JP3826651B2 - Wiring board manufacturing method - Google Patents

Wiring board manufacturing method Download PDF

Info

Publication number
JP3826651B2
JP3826651B2 JP2000027175A JP2000027175A JP3826651B2 JP 3826651 B2 JP3826651 B2 JP 3826651B2 JP 2000027175 A JP2000027175 A JP 2000027175A JP 2000027175 A JP2000027175 A JP 2000027175A JP 3826651 B2 JP3826651 B2 JP 3826651B2
Authority
JP
Japan
Prior art keywords
hole
plating
layer
wiring board
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000027175A
Other languages
Japanese (ja)
Other versions
JP2001217539A (en
Inventor
博 黒川
辰彦 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2000027175A priority Critical patent/JP3826651B2/en
Publication of JP2001217539A publication Critical patent/JP2001217539A/en
Application granted granted Critical
Publication of JP3826651B2 publication Critical patent/JP3826651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、配線板の製造法に関する。
【0002】
【従来の技術】
配線板は、通常、銅張り積層板にスルーホールとなる孔をあけ、その孔の内壁と銅箔表面に無電解めっきを行って、スルーホールとして必要な厚さまで電気めっきを行い、そのスルーホールめっきを保護しながら不要な銅を除去するためにエッチングレジストを形成し、例えば塩化第二銅と塩酸からなる化学エッチング液をスプレーで噴霧し、不要な銅を選択的にエッチング除去することによって製造されている。
近年では機器の小型化によって、配線板の高密度化が要求され、回路パターンの密度も、導体幅/導体間隔が30μm/30μm迄要求されてきている。
この要求に対応する配線板は、前記従来の製造法では非常に困難となってきているため、高密度でありながら経済的に優れた配線板の製造法が、特開平11-54910号公報に提案されている。
【0003】
【発明が解決しようとする課題】
近年、実装方式としてチップを直接搭載する基板が要求されてきており、チップとの接続方式としてACF(異方導電性膜)等を用いたフリップチップ方式が高密度実装として採用されてきている。
これらの実装方式に対応する基板側への要求としては、これまで以上に高密度であることが要求され、更にチップとの接続ラインに幅の高精度化、チップとの接続面の高さ(厚み)ばらつきの高精度化も必要となる。
前記公報に開示された製法は、経済的に優れており、微細配線も従来と比較して格段の向上を図ることができるが更なる高密度化の要求に対しては以下の課題がある。
【0004】
回路パターンを形成した後、電気めっきでスルーホールを形成することから、ライン及びスルーホールに対して電気めっきリードとなるラインを接続しておかなければならない。そのめっきリードラインのために配線密度が上がらなかったり、スルーホールヘ接続するめっきリード用スルーホールが必要になると共に、スルーホール個数が多く必要となったり、そのためのライン本数が増加する等で、配線密度を向上させるには障害となっていた。また、特にチップ実装部ラインにおいて、めっきリードラインの接続が不可能な場合が発生し易く、その場合は、ラインを削除することが必要なことから、チップとの接続信頼性の低下を招く等の問題があった。また、メッキリードラインを接続しておいて後から孔で切断する等の手法をとる場合もあるが、そのためのスペースが必要になる等、更なる高密度に対しては障害となっていた。
【0005】
一方、チップとの接続をするラインにおいては、電気めっきで形成することから、電気めっき特有の面内厚みばらつきが大きく発生し、チップとの接続面の高さ(厚さ)管理が困難になると共に、接続信頼性が悪化するという課題があった。本発明は、前記公報に開示されている微細配線レベルを損なうことなく、ラインやスルーホールにめっきリードを必要とせず、表面実装部品(例えばチップ等)との接続信頼性を損なうことなく、これまで以上に高密度回路パターンを形成でき、更に回路の高さのばらつき精度を高精度に押さえて、接続信頼性が損なわれない配線板の製造法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の製造法は、以下の工程からなることを特徴とする。
a:銅張り積層板にスルーホールとなる孔をあける工程
b:スルーホールとなる孔の内壁に電解めっき又は無電解めっきを受け入れる層を形成する工程
c:スルーホールとなる孔及びその周囲を除いて選択的にめっきレジストを塗布する工程
d:電解めっき又は無電解めっきによって少なくとも孔内壁にニッケル又はその合金のめっき層を形成する工程
e:めっきレジストを剥離する工程
f:スルーホール孔内壁のめっき層を保護するとともに、必要な配線を形成するためのエッチングレジストを形成する工程
g:エッチングレジストの形成されていない銅箔部分を選択的にエッチング除去する工程
【0007】
【発明の実施の形態】
前記スルーホールとして電気的に接続される、電解めっき又は無電解めっきを受け入れる層には、無電解めっき層、導電性微粒子とその導電微粒子をスルーホールとなる孔内壁に保持するための接着剤成分からなるもの、導電性モノマーを付着させ、その後、その導電性モノマーを酸化重合させて導電性を付与したもの、あるいは無電解めっきのめっき触媒によるシーダー処理を用いることができる。それぞれの実施の形態詳細については、特開平11-54910号公報に示されている。
工程cにおけるめっきレジストは、印刷用インク、又は露光現像タイプのドライフィルムを用いることができる。一方、材質としては、次工程のめっき時の耐久性とめっき後の剥離性を兼ね備えている必要がある。
工程dにおけるニッケル又はその合金めっき層の厚さは、1〜20μmの範囲であることが好ましく、1μm未満では、はんだなどの熱衝撃に対する強度が不足し、20μmを越えると、その後の回路形成時に大きな段差によって、エッチングレジスト密着時に気泡を巻き込み、その後のエッチングで断線する可能性があり、より好ましくは3〜10μmの範囲である。さらに、ニッケル又はその合金めっきを行う範囲は、スルーホールとなる孔の内壁及びスルーホールとなる孔の周囲0.01〜1.0mmの範囲とする。
工程f以降については、公知技術である永久レジストを形成し、電解又は無電解めっきで導体露出部を処理する等の方法が多く用いられるが、本発明の特徴を最大に生かすためには導体露出部に対して、均一な厚みでめっきができる無電解めっきを採用することが好ましい。
【0008】
銅張り積層板の基材には、フレキシブル基材を用いることもできる。
基材としては、ポリイミドフイルム、ポリエステルフィルム等を用いることができ、市販のものでは、ポリイミドフイルムではカプトン(デュポン社製、商品名)ユーピレックス(宇部興産(株)製、商品名)、エスパネックス(新日鉄化学(株)製、商品名)、ポリエステルフィルムでは、ルミラー(東レ(株)製、商品名)を使用することができる。
この銅張り積層板の基材には、通常の配線板に用いるガラス布エポキシ樹脂含浸の銅張り積層板、ガラス不織紙エポキシ樹脂含浸銅張り積層板、セラミック表面を粗化し該表面に銅層を形成したセラミック銅張り積層板等を用いることができる。
本発明の銅張り積層板の銅箔には、圧延銅箔、電解銅箔いずれの種類でも用いることができ、厚さは薄ければ薄いほど微細な回路を形成することができるが、取り扱い性や価格の面から、好ましい範囲は、5μm〜35μmの範囲である。銅箔の厚さが5μm未満のもので市販されているものはなく、自前で作製するにしてもめっき装置等を必要とし経済的ではなく、取り扱い性も極めて悪い。35μmを越えるものについても本発明の方法を用いることはできるが、微細な回路を形成することは困難でありメリットは少ない。
以下本発明を実施例に基づき説明するが、本発明はこれに限定されるものではない。
【0009】
【実施例】
実施例1
工程a
図1(a)に示すように、両面に厚さ12μmの銅箔1を貼り合わせたガラスエポキシ樹脂含浸銅張り積層板であるMCL-E679(日立化成工業(株)製、商品名)の厚さ0.1mmのものに、直径0.2mmのスルーホールとなる孔をあけた。
工程b
図1(b)に示すように、孔をあけた銅張り積層板を十分に水洗いした後、コンディショナーCLD-100(日立化成工業(株)製、商品名)に40℃で5分間浸漬して表面処理を行い、続いて、無電解めっき用増感剤であるCUST-201B(日立化成工業(株)製、商品名)に、液温50℃で40分の条件で浸漬し、無電解めっき液であるL-59めっき液(日立化成工業(株)製、商品名)を60℃で30分の条件で、厚さ0.5μmの銅めっきを電気めっきを受け入れる層3として形成した。
工程c
図1(c)に示すように、スルーホール孔及びその周囲ランドを外しためっきレジスト用ドライフィルムであるフォテックH−N640(日立化成工業(株)製、商品名)をロール温度100℃、ロール送り速度1.0m/分の条件でラミネートし、フォトマスクを介して紫外線を70mJ/cm2条件で露光し、1.1重量%の炭酸ナトリウム溶液で噴霧して現像し、めっきレジスト4を形成した。
工程d
図1(d)に示すように、以下の電気ニッケルめっきを、液温55℃、時間6分、電流密度4A/dm2の条件で行い、厚さ5μmのニッケルめっき層5を形成した。
(電気ニッケルめっき液の組成)
ニッケル……………60g/l
塩化ニッケル………35g/l
棚酸…………………35g/l
工程e
図1(e)に示すように、めっきレジスト4を3%重量の水酸化カリウム溶液で剥離除去した。
工程f
図1(f)に示すように、スルーホール孔内壁のめっき層3を保護するとともに、必要な配線を形成するためのエッチングレジストを形成するために、エッチングレジスト用ドライフィルムであるフォテックH−N920(日立化成工業(株)製、商品名)をロール温度100℃、ロール送り速度1.0m/分の条件でラミネートし、フォトマスクを介して紫外線を50mJ/cm2条件で露光し、1.1重量%の炭酸ナトリウム溶液で噴霧して現像し、エッチングレジスト7を形成した。
工程g
図1(g)に示すように、エッチングレジスト7の形成されていない銅箔部分を、塩化第二銅/塩酸溶液をスプレー噴霧して、選択的にエッチング除去した。
工程h
図1(h)に示すように、エッチングレジスト7を3%重量の水酸化カリウム溶液で剥離除去した。
【0010】
実施例2
実施例1における工程bに代えて、以下の工程とした。
スルーホールとなる孔の内壁に、電気めっきを受け入れる層3を、以下のようにして形成した。
孔をあけた銅張り積層板を十分に水洗いした後、ブラックホールクリーナーSP-6800(メック(株)製、商品名)に、室温で1分間浸漬けして油脂等を除去し、ブラックホールコンディショナーSP-6560(メック(株)製、商品名)に室温で3分間浸漬してグラファイト粒子層を形成し、10重量%硫酸で酸洗し、水洗して、均一なグラファイト層を全体に形成し、乾燥して定着し、水洗、乾燥後セパレーターSP-6800(メック(株)製、商品名)に室温で3分間浸漬し、銅表面の余分なグラファイトを除去した。
【0011】
比較例1
工程a
図2(a)に示すように、両面に厚さ12μmの銅箔1を貼り合わせたガラスエポキシ樹脂含浸銅張り積層板であるMCL-E679(日立化成工業(株)製、商品名)の厚さ0.1mmのものに、直径0.2mmのスルーホールとなる孔をあけた。
工程b
図2(b)に示すように、孔をあけた銅張り積層板を、十分に水洗いした後、コンディショナーCLD-100(日立化成工業(株)製、商品名)に40℃で5分間浸漬けして表面処理を行い、続いて、無電解めっき用増感剤であるCUST-201B(日立化成工業(株)製、商品名)に、液温50℃で40分の条件で浸漬し、無電解めっき液であるL-59めっき液(日立化成工業(株)製、商品名)を60℃で30分の条件で、厚さ0.5μmの銅めっきを電気めっきを受け入れる層として形成した。
工程c
図2(c)に示すように、スルーホール孔内壁のめっき層3を保護するとともに、必要な配線を形成するためのエッチングレジストを形成するためにエッチングレジスト用ドライフィルムである、フォテックH−N920(日立化成工業(株)製、商品名)をロール温度100℃、ロール送り速度1.0m/分の条件でラミネートし、フォトマスクを介して紫外線を50mj/cm2条件で露光し、1.1重量%の炭酸ナトリウム溶液で噴霧して現像し、エッチングレジスト6を形成した。
工程d
図2(d)に示すように、エッチングレジスト4の形成されていない胴部分を塩化第二銅/塩酸溶液をスプレー噴霧して、選択的にエッチング除去した。
工程e
図2(e)に示すように、以下の電気ニッケルめっきを、液温55℃、時間6分、電流密度4A/dm2の条件で行い、厚さ5μmのニッケルめつき層5を形成した。
(電気ニッケルめっき液の組成)
ニッケル……………60g/l
塩化ニッケル………35g/l
棚酸…………………35g/l
以上に説明した実施例と比較例のパターン配線密度及ぴ配線厚さばらつき精度について表1及び図3、図4に示す。
【0012】
【表1】

