JP3826522B2 - Air purification catalyst - Google Patents

Air purification catalyst Download PDF

Info

Publication number
JP3826522B2
JP3826522B2 JP32574497A JP32574497A JP3826522B2 JP 3826522 B2 JP3826522 B2 JP 3826522B2 JP 32574497 A JP32574497 A JP 32574497A JP 32574497 A JP32574497 A JP 32574497A JP 3826522 B2 JP3826522 B2 JP 3826522B2
Authority
JP
Japan
Prior art keywords
alumina
carrier
air purification
purification catalyst
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32574497A
Other languages
Japanese (ja)
Other versions
JPH11156194A (en
Inventor
邦和 口野
邦弘 鶴田
修三 徳満
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP32574497A priority Critical patent/JP3826522B2/en
Publication of JPH11156194A publication Critical patent/JPH11156194A/en
Application granted granted Critical
Publication of JP3826522B2 publication Critical patent/JP3826522B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、空気中の炭化水素を酸化する白金触媒をステンレス基材に付着させた空気浄化用触媒体に関するものであり、特に白金触媒を担持させた担体をステンレス基材に強固に付着させた空気浄化用触媒体に関するものである。
【0002】
【従来の技術】
空気浄化用触媒体は、白金や二酸化マンガンなどの触媒を使用したものが一般的であり、その構成や接合方法を工夫したものが従来から種々提案されている。その中で最近、特開平8−155266号公報の提案があり、その構成を図2(従来の空気浄化用触媒体の構成図)に示す。この空気浄化用触媒体は、クロムの22wt%とモリブテンの2wt%を含有するフェライト系ステンレスの基材1と、基材1を熱処理してその表面に形成した金属酸化物系被膜2と、金属酸化物系被膜2の表面に形成したアルミナ系担体3と、アルミナ系担体3に担持させた白金単独または白金とパラジウムからなる触媒4とから構成される。そして、金属酸化物系被膜2とアルミナ系担体3を介して、基材1と触媒4を接合している。
【0003】
【発明が解決しようとする課題】
しかしながら、前記従来の空気浄化用触媒体は、基材および金属酸化物系被膜の材質が密着強度の点でアルミナ系担体と充分に適合していないため、機械的振動が激しい使用環境で長期間使用すると、アルミナ系担体の部分的剥離が起こる課題を有していた。そのため、その使用は機械的振動の少ない環境と制限されていた。
【0004】
【課題を解決するための手段】
本発明は上記課題を解決するものであり、クロムを18〜27wt%とモリブテンを1〜3wt%とニッケルを0.1〜0.3wt%を含有するフェライト系ステンレス基材を使用し、このフェライト系ステンレス基材を熱処理して表面に金属酸化物系被膜を形成し、その金属酸化物系被膜の表面に酸化アルミニウム水和物ゾルを付着させ熱処理してアルミナ系担体を形成し、さらにアルミナ系担体に白金単独または白金とパラジウムからなる触媒を担持させた空気浄化用触媒体とした。
【0005】
上記発明によれば、酸化アルミニウム水和物ゾルの熱処理で形成されるアルミナ系担体が、ステンレス基材の熱処理で形成された金属酸化物系被膜に強固に投錨するように、フェライト系ステンレス基材のクロム量とモリブテン量とニッケル量を最適化したため、両者の密着強度が高まりアルミナ系担体の剥離を減少させることができる。
【0006】
この効果を詳細に説明する。フェライト系ステンレス基材を熱処理すると、含有されるクロムは酸化クロムに変化し、ステンレス表面に密着性に優れた酸化クロムの緻密な被膜が形成される。そのため、クロム量が多いほど密着性に優れた被膜が形成される訳であるが、逆にステンレス基材が脆くなる問題が生じる。そこで本発明は、クロム量の最適化で脆くなく、しかも密着性に優れた金属酸化物系被膜が得られるようにした。
【0007】
一方、モリブテンとニッケルをさらに含有させたフェライト系ステンレス基材を熱処理すると、モリブテンは酸化モリブテンに、ニッケルは酸化ニッケルに変化し、ステンレス表面にこれら金属酸化物の被膜が形成される。モリブテンやニッケルは、熱処理をすると表面に形成した酸化物系被膜は多孔質な被膜となる性質がある。そのため、これら金属を多く含有するほど熱処理の表面は多孔質な被膜となるが、逆にアルミナ系担体の密着性が低下する問題が生じる。そこで本発明は、フェライト系ステンレス基材に混合するモリブテンやニッケルの量の最適化で、多孔質でしかも密着性に優れた金属酸化物系被膜が得られるようにした。金属酸化物系被膜が多孔質でしかも密着性に優れていると、酸化アルミニウム水和物ゾルの熱処理で形成するアルミナ系担体は、この金属酸化物系被膜に投錨しやすくなり、その結果として両者の密着強度が高まりアルミナ系担体の剥離を減少させることができる訳である。
【0008】
【発明の実施の形態】
請求項1記載の発明は、フェライト系ステンレス基材と、前記フェライト系ステンレス基材を熱処理して表面に形成した金属酸化物系被膜と、前記金属酸化物系被膜の表面に酸化アルミニウム水和物を主成分としたゾルを付着させたのち熱処理をして形成したアルミナ系担体と、前記アルミナ系担体に担持させた白金単独または白金とパラジウムの触媒からなり、前記フェライト系ステンレス基材がクロムを18〜27wt%と、モリブテンを1〜3wt%と、ニッケルを0.1〜0.3wt%を含有する空気浄化用触媒体である。
【0009】
そして、フェライト系ステンレスに混合するクロムやモリブテンやニッケルの量の最適化で、多孔質でしかも密着性に優れた金属酸化物系被膜が熱処理で得られるようにした。金属酸化物系被膜が多孔質でしかも密着性に優れているため、酸化アルミニウム水和物ゾルの熱処理で形成するアルミナ系担体はこの金属酸化物系被膜に投錨しやすくなり、その結果として両者の密着強度が高まりアルミナ系担体の剥離を減少させることができる。
【0010】
請求項2記載の発明は、アルミナ系担体が銅を1〜3wt%含有した請求項1記載の空気浄化用触媒体である。
【0011】
アルミナ系担体が銅を1〜3wt%含有すると、銅の融点付近でこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られる。その結果、アルミナ系担体と金属酸化物系被膜の密着強度が高まりアルミナ系担体の剥離を一層減少させることができる。
【0012】
請求項3記載の発明は、アルミナ系担体がアルミニウムを0.5〜1.5wt%含有した請求項1記載の空気浄化用触媒体である。
【0013】
アルミナ系担体がアルミニウムを0.5〜1.5wt%含有すると、アルミニウムの融点付近でこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られる。その結果、アルミナ系担体と金属酸化物系被膜の密着強度が高まりアルミナ系担体の剥離を一層減少させることができる。
【0014】
請求項4記載の発明は、アルミナ系担体が銀を1〜2wt%含有した請求項1記載の空気浄化用触媒体である。
【0015】
アルミナ系担体が銀を1〜2wt%含有すると、銀の融点付近でこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られる。その結果、アルミナ系担体と金属酸化物系被膜の密着強度が高まりアルミナ系担体の剥離を一層減少させることができる。
【0016】
請求項5記載の発明は、アルミナ系担体が金を1〜4wt%含有した請求項1記載の空気浄化用触媒体である。
【0017】
アルミナ系担体が金を1〜4wt%含有すると、金の融点付近でこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られる。その結果、アルミナ系担体と金属酸化物系被膜の密着強度が高まりアルミナ系担体の剥離を一層減少させることができる。
【0018】
【実施例】
以下、本発明の実施例について図面を用いて説明する。
【0019】
(実施例1)
図1は本発明の実施例1の空気浄化用触媒体の外観図である。図1において、5はフェライト系ステンレス基材であり、金属酸化物系皮膜2はフェライト系ステンレス基材5に熱処理をすることによって形成された。3はアルミナ系担体であり、金属酸化物系皮膜2の表面に酸化アルミニウム水和物ゾルを付着させ熱処理を行って形成させたものである。そしてアルミナ系担体3に、白金または白金とパラジウムからなる金属触媒4を担持させている。
【0020】
次に、本実施例1の空気浄化用触媒体の製造法について説明する。まず鉄とクロムとニッケルとモリブデンからなるフェライト系ステンレス基材5を950℃で30分間熱処理をして金属酸化物系皮膜2を形成した。その後、これに折り曲げ加工を加えた後、酸化アルミニウム水和物を主成分としたゾルを付着させ、130℃で10分間乾燥させ、さらに600℃で15分間焼成しアルミナ系担体3を形成した。そして、白金やパラジウムからなる触媒の水溶液を付着させ、130℃で10分間乾燥させた後600℃で15分間焼成してアルミナ系担体3に触媒4を担持させた。なおフェライト系ステンレス基材5は、網を使用して空気抵抗の低減が図れるようにしてあり、フィルターとして簡単に用いることができるようにした。
【0021】
〈実験1〉
本発明の効果を判定するため、次の実験を行った。前記製造方法で作られた空気浄化用触媒体を10分間振動させた後、ブタンガス100ppmを通過させ、その転換率を調べた。また、そのときにはがれて落下したアルミナ系担体の量から金属酸化物系皮膜の密着性を調べた。その結果を(表1)に示す。
【0022】
【表1】

Figure 0003826522
【0023】
なお参考のために、クロムとモリブデンから成るフェライト系ステンレスの基材を用いた空気浄化用触媒体を前述の製造方法で試作し、従来例として評価した。
【0024】
本発明は、フェライト系ステンレスに混合するクロムやモリブテンやニッケルの量の最適化によって得られる金属酸化物系被膜が、酸化アルミニウム水和物ゾルの熱処理で形成するアルミナ系担体に投錨しやすくなったため、両者の密着強度がいっそう高まり、ブタン転換率を向上させ、さらにアルミナ系担体の剥離を減少させることができた。
【0025】
〈実験2〉
次に、クロム及びモリブデンの割合を変えたステンレス基材を用いて、前記方法により空気浄化用触媒体を試作した。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。耐食性は、ステンレス基材を市水に浸し、その孔食電位を飽和甘こう電極を用いて測った。そしてその数値が0mV以下を示すものを×、0〜200mVを示すものを○、200mV以上を示すものを◎とした。加工性は、金網の基材を試作し、折り曲げを10回繰り返した結果、破断しなかったものを○、破断したが割れなかったものを△、破断し割れたものを×とした。密着性は、実験1と同様の方法によって判定した。(表2)は、クロムの割合を変えたステンレス基材の結果である。(表3)は、クロム22wt%で一定としてモリブデンの割合を変えたステンレス基材の結果である。
【0026】
【表2】
Figure 0003826522
【0027】
【表3】
Figure 0003826522
【0028】
(表2)や(表3)の結果から、フェライト系ステンレス基材がクロムを28%以上含んだときや、モリブデンを4wt%以上含んだ場合では、加工性がやや悪くなる傾向を示す。またクロムが18wt%未満になると耐食性が×となり、モリブデンが1%未満になると密着性が△になる。以上の結果よりクロムが18〜27wt%の範囲で良い結果となり、さらにモリブテンが1〜3wt%の範囲でより最適化された。
【0029】
〈実験3〉
次に、ニッケルの割合を変えて実験を行った。ここでクロムとモリブデンの割合は、実験2で最も良かった割合(22Cr−2Mo)のステンレス基材を用いて、前記方法によって作成された空気浄化用触媒体を作った。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表4)に示す。
【0030】
【表4】
Figure 0003826522
【0031】
(表4)の結果から、フェライト系ステンレス基材にニッケルを加えていくと密着性が向上するが、ニッケル量が0.4wt%以上になると基材の結晶構造の変化のため密着性が悪くなってくる。従ってニッケルは0.1〜0.3wt%を含有すると、密着性の面でさらに性能が向上することがわかる。
【0032】
〈実験4〉
次に、クロム、モリブデン、ニッケルの割合を変えた基材を用いて空気浄化用触媒体を試作し、その耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表5)に示す。
【0033】
【表5】
Figure 0003826522
【0034】
(表5)の結果から、総合判断を行うとフェライト系ステンレス基材がクロム18〜27wt%、モリブテン1〜3wt%そしてニッケル0.1〜0.3wt%含有する場合、最も良い性能であることがわかった。
【0035】
(実施例2)
本発明の実施例2の空気浄化用触媒体は、アルミナ系担体3に銅を加えたものであり、アルミナ系担体3に銅を加えたこと以外は図1と同じである。
【0036】
空気浄化用触媒体はアルミナ系担体に銅を加えたもので、銅の割合を変えて実施例1と同様の方法で試作した。ここでフェライト系ステンレス基材のクロムとモリブデンとニッケルの割合は、実験4で最も良かった割合(22Cr−2Mo−0.2Ni)のステンレス基材を用いた。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表6)に示す。
【0037】
【表6】
Figure 0003826522
【0038】
(表6)の結果から、アルミナ系担体に銅を1〜3wt%含有したものについて、密着性がさらに向上したと判断できる。逆に、銅を4wt%以上含有すると、熱膨張係数の違いから剥離が起こる。
【0039】
(実施例3)
本発明の実施例3の空気浄化用触媒体は、アルミナ系担体3にアルミニウムを加えたものであり、アルミナ系担体3にアルミニウムを加えたこと以外は図1と同じである。
【0040】
空気浄化用触媒体はアルミナ系担体にアルミニウムを加えたもので、アルミニウムの割合を変えて実施例1と同様の方法で試作した。ここでフェライト系ステンレス基材のクロムとモリブデンとニッケルの割合は、実験4で最も良かった割合(22Cr−2Mo−0.2Ni)のステンレス基材を用いた。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表7)に示す。
【0041】
【表7】
Figure 0003826522
【0042】
(表7)の結果から、アルミナ系担体にアルミニウムを0.5〜1.5wt%含有したものについて、密着性がさらに向上したと判断できる。逆にアルミニウムを2.0wt%以上含有すると、熱膨張係数の違いから剥離が起こる。
【0043】
(実施例4)
本発明の実施例4の空気浄化用触媒体は、アルミナ系担体3に銀を加えたものであり、アルミナ系担体3に銀を加えたこと以外は図1と同じである。
【0044】
空気浄化用触媒体はアルミナ系担体に銀を加えたもので、銀の割合を変えて実施例1と同様の方法で試作した。ここでフェライト系ステンレス基材のクロムとモリブデンとニッケルの割合は、実験4で最も良かった割合(22Cr−2Mo−0.2Ni)のステンレス基材を用いた。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表8)に示す。
【0045】
【表8】
Figure 0003826522
【0046】
(表8)の結果から、アルミナ系担体に銀を1〜3wt%含有したものについて、密着性がさらに向上したと判断できる。逆に銀を4wt%以上含有すると、熱膨張係数の違いから剥離が起こる。
【0047】
(実施例5)
本発明の実施例5の空気浄化用触媒体は、アルミナ系担体3に金を加えたものであり、アルミナ系担体3に金を加えたこと以外は図1と同じである。
【0048】
空気浄化用触媒体はアルミナ系担体に金を加えたもので、金の割合を変えて実施例1と同様の方法で試作した。ここでフェライト系ステンレス基材のクロムとモリブデンとニッケルの割合は、実験4で最も良かった割合(22Cr−2Mo−0.2Ni)のステンレス基材を用いた。そしてこれらの空気浄化用触媒体の耐食性、加工性、密着性を評価した。評価方法は実験2に示した方法と同様の方法で行い、それらから総合判断を行った結果を(表9)に示す。
【0049】
【表9】
Figure 0003826522
【0050】
(表9)の結果から、アルミナ系担体に金を1〜3wt%含有したものについて、密着性がさらに向上したと判断できる。逆に金を4wt%以上含有すると、熱膨張係数の違いから剥離が起こる。
【0051】
【発明の効果】
以上のように本発明によれば、下記の効果が得られる。
【0052】
(1)本発明の請求項1記載の発明によれば、フェライト系ステンレスに混合するクロムやモリブテンやニッケルの量を最適化して、多孔質でしかも密着性に優れた金属酸化物系被膜が得られるようにし、酸化アルミニウム水和物ゾルの熱処理で形成するアルミナ系担体がこの金属酸化物系被膜に投錨しやすくした。その結果、両者の密着強度が高まりアルミナ系担体の剥離を減少させることができ、機械的振動の多い使用環境化でも利用できる効果を有する。また耐食性も良く、高温多湿な環境でも使用できる。
【0053】
(2)本発明の請求項2記載の発明によれば、アルミナ系担体に銅を1〜3wt%含有させこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られるようにした。その結果、アルミナ系担体と金属酸化物系被膜の密着強度を一層高め、アルミナ系担体の剥離を減少させることで、機械的振動の激しい使用環境化でも利用できる効果を有する。
【0054】
(3)本発明の請求項3記載の発明によれば、アルミナ系担体にアルミニウムを0.5〜1.5wt%含有させこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られるようにした。その結果、アルミナ系担体と金属酸化物系被膜の密着強度を一層高め、アルミナ系担体の剥離を減少させることで、機械的振動の激しい使用環境下でも利用できる効果を有する。
【0055】
(4)本発明の請求項4記載の発明によれば、アルミナ系担体に銀を1〜2wt%含有させこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られるようにした。その結果、アルミナ系担体と金属酸化物系被膜の密着強度を一層高め、アルミナ系担体の剥離を減少させることで、機械的振動の激しい使用環境下でも利用できる効果を有する。
【0056】
(5)本発明の請求項5記載の発明によれば、アルミナ系担体に金を1〜4wt%含有させこの担体を熱処理することで、投錨効果に優れしかも熱膨張の違いによる剥離もないアルミナ系担体が得られるようにした。その結果、アルミナ系担体と金属酸化物系被膜の密着強度を一層高め、アルミナ系担体の剥離を減少させることで、機械的振動の激しい使用環境下でも利用できる効果を有する。
【図面の簡単な説明】
【図1】 本発明の実施例1の空気浄化用触媒体の断面図
【図2】 従来の空気浄化用触媒体の断面図
【符号の説明】
1 基材
2 金属酸化物系被膜
3 アルミナ系担体
4 触媒
5 フェライト系ステンレス基材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air purification catalyst body in which a platinum catalyst that oxidizes hydrocarbons in air is attached to a stainless steel substrate, and in particular, a carrier carrying a platinum catalyst is firmly attached to a stainless steel substrate. The present invention relates to an air purification catalyst body.
[0002]
[Prior art]
The air purification catalyst body generally uses a catalyst such as platinum or manganese dioxide, and various proposals have been made in the past regarding the constitution and joining method. Recently, there has been a proposal of Japanese Patent Laid-Open No. 8-155266, and its configuration is shown in FIG. 2 (configuration diagram of a conventional air purification catalyst body). The air purification catalyst body includes a ferritic stainless steel substrate 1 containing 22 wt% chromium and 2 wt% molybdenum, a metal oxide coating 2 formed on the surface of the substrate 1 by heat treatment, a metal An alumina carrier 3 formed on the surface of the oxide coating 2 and platinum alone or a catalyst 4 made of platinum and palladium supported on the alumina carrier 3. Then, the substrate 1 and the catalyst 4 are joined via the metal oxide coating 2 and the alumina support 3.
[0003]
[Problems to be solved by the invention]
However, the conventional air purification catalyst body is not sufficiently compatible with the alumina carrier in terms of adhesion strength because the material of the base material and the metal oxide coating is not suitable for a long time in a use environment where mechanical vibration is intense. When used, there was a problem that partial peeling of the alumina-based carrier occurred. Therefore, its use has been limited to an environment with little mechanical vibration.
[0004]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, using a ferrite-based stainless steel base material containing 18 to 27 wt% chromium, 1 to 3 wt% molybdenum, and 0.1 to 0.3 wt% nickel. Heat treatment of a stainless steel base material to form a metal oxide coating on the surface, adhere an aluminum oxide hydrate sol to the surface of the metal oxide coating, heat treatment to form an alumina support, An air purification catalyst body in which platinum alone or a catalyst composed of platinum and palladium was supported on a carrier was obtained.
[0005]
According to the above invention, the ferritic stainless steel substrate is formed so that the alumina carrier formed by the heat treatment of the aluminum oxide hydrate sol is firmly cast on the metal oxide film formed by the heat treatment of the stainless steel substrate. Since the amount of chromium, molybdenum and nickel were optimized, the adhesion strength between them was increased, and the peeling of the alumina-based support could be reduced.
[0006]
This effect will be described in detail. When the ferritic stainless steel substrate is heat-treated, the chromium contained is changed to chromium oxide, and a dense coating of chromium oxide having excellent adhesion is formed on the stainless steel surface. For this reason, as the amount of chromium increases, a film having excellent adhesion is formed. However, there is a problem that the stainless steel substrate becomes brittle. Therefore, the present invention has been made to obtain a metal oxide film that is not brittle by optimizing the amount of chromium and has excellent adhesion.
[0007]
On the other hand, when a ferritic stainless steel substrate further containing molybdenum and nickel is heat-treated, molybdenum is changed to molybdenum oxide, nickel is changed to nickel oxide, and a coating of these metal oxides is formed on the stainless steel surface. Molybdenum and nickel have the property that an oxide-based film formed on the surface thereof becomes a porous film when heat-treated. For this reason, the more these metals are contained, the more the surface of the heat treatment becomes a porous film, but conversely, there arises a problem that the adhesiveness of the alumina carrier is lowered. Therefore, in the present invention, a porous metal oxide film having excellent adhesion can be obtained by optimizing the amount of molybdenum and nickel mixed in the ferritic stainless steel substrate. If the metal oxide film is porous and has excellent adhesion, the alumina carrier formed by heat treatment of the aluminum oxide hydrate sol can be easily cast on the metal oxide film, and as a result, both This increases the adhesion strength of the alumina carrier and can reduce the peeling of the alumina carrier.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 is a ferritic stainless steel substrate, a metal oxide coating formed on the surface of the ferritic stainless steel by heat treatment, and aluminum oxide hydrate on the surface of the metal oxide coating. An alumina carrier formed by attaching a sol containing as a main component and then heat-treating, platinum alone or a platinum and palladium catalyst supported on the alumina carrier, and the ferritic stainless steel substrate containing chromium. An air purification catalyst body containing 18 to 27 wt%, molybdenum 1 to 3 wt%, and nickel 0.1 to 0.3 wt%.
[0009]
Then, by optimizing the amount of chromium, molybdenum and nickel mixed with the ferritic stainless steel, a porous metal oxide coating having excellent adhesion can be obtained by heat treatment. Since the metal oxide film is porous and has excellent adhesion, the alumina carrier formed by heat treatment of the aluminum oxide hydrate sol is easy to throw on this metal oxide film, and as a result, both The adhesion strength is increased and the peeling of the alumina carrier can be reduced.
[0010]
The invention according to claim 2 is the air purification catalyst body according to claim 1, wherein the alumina carrier contains 1 to 3 wt% of copper.
[0011]
When the alumina-based carrier contains 1 to 3 wt% of copper, an alumina-based carrier that is excellent in anchoring effect and does not peel due to a difference in thermal expansion can be obtained by heat-treating the carrier near the melting point of copper. As a result, the adhesion strength between the alumina carrier and the metal oxide coating is increased, and the peeling of the alumina carrier can be further reduced.
[0012]
The invention according to claim 3 is the air purification catalyst body according to claim 1, wherein the alumina carrier contains 0.5 to 1.5 wt% of aluminum.
[0013]
When the alumina-based carrier contains 0.5 to 1.5 wt% of aluminum, an alumina-based carrier that is excellent in anchoring effect and that does not peel off due to a difference in thermal expansion can be obtained by heat-treating the carrier near the melting point of aluminum. As a result, the adhesion strength between the alumina carrier and the metal oxide coating is increased, and the peeling of the alumina carrier can be further reduced.
[0014]
The invention according to claim 4 is the air purification catalyst body according to claim 1, wherein the alumina-based carrier contains 1 to 2 wt% of silver.
[0015]
When the alumina-based carrier contains 1 to 2 wt% of silver, an alumina-based carrier that is excellent in anchoring effect and that does not peel due to a difference in thermal expansion can be obtained by heat-treating the carrier near the melting point of silver. As a result, the adhesion strength between the alumina carrier and the metal oxide coating is increased, and the peeling of the alumina carrier can be further reduced.
[0016]
The invention according to claim 5 is the air purification catalyst body according to claim 1, wherein the alumina carrier contains 1 to 4 wt% of gold.
[0017]
When the alumina-based carrier contains 1 to 4 wt% of gold, an alumina-based carrier that is excellent in anchoring effect and does not peel due to a difference in thermal expansion can be obtained by heat-treating the carrier near the melting point of gold. As a result, the adhesion strength between the alumina carrier and the metal oxide coating is increased, and the peeling of the alumina carrier can be further reduced.
[0018]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
Example 1
FIG. 1 is an external view of an air purification catalyst body according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 5 denotes a ferritic stainless steel substrate, and the metal oxide coating 2 is formed by heat-treating the ferritic stainless steel substrate 5. Reference numeral 3 denotes an alumina-based support, which is formed by attaching an aluminum oxide hydrate sol to the surface of the metal oxide-based film 2 and performing a heat treatment. The alumina carrier 3 carries a metal catalyst 4 made of platinum or platinum and palladium.
[0020]
Next, a method for producing the air purification catalyst body of Example 1 will be described. First, a ferritic stainless steel substrate 5 made of iron, chromium, nickel and molybdenum was heat-treated at 950 ° C. for 30 minutes to form a metal oxide coating 2. Then, after bending this, a sol mainly composed of aluminum oxide hydrate was adhered, dried at 130 ° C. for 10 minutes, and further fired at 600 ° C. for 15 minutes to form an alumina-based carrier 3. Then, an aqueous solution of a catalyst made of platinum or palladium was attached, dried at 130 ° C. for 10 minutes, and then fired at 600 ° C. for 15 minutes to support the catalyst 4 on the alumina carrier 3. In addition, the ferritic stainless steel base material 5 is designed to reduce air resistance by using a net so that it can be easily used as a filter.
[0021]
<Experiment 1>
In order to determine the effect of the present invention, the following experiment was conducted. The air purification catalyst body produced by the above production method was vibrated for 10 minutes, and then 100 ppm of butane gas was passed through to examine the conversion rate. At the same time, the adhesion of the metal oxide film was examined from the amount of the alumina carrier that had fallen off. The results are shown in (Table 1).
[0022]
[Table 1]
Figure 0003826522
[0023]
For reference, an air purification catalyst body using a ferritic stainless steel substrate made of chromium and molybdenum was prototyped by the above-described manufacturing method and evaluated as a conventional example.
[0024]
In the present invention, the metal oxide film obtained by optimizing the amount of chromium, molybdenum and nickel mixed with ferritic stainless steel is easy to throw on the alumina carrier formed by heat treatment of aluminum oxide hydrate sol. The adhesion strength between the two was further increased, the butane conversion rate was improved, and the peeling of the alumina-based support could be reduced.
[0025]
<Experiment 2>
Next, a catalyst body for air purification was prototyped by the above-described method using a stainless steel substrate in which the ratio of chromium and molybdenum was changed. The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. Corrosion resistance was measured by immersing a stainless steel substrate in city water and measuring its pitting potential using a saturated candy electrode. And the thing whose numerical value shows 0 mV or less was set to x, what showed 0-200 mV was set to (circle), and what showed 200 mV or more was set to (double-circle). As for the workability, as a result of trial production of a wire mesh base material and bending 10 times, those that did not break were evaluated as ◯, those that broke but did not crack were Δ, and those that broke and cracked were rated as x. The adhesion was determined by the same method as in Experiment 1. (Table 2) is a result of the stainless steel base material in which the ratio of chromium is changed. (Table 3) shows the results of the stainless steel base material in which the ratio of molybdenum is changed to be constant at 22 wt% chromium.
[0026]
[Table 2]
Figure 0003826522
[0027]
[Table 3]
Figure 0003826522
[0028]
From the results of (Table 2) and (Table 3), when the ferritic stainless steel substrate contains 28% or more of chromium or 4 wt% or more of molybdenum, the workability tends to be slightly deteriorated. When the chromium content is less than 18 wt%, the corrosion resistance becomes x, and when the molybdenum content is less than 1%, the adhesion becomes Δ. From the above results, good results were obtained when the chromium content was 18 to 27 wt%, and the molybdenum was further optimized within the range of 1 to 3 wt%.
[0029]
<Experiment 3>
Next, the experiment was performed by changing the proportion of nickel. Here, the ratio of chromium and molybdenum was the best (22Cr-2Mo) stainless base material in Experiment 2, and the air purification catalyst body produced by the above method was prepared. The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 4).
[0030]
[Table 4]
Figure 0003826522
[0031]
From the results of (Table 4), the adhesion improves when nickel is added to the ferritic stainless steel base material. However, when the nickel amount is 0.4 wt% or more, the adhesiveness is poor due to a change in the crystal structure of the base material. It becomes. Therefore, it can be seen that when the nickel content is 0.1 to 0.3 wt%, the performance is further improved in terms of adhesion.
[0032]
<Experiment 4>
Next, air purification catalyst bodies were prototyped using base materials with different ratios of chromium, molybdenum and nickel, and their corrosion resistance, workability and adhesion were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 5).
[0033]
[Table 5]
Figure 0003826522
[0034]
From the results of (Table 5), when performing a comprehensive judgment, the best performance is obtained when the ferritic stainless steel substrate contains 18 to 27 wt% chromium, 1 to 3 wt% molybdenum, and 0.1 to 0.3 wt% nickel. I understood.
[0035]
(Example 2)
The air purification catalyst body of Example 2 of the present invention is the same as in FIG. 1 except that copper is added to the alumina carrier 3 and copper is added to the alumina carrier 3.
[0036]
The air purification catalyst body was obtained by adding copper to an alumina-based carrier, and was produced in the same manner as in Example 1 by changing the ratio of copper. Here, the ratio of chromium, molybdenum, and nickel in the ferritic stainless steel base was the best ratio in Experiment 4 (22Cr-2Mo-0.2Ni). The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 6).
[0037]
[Table 6]
Figure 0003826522
[0038]
From the results of (Table 6), it can be judged that the adhesiveness of the alumina-based carrier containing 1 to 3 wt% of copper was further improved. Conversely, if copper is contained in an amount of 4 wt% or more, peeling occurs due to a difference in thermal expansion coefficient.
[0039]
Example 3
The air purification catalyst body of Example 3 of the present invention is the same as in FIG. 1 except that aluminum is added to the alumina carrier 3 and aluminum is added to the alumina carrier 3.
[0040]
The air purification catalyst body was obtained by adding aluminum to an alumina carrier, and was manufactured by the same method as in Example 1 by changing the proportion of aluminum. Here, the ratio of chromium, molybdenum, and nickel in the ferritic stainless steel base was the best ratio in Experiment 4 (22Cr-2Mo-0.2Ni). The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 7).
[0041]
[Table 7]
Figure 0003826522
[0042]
From the results of (Table 7), it can be determined that the adhesiveness of the alumina-based carrier containing 0.5 to 1.5 wt% aluminum is further improved. Conversely, when aluminum is contained in an amount of 2.0 wt% or more, peeling occurs due to a difference in thermal expansion coefficient.
[0043]
Example 4
The air purification catalyst body of Example 4 of the present invention is the same as in FIG. 1 except that silver is added to the alumina carrier 3 and silver is added to the alumina carrier 3.
[0044]
The air purification catalyst body was obtained by adding silver to an alumina-based carrier, and was produced in the same manner as in Example 1 by changing the silver ratio. Here, the ratio of chromium, molybdenum, and nickel in the ferritic stainless steel base was the best ratio in Experiment 4 (22Cr-2Mo-0.2Ni). The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 8).
[0045]
[Table 8]
Figure 0003826522
[0046]
From the results of (Table 8), it can be judged that the adhesiveness of the alumina-based carrier containing 1 to 3 wt% of silver was further improved. Conversely, when silver is contained in an amount of 4 wt% or more, peeling occurs due to a difference in thermal expansion coefficient.
[0047]
(Example 5)
The air purification catalyst body of Example 5 of the present invention is the same as in FIG. 1 except that gold is added to the alumina carrier 3 and gold is added to the alumina carrier 3.
[0048]
The air purification catalyst body was obtained by adding gold to an alumina carrier, and was manufactured by the same method as in Example 1 by changing the gold ratio. Here, the ratio of chromium, molybdenum, and nickel in the ferritic stainless steel base was the best ratio in Experiment 4 (22Cr-2Mo-0.2Ni). The corrosion resistance, workability, and adhesion of these air purification catalyst bodies were evaluated. The evaluation method is the same as the method shown in Experiment 2, and the results of comprehensive judgment are shown in (Table 9).
[0049]
[Table 9]
Figure 0003826522
[0050]
From the results of (Table 9), it can be determined that the adhesiveness of the alumina-based carrier containing 1 to 3 wt% of gold was further improved. Conversely, when gold is contained in an amount of 4 wt% or more, peeling occurs due to a difference in thermal expansion coefficient.
[0051]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0052]
(1) According to the first aspect of the present invention, the amount of chromium, molybdenum, and nickel mixed in the ferritic stainless steel is optimized to obtain a porous metal oxide coating having excellent adhesion. As a result, the alumina support formed by heat treatment of the aluminum oxide hydrate sol was easy to throw on the metal oxide coating. As a result, the adhesive strength between the two can be increased, and the peeling of the alumina-based carrier can be reduced. This has the effect that it can be used even in an environment where there are many mechanical vibrations. It also has good corrosion resistance and can be used in high temperature and high humidity environments.
[0053]
(2) According to the invention described in claim 2 of the present invention, by containing 1 to 3 wt% of copper in an alumina carrier and heat-treating this carrier, the alumina is excellent in anchoring effect and does not peel due to a difference in thermal expansion A system carrier was obtained. As a result, the adhesive strength between the alumina-based carrier and the metal oxide-based coating is further increased, and the peeling of the alumina-based carrier is reduced, so that it can be used even in an environment where the mechanical vibration is severe.
[0054]
(3) According to the invention described in claim 3 of the present invention, by adding 0.5 to 1.5 wt% of aluminum in the alumina-based carrier and heat-treating this carrier, the anchoring effect is excellent and due to the difference in thermal expansion. An alumina-based carrier without peeling was obtained. As a result, the adhesive strength between the alumina-based support and the metal oxide-based coating is further increased, and the peeling of the alumina-based support is reduced, thereby having an effect that can be used even in an environment where the mechanical vibration is severe.
[0055]
(4) According to the invention described in claim 4 of the present invention, by adding 1 to 2 wt% of silver to an alumina-based carrier and heat-treating this carrier, the alumina is excellent in anchoring effect and does not peel due to a difference in thermal expansion A system carrier was obtained. As a result, the adhesive strength between the alumina-based support and the metal oxide-based coating is further increased, and the peeling of the alumina-based support is reduced, thereby having an effect that can be used even in an environment where the mechanical vibration is severe.
[0056]
(5) According to the invention described in claim 5 of the present invention, by containing 1 to 4 wt% of gold in an alumina-based carrier and heat-treating the carrier, the alumina has excellent anchoring effect and does not peel due to the difference in thermal expansion A system carrier was obtained. As a result, the adhesive strength between the alumina-based support and the metal oxide-based coating is further increased, and the peeling of the alumina-based support is reduced, thereby having an effect that can be used even in an environment where the mechanical vibration is severe.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an air purification catalyst body according to Embodiment 1 of the present invention. FIG. 2 is a cross-sectional view of a conventional air purification catalyst body.
DESCRIPTION OF SYMBOLS 1 Base material 2 Metal oxide type coating 3 Alumina type support | carrier 4 Catalyst 5 Ferritic stainless steel base material

Claims (5)

フェライト系ステンレス基材と、前記フェライト系ステンレス基材を熱処理して表面に形成した金属酸化物系被膜と、前記金属酸化物系被膜の表面に酸化アルミニウム水和物を主成分としたゾルを付着させたのち熱処理して形成したアルミナ系担体と、前記アルミナ系担体に担持させた白金単独または白金とパラジウムからなる触媒とからなり、前記フェライト系ステンレス基材はクロムを18〜27wt%とモリブテンを1〜3wt%とニッケルを0.1〜0.3wt%を含有する空気浄化用触媒体。A ferritic stainless steel base, a metal oxide coating formed on the surface of the ferritic stainless steel by heat treatment, and a sol composed mainly of aluminum oxide hydrate on the surface of the metal oxide coating And an alumina carrier formed by heat treatment and platinum alone or a catalyst made of platinum and palladium supported on the alumina carrier. The ferrite stainless steel substrate contains 18 to 27 wt% chromium and molybdenum. An air purifying catalyst body containing 1 to 3 wt% and 0.1 to 0.3 wt% of nickel. アルミナ系担体が銅を1〜3wt%含有した請求項1記載の空気浄化用触媒体。  The air purification catalyst body according to claim 1, wherein the alumina-based support contains 1 to 3 wt% of copper. アルミナ系担体がアルミニウムを0.5〜1.5wt%含有した請求項1記載の空気浄化用触媒体。  The air purification catalyst body according to claim 1, wherein the alumina-based carrier contains 0.5 to 1.5 wt% of aluminum. アルミナ系担体が銀を1〜2wt%含有した請求項1記載の空気浄化用触媒体。  The air purification catalyst body according to claim 1, wherein the alumina-based carrier contains 1 to 2 wt% of silver. アルミナ系担体が金を1〜4wt%含有した請求項1記載の空気浄化用触媒体。  The air purification catalyst body according to claim 1, wherein the alumina-based carrier contains 1 to 4 wt% of gold.
JP32574497A 1997-11-27 1997-11-27 Air purification catalyst Expired - Fee Related JP3826522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32574497A JP3826522B2 (en) 1997-11-27 1997-11-27 Air purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32574497A JP3826522B2 (en) 1997-11-27 1997-11-27 Air purification catalyst

Publications (2)

Publication Number Publication Date
JPH11156194A JPH11156194A (en) 1999-06-15
JP3826522B2 true JP3826522B2 (en) 2006-09-27

Family

ID=18180171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32574497A Expired - Fee Related JP3826522B2 (en) 1997-11-27 1997-11-27 Air purification catalyst

Country Status (1)

Country Link
JP (1) JP3826522B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535278B1 (en) * 1964-04-14 1978-02-25
JPS502694A (en) * 1973-05-11 1975-01-11
SE422744B (en) * 1975-08-20 1982-03-29 Atomic Energy Authority Uk CATALYST BODY WITH CONTINUOUS CHANNELS AS SET FOR ITS MANUFACTURING
JPS55155737A (en) * 1979-05-23 1980-12-04 Suzuki Motor Co Ltd Production of catalyzer carrier
CA1331939C (en) * 1985-02-27 1994-09-13 Kazuo Tsuchitani Method for coating a metal covered with metal oxide film with refractory metal oxide
DE3706415A1 (en) * 1987-02-27 1988-09-08 Thyssen Edelstahlwerke Ag SEMI-FINISHED FERRITIC STEEL PRODUCT AND ITS USE
JP3309971B2 (en) * 1990-03-30 2002-07-29 東京濾器株式会社 Manufacturing method of exhaust gas purifying catalyst
JP2851459B2 (en) * 1991-08-14 1999-01-27 三菱重工業株式会社 Metal-based catalyst and method for producing the same
JP3334462B2 (en) * 1995-12-12 2002-10-15 松下電器産業株式会社 Deodorizing device

Also Published As

Publication number Publication date
JPH11156194A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP0348575B1 (en) Catalyst carriers and a process for producing the same
JP3826522B2 (en) Air purification catalyst
JPS59145048A (en) Catalyst, preparation and use thereof
JP3953944B2 (en) Metal foil and honeycomb structure
JPH105603A (en) Gas purification catalyst for internal combustion engine
US4867811A (en) Processes for production of metallic catalyst-carrier and catalytic component
JP2002507249A (en) Ferritic stainless steel and its use as a substrate for catalytic converters
JP4519725B2 (en) Exhaust gas purification catalytic converter with excellent high-temperature oxidation resistance
JPH0226643A (en) Catalyst carrier
US5534476A (en) Use of a super alloy as a substrate for catalysts
JPS5940507B2 (en) Self-cleaning wall forming method for the inner wall of a cooking appliance
JPH0665737B2 (en) Metal plate for glass sealing
JP3142884B2 (en) Fe-Cr-Al alloy that has excellent catalyst peeling resistance and suppresses whisker formation that reduces the adhesion of γAl2O3
JPH05140766A (en) Aluminum-clad iron-chrome foil containing additive of rare earth element or yttrium
JPH0356147A (en) Preparation of catalyst carrier
JPH11197517A (en) Metallic carrier for catalyst
JPH05103987A (en) Fe-based alloy substrate for catalyst and support for catalyst
JPH01115455A (en) Production of catalyst for purifying exhaust gas
JP4198448B2 (en) Honeycomb structure for metal foil and catalyst carrier and metal catalyst carrier for exhaust gas purification
JPH01164444A (en) Carrier for exhaust gas purification catalyst
JPH02194842A (en) Catalyst for purifying exhaust gas
JPH05277374A (en) Ni-base alloy substrate for catalyst and catalyst support
JP4531169B2 (en) Metal carrier catalyst for exhaust gas purification
JPH04218682A (en) High-temperature corrosion resistant member and its production
JPS62144750A (en) Preparation of platinum group oxidizing catalyst

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees