side (3) Coordinate (4, 4) = Filter center (4) Coordinate (4, 2) Point (5) Coordinate (2,2) Point

Claims (15)

第一の金属化合物を溶質として含む溶液をセラミック基材に含浸させた後、セラミック基材を該溶質と反応して沈殿を生じせしめる活性気体に暴露させ、セラミック基材の表面に得られる第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。After impregnating the ceramic substrate with a solution containing the first metal compound as a solute, the ceramic substrate is exposed to an active gas that reacts with the solute to cause precipitation, and is obtained on the surface of the ceramic substrate. A carrier on which a catalyst having a metal compound deposited film is uniformly supported. 第一の金属成分が、Re,Pt,Pd,Rh,Ir,Au,Ru,Hf,Ag,Os,Cu,Mg,Ca,Sr,Ba,Zn,Cd,Hg,Al,Ga,In,Y,B,Si,Ge,Sn,Pb,Ti,Zr,As,Sb,Bi,V,Nb,Ta,Se,Cr,Mo,W,Mn,Fe,Co,Ni,La,Ce,Sm、Pr,Nd,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Luから選ばれる水に可溶性の化合物の1種もしくは2種以上である請求項1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。The first metal component is Re, Pt, Pd, Rh, Ir, Au, Ru, Hf, Ag, Os, Cu, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Al, Ga, In, Y , B, Si, Ge, Sn, Pb, Ti, Zr, As, Sb, Bi, V, Nb, Ta, Se, Cr, Mo, W, Mn, Fe, Co, Ni, La, Ce, Sm, Pr 2. The second metal compound deposited film according to claim 1, which is one or more of water-soluble compounds selected from Nd, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. A carrier on which a catalyst having a catalyst is uniformly supported. 第一の金属化合物の溶液が酸性であり、活性気体が塩基性である請求項1又は2記載の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。The carrier having the second metal compound deposited film uniformly supported thereon according to claim 1 or 2, wherein the solution of the first metal compound is acidic and the active gas is basic. 第一の金属化合物の溶液が金属成分の硝酸塩、硫酸塩、塩化物、カルボン酸塩、酸性コロイド溶液、リン酸塩から選ばれる1種又は2種以上であり、活性気体がアンモニアガスである請求項3の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。The solution of the first metal compound is at least one selected from nitrate, sulfate, chloride, carboxylate, acidic colloidal solution and phosphate of the metal component, and the active gas is ammonia gas A carrier on which a catalyst having the second metal compound deposition film of Item 3 is uniformly supported. 第一の金属化合物の溶液が塩基性であり、活性気体が酸性である請求項1又は2記載の第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。3. A carrier on which a catalyst having a second metal compound deposited film is uniformly supported according to claim 1, wherein the solution of the first metal compound is basic and the active gas is acidic. 第一の金属化合物の溶液が金属成分の塩基性コロイド溶液であり、活性気体がCO2、HClである請求項5記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。6. A carrier on which a catalyst having a second metal compound deposited film is uniformly supported, according to claim 5, wherein the first metal compound solution is a basic colloidal solution of a metal component, and the active gas is CO 2 or HCl. 第一の金属化合物の溶液がCa(OH)2、Sr(OH)2、Ba(OH)2であり、活性気体が二酸化炭素である請求項5記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。6. The catalyst having a second metal compound deposited film according to claim 5, wherein the solution of the first metal compound is Ca (OH) 2 , Sr (OH) 2 , Ba (OH) 2 , and the active gas is carbon dioxide. A carrier on which is uniformly supported. 第一の金属化合物の溶液がAgNO3であり、活性気体がHClである請求項1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。The carrier having the second metal compound deposited film uniformly supported thereon according to claim 1, wherein the first metal compound solution is AgNO 3 and the active gas is HCl. 第一の金属化合物の溶液が金属硝酸塩であり、活性気体がH2Sである請求項1に記載した第二の金属化合物沈着膜を有する触媒を均一に担持させた担体。2. The carrier on which the catalyst having the second metal compound deposited film is uniformly supported according to claim 1, wherein the solution of the first metal compound is a metal nitrate and the active gas is H 2 S. 触媒が、陶器、磁器、ガラス、硬質ガラス、ステンレス、耐腐食性合金からなる群れより選ばれる1種又は2種以上の材料で作られる部材の表面を覆っている請求項1ないし請求項9のいずれかひとつに記載した触媒を均一に担持させた担体。10. The catalyst according to claim 1, wherein the catalyst covers the surface of a member made of one or more materials selected from the group consisting of ceramics, porcelain, glass, hard glass, stainless steel, and corrosion-resistant alloys. A carrier on which any one of the catalysts described above is uniformly supported. 第一の金属化合物がチタニアゾルであり、活性気体がアンモニア蒸気であり、第二の金属化合物がチタニアであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである請求項4に記載した触媒等を均一に担持させた担体。The catalyst according to claim 4, wherein the first metal compound is titania sol, the active gas is ammonia vapor, the second metal compound is titania, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which a material is uniformly supported. 第一の金属化合物が硝酸アルミニウムであり、活性気体がアンモニア蒸気であり、第二の金属化合物がアルミナであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである請求項4に記載した触媒を均一に担持させた担体。The first metal compound is aluminum nitrate, the active gas is ammonia vapor, the second metal compound is alumina, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which a catalyst is uniformly supported. 第一の金属化合物が水酸化バリウムであり、活性気体が二酸化炭素であり、第二の金属化合物が酸化バリウムであり、部材が炭化シリコン製のジーゼルエンジン用の排気ガスフィルターである請求項7に記載した触媒を均一に担持させた担体。The first metal compound is barium hydroxide, the active gas is carbon dioxide, the second metal compound is barium oxide, and the member is an exhaust gas filter for a diesel engine made of silicon carbide. A carrier on which the described catalyst is uniformly supported. 第一の金属化合物を溶質として含む溶液を、セラミック基材に含浸させた後、該溶質と反応して沈殿を生じせしめる活性気体に暴露させ、セラミック基材の表面に、第二の金属化合物沈着膜を生成および固定することを特徴とする触媒を均一に担持させた担体の製造方法。After impregnating the ceramic substrate with a solution containing the first metal compound as a solute, the ceramic substrate is exposed to an active gas that reacts with the solute to cause precipitation, and the second metal compound is deposited on the surface of the ceramic substrate. A method for producing a carrier on which a catalyst is uniformly supported, characterized in that a membrane is formed and fixed. 固定が焼成により行われる請求項14に記載した触媒を均一に担持させた担体の製造方法。The manufacturing method of the support | carrier which carry | supported the catalyst of Claim 14 uniformly fixed by baking.
JP2002055182A 2002-03-01 2002-03-01 Support for uniformly supporting catalyst and method for producing the same Expired - Lifetime JP3829182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002055182A JP3829182B2 (en) 2002-03-01 2002-03-01 Support for uniformly supporting catalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002055182A JP3829182B2 (en) 2002-03-01 2002-03-01 Support for uniformly supporting catalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003251202A JP2003251202A (en) 2003-09-09
JP3829182B2 true JP3829182B2 (en) 2006-10-04

Family

ID=28666079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002055182A Expired - Lifetime JP3829182B2 (en) 2002-03-01 2002-03-01 Support for uniformly supporting catalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP3829182B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101738486B1 (en) * 2016-01-13 2017-06-08 한국에너지기술연구원 Method for forming metal oxide coating layer on catalyst substrate, calalyst substrate including metal oxide coating layer and catalyst apparatus
JP6775172B2 (en) * 2017-09-20 2020-10-28 Jfeスチール株式会社 Method for manufacturing precipitation catalyst
CN116716633B (en) * 2023-08-08 2023-12-22 四川大学 Electrocatalyst of carbon-based hafnium oxide supported iridium cluster and preparation and application thereof

Also Published As

Publication number Publication date
JP2003251202A (en) 2003-09-09

Similar Documents

Publication Publication Date Title
US7166323B2 (en) Method of coating catalyst carrier layer of metal-metal oxide, method of depositing active catalyst particles onto metal substrates for preparing metal monolith catalyst modules, and module thereby
JP4311918B2 (en) Method for producing perovskite complex oxide
EP0600971B1 (en) Aluminum oxide catalyst supports from alumina sols
JP4560621B2 (en) Method for producing fine particle catalyst, alloy fine particle catalyst or composite oxide fine particle catalyst, apparatus therefor, and method for using the same
JP5233026B2 (en) Manufacturing method of DPF
WO2006064809A1 (en) Heat-resistant oxide
JP6047477B2 (en) NOx removal catalyst and method for producing the same
KR20140119331A (en) Nano-catalytic filter and manufacturing method thereof
JP2010247079A (en) Method for manufacturing exhaust gas-cleaning catalyst
JP3829182B2 (en) Support for uniformly supporting catalyst and method for producing the same
JP4352300B2 (en) Composite oxide, method for producing the same, and co-catalyst for exhaust gas purification
US7625836B2 (en) Heat-resistant oxide
US3966645A (en) Catalyst
JP3959460B2 (en) Manufacturing method of ceramic composite
JP3030328B2 (en) Ultrafine noble metal dispersed titanium oxide thin film and its manufacturing method
JP5975104B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4719919B2 (en) Method for producing functional coating on aluminum-based material and aluminum-based material having the functional coating
JP3817603B2 (en) Photocatalyst particle fixing coating agent and photocatalyst particle fixing method
JP2001224962A (en) Method for manufacturing catalyst by using supercritical fluid and catalyst obtained thereby
US20030022788A1 (en) Ceramic catalyst body
JP4758081B2 (en) Catalyst body, catalyst body for exhaust gas purification, and method for producing catalyst body
KR101218871B1 (en) Photocatalyst-carrier and its manufacturing process
JP3094102B1 (en) Photocatalyst precursor solution, photocatalyst and method for producing the same
RU2593021C1 (en) Method for production of nanomaterials by modification of surface of metal-containing frame compound (versions)
WO2023063353A1 (en) Catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

R150 Certificate of patent or registration of utility model

Ref document number: 3829182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term