Figure 0003826651
【0013】
以下に本発明の実施例に用いた測定方法と試験方法について述べる。
試料の作製
試料は、大きさ500mm×500mmとし、20枚の試料を作製した。
配線は図5に示す30μm/30μmのラインに全てめっきリードを取ったものをパネルに均等に9個面付け配置し、それぞれの方法で製作した。
測定方法
導体厚みの測定には、触針式の表面粗さ測定器を用いて、基材と導体の接着されている面から導体表面迄の高さを測定した。
表1に示すように、比較例の厚みは最大5μmものばらつきが見られるが、実施例の場合は最大でも1μmのばらつき範囲内で製作可能である。
【0014】
パターン配線密度において、特開平11-54910号公報記載の方法では、電気めっきのために、めっきリードが必要であることと、配線形成後にめっきをつけることから、図3に示すような設計となった場合、部品搭載ランドが近くに存在するチップ搭載エリア内接続ラインのなかには、図に示すようなメッキリード接続不可能ラインが発生し、このラインにはめっきがつかない。
この場合、このままめっきをつけない方法を採るか、または、ラインを削除するかのいずれかの方法で製作せざるを得ないこととなる。なお、無電解めっきで後からめっきすることも考えられるが、めっきが2重になり、めっきが剥がれやすくなるという問題がある。
このままめっきがつかないラインを残して、チップとの接続を行えば、接続性が極度に悪化するラインとなり、このラインを削除すれば、バランスが悪化するために、接続信頼性が悪化する。
本発明の方法によれば、無電解めっきを配線形成後に処理することによって、めっきが2重にならずにつけることができる。また、図4(a)に示すような設計の場合、中にあるスルーホールは表面配線側からも裏面配線からもメッキリードラインを引き延ばすことができないため、配線間隔を広げてメッキリード用スルホールを別に設置しなければなない箇所が発生する。従って図4(b)に示すように、配線密度を損なうことがあったが、本発明の方法なら、配線形成前にスルーホールを形成してしまうことから、このようなめっきリード用スルーホールは必要が無く、図4(a)のままで製作可能である。
【0015】
【発明の効果】
以上説明したとおり、本発明によれば、微細配線レベルを損なうことなく、ラインやスルーホーノレにめっきリードを必要とせず、チップ等の表面実装部品との接続信頼性を損なうことなく、これまで以上に高密度回路パターンを形成でき、更に回路の高さのぱらつき精度を高精度に押さえて、接続信頼性が損なわれない配線板の製造法を提供することができる。
【図面の簡単な説明】
図1(a)〜(h)は本発明の一実施例の各工程における断面図。
図2(a)〜(f)は従来例の各工程における断面図。
図3 従来例を説明するための平面図。
図4本発明の効果を説明するための平面図(a)及び従来例を説明するための平面図(b)。
図5 本発明の効果を説明するためのめっきリードラインの部分平面図。
【符号の説明】
1.銅箔
2.基材
3.めっきを受け入れる層
4.めっきレジスト
5.ニッケルめっき層
6.孔
7.エッチングレジスト[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a wiring board.
[0002]
[Prior art]
A wiring board usually has a through-hole formed in a copper-clad laminate, electrolessly plated the inner wall of the hole and the surface of the copper foil, and electroplated to the required thickness as a through-hole. Produced by forming an etching resist to remove unnecessary copper while protecting the plating, for example, spraying a chemical etching solution consisting of cupric chloride and hydrochloric acid by spraying, and selectively removing unnecessary copper by etching Has been.
In recent years, due to miniaturization of devices, it is required to increase the density of wiring boards, and the density of circuit patterns is also required to be 30 μm / 30 μm in conductor width / conductor spacing.
Since the wiring board corresponding to this requirement has become very difficult with the above-mentioned conventional manufacturing method, a manufacturing method of a wiring board that is high density and economically excellent is disclosed in Japanese Patent Laid-Open No. 11-54910. Proposed.
[0003]
[Problems to be solved by the invention]
In recent years, a substrate on which a chip is directly mounted has been required as a mounting method, and a flip-chip method using an ACF (anisotropic conductive film) or the like has been adopted as a high-density mounting as a connection method with a chip.
As a requirement on the board side corresponding to these mounting methods, it is required to have a higher density than before, and further, the width of the connection line with the chip is increased, the height of the connection surface with the chip ( It is also necessary to increase the accuracy of (thickness) variation.
The manufacturing method disclosed in the above publication is economically excellent, and the fine wiring can be remarkably improved as compared with the conventional method. However, there are the following problems with respect to the demand for higher density.
[0004]
Since the through hole is formed by electroplating after the circuit pattern is formed, the line and the line serving as the electroplating lead must be connected to the through hole. Due to the plating lead line, the wiring density does not increase, the plating lead through hole connected to the through hole is required, the number of through holes is increased, the number of lines for that increase, etc. It was an obstacle to improve the wiring density. In addition, particularly in the chip mounting part line, it is likely that the plating lead line cannot be connected. In this case, since it is necessary to delete the line, the connection reliability with the chip is reduced. There was a problem. Further, there is a case where a method of connecting a plating lead line and then cutting with a hole later is taken, but this has been an obstacle to further high density such as requiring a space for that purpose.
[0005]
On the other hand, since the line connecting to the chip is formed by electroplating, the in-plane thickness variation peculiar to electroplating is greatly generated, making it difficult to control the height (thickness) of the connection surface with the chip. At the same time, there is a problem that connection reliability deteriorates. The present invention does not impair the fine wiring level disclosed in the above publication, does not require plating leads for lines and through holes, and does not impair connection reliability with surface mount components (e.g., chips). It is an object of the present invention to provide a method for manufacturing a wiring board that can form a high-density circuit pattern more than the above, further suppresses the variation accuracy of the circuit height with high accuracy, and does not impair the connection reliability.
[0006]
[Means for Solving the Problems]
The production method of the present invention comprises the following steps.
a: opening a hole serving as a through hole in a copper-clad laminate b: forming a layer for receiving electrolytic plating or electroless plating on the inner wall of the hole serving as a through hole c: removing a hole serving as a through hole and its surroundings A step of selectively applying a plating resist d: a step of forming a plating layer of nickel or an alloy thereof at least on the inner wall of the hole by electrolytic plating or electroless plating e: a step of removing the plating resist f: plating of the inner wall of the through-hole hole Step g of forming an etching resist for protecting a layer and forming a necessary wiring g: Step of selectively etching away a copper foil portion where no etching resist is formed
DETAILED DESCRIPTION OF THE INVENTION
The layer that accepts electrolytic plating or electroless plating that is electrically connected as the through hole includes an electroless plating layer, conductive fine particles, and an adhesive component for holding the conductive fine particles on the inner wall of the hole serving as the through hole. A conductive monomer is attached, and then the conductive monomer is oxidatively polymerized to impart conductivity, or a seeder treatment with a plating catalyst for electroless plating can be used. Details of each embodiment are disclosed in Japanese Patent Laid-Open No. 11-54910.
As the plating resist in step c, printing ink or exposure and development type dry film can be used. On the other hand, as a material, it is necessary to have both the durability at the time of plating in the next step and the peelability after plating.
The thickness of the nickel or its alloy plating layer in step d is preferably in the range of 1 to 20 μm, and if it is less than 1 μm, the strength against thermal shock such as solder is insufficient. Due to the large level difference, there is a possibility that air bubbles are involved when the etching resist is in close contact, and disconnection may occur in the subsequent etching. Furthermore, the range in which nickel or an alloy plating thereof is performed is in the range of 0.01 to 1.0 mm around the inner wall of the hole to be a through hole and the hole to be a through hole.
For step f and subsequent steps, a method of forming a permanent resist, which is a known technique, and treating the exposed conductor portion by electrolysis or electroless plating is often used. However, in order to make the most of the features of the present invention, the exposed conductor It is preferable to employ electroless plating capable of plating with a uniform thickness on the part.
[0008]
A flexible substrate can be used as the substrate of the copper-clad laminate.
As the base material, polyimide film, polyester film, etc. can be used, and commercially available polyimide films include Kapton (made by DuPont, trade name) Upilex (made by Ube Industries, trade name), Espanex ( Lumirror (trade name, manufactured by Toray Industries, Inc.) can be used for Nippon Steel Chemical Co., Ltd. (trade name) and polyester film.
The base material for this copper-clad laminate is a glass-clad epoxy resin-impregnated copper-clad laminate, a glass nonwoven paper epoxy resin-impregnated copper-clad laminate used for ordinary wiring boards, a roughened ceramic surface, and a copper layer on the surface. A ceramic copper-clad laminate or the like on which is formed can be used.
As the copper foil of the copper-clad laminate of the present invention, any kind of rolled copper foil and electrolytic copper foil can be used. The thinner the thickness, the finer the circuit can be formed. In terms of price, a preferable range is 5 μm to 35 μm. There is no commercially available copper foil having a thickness of less than 5 μm, and even if it is produced in-house, a plating apparatus or the like is required, which is not economical, and the handling property is extremely poor. Although the method of the present invention can be used for a film having a thickness exceeding 35 μm, it is difficult to form a fine circuit and there are few merits.
Hereinafter, the present invention will be described based on examples, but the present invention is not limited thereto.
[0009]
【Example】
Example 1
Step a
As shown in FIG. 1 (a), the thickness of MCL-E679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a glass epoxy resin-impregnated copper-clad laminate with 12 μm thick copper foil 1 bonded to both sides. A hole having a diameter of 0.2 mm was formed in a 0.1 mm-thickness.
Step b
As shown in FIG. 1 (b), the perforated copper-clad laminate was washed thoroughly with water, and then immersed in a conditioner CLD-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 40 ° C. for 5 minutes. Surface treatment is performed, followed by immersion in CUST-201B (trade name, manufactured by Hitachi Chemical Co., Ltd.), a sensitizer for electroless plating, at a liquid temperature of 50 ° C. for 40 minutes. An L-59 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.) as a solution was formed at a temperature of 60 ° C. for 30 minutes as a layer 3 for receiving electroplating with a thickness of 0.5 μm.
Process c
As shown in FIG. 1 (c), a photech H-N640 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a dry film for plating resist with the through-holes and surrounding lands removed, is rolled at a roll temperature of 100 ° C. Lamination is performed at a feed rate of 1.0 m / min, UV light is exposed through a photomask at 70 mJ / cm 2 , sprayed with a 1.1 wt% sodium carbonate solution and developed to form a plating resist 4 did.
Step d
As shown in FIG. 1D, the following nickel electroplating was performed under the conditions of a liquid temperature of 55 ° C., a time of 6 minutes, and a current density of 4 A / dm 2 to form a nickel plating layer 5 having a thickness of 5 μm.
(Composition of electro nickel plating solution)
Nickel ............ 60g / l
Nickel chloride ... 35g / l
Shelf acid ... 35g / l
Process e
As shown in FIG. 1 (e), the plating resist 4 was peeled off with a 3% weight potassium hydroxide solution.
Process f
As shown in FIG. 1 (f), in order to protect the plating layer 3 on the inner wall of the through-hole hole and to form an etching resist for forming necessary wiring, Photec H-N920, which is a dry film for etching resist, is used. (Trade name, manufactured by Hitachi Chemical Co., Ltd.) is laminated at a roll temperature of 100 ° C. and a roll feed speed of 1.0 m / min, and exposed to ultraviolet rays at 50 mJ / cm 2 through a photomask. An etching resist 7 was formed by spraying with a 1 wt% sodium carbonate solution and developing.
Process g
As shown in FIG. 1 (g), the copper foil portion where the etching resist 7 was not formed was selectively removed by spraying a cupric chloride / hydrochloric acid solution.
Process h
As shown in FIG. 1 (h), the etching resist 7 was peeled off with a 3% weight potassium hydroxide solution.
[0010]
Example 2
Instead of step b in Example 1, the following steps were used.
A layer 3 for receiving electroplating was formed on the inner wall of the hole to be a through hole as follows.
After thoroughly washing the perforated copper-clad laminate with black hole cleaner SP-6800 (trade name, manufactured by MEC Co., Ltd.) for 1 minute at room temperature to remove oils and fats, black hole conditioner SP -6560 (MEC Co., Ltd., trade name) soaked at room temperature for 3 minutes to form a graphite particle layer, pickled with 10 wt% sulfuric acid, washed with water to form a uniform graphite layer as a whole, After drying and fixing, washing with water and drying, the product was immersed in separator SP-6800 (trade name, manufactured by MEC Co., Ltd.) for 3 minutes at room temperature to remove excess graphite on the copper surface.
[0011]
Comparative Example 1
Step a
As shown in FIG. 2 (a), the thickness of MCL-E679 (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a glass epoxy resin-impregnated copper-clad laminate with 12 μm thick copper foil 1 bonded to both sides. A hole having a diameter of 0.2 mm was formed in a 0.1 mm-thickness.
Step b
As shown in Fig. 2 (b), the perforated copper-clad laminate was thoroughly washed with water, and then immersed in conditioner CLD-100 (trade name, manufactured by Hitachi Chemical Co., Ltd.) at 40 ° C for 5 minutes. Surface treatment, and then immersed in CUST-201B (trade name, manufactured by Hitachi Chemical Co., Ltd.), a sensitizer for electroless plating, at a liquid temperature of 50 ° C. for 40 minutes. An L-59 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.), which is a plating solution, was formed at a temperature of 60 ° C. for 30 minutes to form a 0.5 μm thick copper plating as a layer for receiving electroplating.
Process c
As shown in FIG. 2 (c), Photec H-N920, which is a dry film for etching resist, is used to protect the plating layer 3 on the inner wall of the through-hole hole and to form an etching resist for forming necessary wiring. (Trade name, manufactured by Hitachi Chemical Co., Ltd.) is laminated at a roll temperature of 100 ° C. and a roll feed rate of 1.0 m / min, and exposed to UV light at 50 mj / cm 2 through a photomask. An etching resist 6 was formed by spraying with a 1% by weight sodium carbonate solution and developing.
Step d
As shown in FIG. 2 (d), the barrel portion where the etching resist 4 was not formed was selectively removed by spraying a cupric chloride / hydrochloric acid solution.
Process e
As shown in FIG. 2 (e), the following nickel electroplating was performed under conditions of a liquid temperature of 55 ° C., a time of 6 minutes, and a current density of 4 A / dm 2 to form a nickel plating layer 5 having a thickness of 5 μm.
(Composition of electro nickel plating solution)
Nickel ............ 60g / l
Nickel chloride ... 35g / l
Shelf acid ... 35g / l
Table 1 and FIGS. 3 and 4 show the pattern wiring density and the wiring thickness variation accuracy of the example and the comparative example described above.
[0012]
[Table 1]
Figure 0003826651
[0013]
The measurement method and test method used in the examples of the present invention will be described below.
Sample preparation Samples were 500 mm × 500 mm in size, and 20 samples were prepared.
Wiring was prepared by placing each of the 30 μm / 30 μm lines shown in FIG. 5 with plating leads all evenly arranged on the panel and by each method.
Measurement Method For measuring the conductor thickness, the height from the surface where the base material and the conductor were bonded to the conductor surface was measured using a stylus type surface roughness measuring instrument.
As shown in Table 1, the thickness of the comparative example varies as much as 5 μm, but in the case of the example, it can be manufactured within a variation range of 1 μm at the maximum.
[0014]
With respect to the pattern wiring density, the method described in Japanese Patent Laid-Open No. 11-54910 requires a plating lead for electroplating, and plating is performed after the wiring is formed. In this case, a plating lead connection impossible line as shown in the figure is generated in a chip mounting area connection line in which a component mounting land exists nearby, and this line cannot be plated.
In this case, it is inevitably produced by either a method in which plating is not applied as it is or a method in which a line is deleted. In addition, although it is also conceivable to perform plating later by electroless plating, there is a problem that the plating becomes double and the plating is easily peeled off.
If the line is left unplated and the connection with the chip is made, the connection will be extremely deteriorated. If this line is deleted, the balance will deteriorate, and the connection reliability will deteriorate.
According to the method of the present invention, the electroless plating can be applied without forming a double layer by treating after the wiring is formed. In addition, in the case of the design shown in FIG. 4A, since the plated lead line cannot be extended from the front surface wiring side or the back surface wiring in the through hole inside, the wiring interval is widened and the through hole for the plating lead is formed. There are places that must be installed separately. Therefore, as shown in FIG. 4B, the wiring density may be impaired. However, according to the method of the present invention, a through hole is formed before the wiring is formed. It is not necessary and can be manufactured as shown in FIG.
[0015]
【The invention's effect】
As described above, according to the present invention, without losing the fine wiring level, no plating lead is required for the line or through hole, and the connection reliability with the surface mounting component such as a chip is not deteriorated. A high-density circuit pattern can be formed, and furthermore, a circuit board manufacturing method that does not impair the connection reliability can be provided by suppressing the fluctuation accuracy of the circuit height with high accuracy.
[Brief description of the drawings]
1A to 1H are cross-sectional views in each step of an embodiment of the present invention.
2A to 2F are cross-sectional views in each process of the conventional example.
FIG. 3 is a plan view for explaining a conventional example.
4 is a plan view for explaining the effect of the present invention (a) and a plan view for explaining a conventional example (b).
FIG. 5 is a partial plan view of a plating lead line for explaining the effect of the present invention.
[Explanation of symbols]
1. Copper foil 2. Base material 3. Layer for receiving plating 4. Plating resist 5. Nickel plating layer 6. Hole 7. Etching resist

Claims (7)

以下のa〜gの手順の工程からなることを特徴とする配線板の製造法。
a:銅張り積層板にスルーホールとなる孔をあける工程
b:スルーホールとなる孔の内壁に電解めっき又は無電解めっきを受け入れる層を形成する工程
c:スルーホールとなる孔及びその周囲を除いて選択的にめっきレジストを塗布する工程
d:電解めっき又は無電解めっきによって少なくとも孔内壁にニッケル又はその合金のめっき層を形成する工程
e:めっきレジストを剥離する工程
f:スルーホール孔内壁のめっき層を保護するとともに、必要な配線を形成するためのエッチングレジストを形成する工程
g:エッチングレジストの形成されていない銅箔部分を選択的にエッチング除去する工程
The manufacturing method of the wiring board characterized by consisting of the process of the procedure of the following ag .
a: opening a hole serving as a through hole in a copper-clad laminate b: forming a layer for receiving electrolytic plating or electroless plating on the inner wall of the hole serving as a through hole c: removing a hole serving as a through hole and its surroundings A step of selectively applying a plating resist d: a step of forming a plating layer of nickel or an alloy thereof at least on the inner wall of the hole by electrolytic plating or electroless plating e: a step of removing the plating resist f: plating of the inner wall of the through-hole hole A step of forming an etching resist for forming the necessary wiring while protecting the layer g: a step of selectively etching away a copper foil portion where the etching resist is not formed
電解めっき又は無電解めっきを受け入れる層が、導電性微粒子をスルーホールとなる内壁に付着させたものである請求項1に記載の配線板の製造法。2. The method for manufacturing a wiring board according to claim 1, wherein the layer that receives electrolytic plating or electroless plating is one in which conductive fine particles are attached to the inner wall to be a through hole. 電解めっき又は無電解めっきを受け入れる層が、導電性モノマーを付着させ、その後、その導電性モノマーを酸化重合して導電性を付与したものである請求項1に記載の配線板の製造法。The method for producing a wiring board according to claim 1, wherein the layer receiving electrolytic plating or electroless plating has a conductive monomer attached thereto, and then the conductive monomer is subjected to oxidative polymerization to impart conductivity. 電解めっき又は無電解めっきを受け入れる層が、無電解めっきの触媒によるシーダー処理をしたものである請求項1に記載の配線板の製造法。The method for producing a wiring board according to claim 1, wherein the layer that receives electrolytic plating or electroless plating is subjected to seeding treatment with a catalyst for electroless plating. 工程dにおけるニッケル又はその合金めっき層の厚さが1〜20μmの範囲である請求項1〜4のいずれかに記載の配線板の製造法。The method for producing a wiring board according to any one of claims 1 to 4, wherein the thickness of the nickel or its alloy plating layer in step d is in the range of 1 to 20 µm. 銅張り積層板の基材がフレキシブル基材である請求項1〜4のいずれかに記載の配線板の製造法。The method for manufacturing a wiring board according to any one of claims 1 to 4, wherein the base material of the copper-clad laminate is a flexible base material. 工程dにおけるニッケル又はその合金めっきを行う範囲が、スルーホールとなる孔の内壁及びスルーホールとなる孔の周囲0.01〜1.0mmの範囲である請求項1〜4のいずれかに記載の配線板の製造法。The range which performs nickel or its alloy plating in the process d is the range of 0.01-1.0 mm around the inner wall of the hole used as a through hole, and the hole used as a through hole. Wiring board manufacturing method.
JP2000027175A 2000-01-31 2000-01-31 Wiring board manufacturing method Expired - Fee Related JP3826651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000027175A JP3826651B2 (en) 2000-01-31 2000-01-31 Wiring board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000027175A JP3826651B2 (en) 2000-01-31 2000-01-31 Wiring board manufacturing method

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2004323559A Division JP2005039302A (en) 2004-11-08 2004-11-08 Method of manufacturing wiring board
JP2004323558A Division JP2005039301A (en) 2004-11-08 2004-11-08 Wiring board
JP2004323560A Division JP2005039303A (en) 2004-11-08 2004-11-08 Method of manufacturing wiring board

Publications (2)

Publication Number Publication Date
JP2001217539A JP2001217539A (en) 2001-08-10
JP3826651B2 true JP3826651B2 (en) 2006-09-27

Family

ID=18552778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000027175A Expired - Fee Related JP3826651B2 (en) 2000-01-31 2000-01-31 Wiring board manufacturing method

Country Status (1)

Country Link
JP (1) JP3826651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281711A (en) * 2010-06-09 2011-12-14 富士通株式会社 Laminated circuit board and board producing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3770895B2 (en) * 2003-12-09 2006-04-26 新光電気工業株式会社 Manufacturing method of wiring board using electrolytic plating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102281711A (en) * 2010-06-09 2011-12-14 富士通株式会社 Laminated circuit board and board producing method
US8669481B2 (en) 2010-06-09 2014-03-11 Fujitsu Limited Laminated circuit board and board producing method

Also Published As

Publication number Publication date
JP2001217539A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
KR20090104142A (en) Multilayer printed wiring board
JP2006148079A (en) Circuit board utilizing three smooth-sided conductive layers as part thereof, manufacturing method thereof, and electrical assembly and information processing system utilizing the circuit board
TWI664323B (en) Method of forming a metal layer and method of manufacturing a substrate having such metal layer
JPH07268682A (en) Method for electroplating surface of electric nonconductor
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
KR101162523B1 (en) Multilayer printed wiring board
JP4155434B2 (en) Manufacturing method of semiconductor package substrate having pads subjected to partial electrolytic plating treatment
JP3826651B2 (en) Wiring board manufacturing method
KR20050093595A (en) The production method of double side flexible printed circuit board by partial and selected cupper plating
US6398935B1 (en) Method for manufacturing pcb's
JPH05327224A (en) Manufacture of multilayer wiring board and multi-layer wiring board manufactured by the manufacture
US4968398A (en) Process for the electrolytic removal of polyimide resins
JP2006135151A (en) Method of manufacturing wiring board
JP2005039303A (en) Method of manufacturing wiring board
JP2005039302A (en) Method of manufacturing wiring board
JP2005039301A (en) Wiring board
JPH0573359B2 (en)
JP2004039771A (en) Production of wiring circuit substrate
JP4549807B2 (en) Multilayer printed wiring board manufacturing method, multilayer printed wiring board, and electronic device
JP2000114693A (en) Manufacture of wiring board
JP6098118B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2002208779A (en) Method of forming columnar metal body and conductive structure
JP2000156557A (en) Manufacture of wiring member
JP4443649B2 (en) Electroplating pattern

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees