JP3826412B2 - エッジ検出方法及びエッジ検出装置 - Google Patents

エッジ検出方法及びエッジ検出装置 Download PDF

Info

Publication number
JP3826412B2
JP3826412B2 JP13441895A JP13441895A JP3826412B2 JP 3826412 B2 JP3826412 B2 JP 3826412B2 JP 13441895 A JP13441895 A JP 13441895A JP 13441895 A JP13441895 A JP 13441895A JP 3826412 B2 JP3826412 B2 JP 3826412B2
Authority
JP
Japan
Prior art keywords
edge
gradient
edge detection
estimated
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13441895A
Other languages
English (en)
Other versions
JPH08329252A (ja
Inventor
卓志 戸塚
知生 光永
琢 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13441895A priority Critical patent/JP3826412B2/ja
Publication of JPH08329252A publication Critical patent/JPH08329252A/ja
Application granted granted Critical
Publication of JP3826412B2 publication Critical patent/JP3826412B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Image Analysis (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、画像処理において基本的な役割を果たすエッジ検出方法及びエッジ検出装置に関するものであり、テレビジョンや映画等の映像制作における特殊効果処理、FA(Factory Automation)におけるカメラ画像からの部品認識等に適用して好適なエッジ検出方法及びエッジ検出装置に関するものである。
【0002】
【従来の技術】
画像から任意の部分画像を切り出す作業は、映像の編集合成やコンピュータグラフィックス等におけるテクスチャ及び構造データの生成の基本操作である。この切り出しという操作では、エッジ検出、領域抽出、及び既知物体との対応付け等の処理を必要とする。特に、画像中の背景や対象物体が複雑になると、対象物体の輪郭を構成するエッジを正確に求め、追跡することが必要となる。
【0003】
ここで、エッジ検出とは、濃淡画像内で画素値が急峻に変化している部分を見いだす処理である。通常、急峻な変化は、対象物体の輪郭で起きるため、エッジ検出の結果を基にして、対象物体の輪郭を画像から抽出することができる。したがって、エッジ検出は、画像からその中に存在する対象物体に関する情報を得るための最も基本的な処理として多方面で使用されている。特に、対象物体の輪郭の抽出は、例えば、画像に存在する対象物体の構成や位置等を計算機等によって判断する上での最も基本的な処理であり、エッジ検出の最も重要な用途である。
【0004】
上述のようなエッジ検出の方法は、公知の多くの方法があるが、何れの方法も局所的な画素の値の変化を調べ、その変化が大きい部分をエッジとして検出するものである。代表的なエッジ検出方法として、空間フィルタとして微分フィルタを使用するものがある。この微分フィルタを用いるエッジ検出方法は、画素の値の変化が大きい部分では、微係数も大きな値になるという原理に基いてエッジを検出する方法である。例えば、図10に示すような横(X)方向のソーベル(Sobel)フィルタは、横(X)方向の1次微分に相当する演算を行うものであり、このソーベルフィルタを用いた場合、縦(Y)方向のエッジが存在するところでは、ソーベルフィルタの出力が正又は負の大きな値となるため、縦(Y)方向のエッジを検出することができる。
【0005】
上述のようなソーベルフィルタの他にも、1次又は2次の微分に相当する演算を行う多種の空間フィルタがエッジ検出用に用いられている。これらのエッジ検出方法については、例えば、代表的な教科書であるジェイン(Jain)著「ファンダメンタルズ オブ デジタル イメージ プロセッシング(Fundamentals of Digital Image Processing)」、及びプラット(Pratt)著「デジタル イメージ プロセッシング(DigitalImage Processing)」に詳しく紹介されている。
【0006】
また、上述のようなエッジ検出方法を用いて対象物体の輪郭を検出する方法もいろいろ試みられている。例えば、エッジ検出の結果から画素値の変化の度合い、すなわちエッジ強度が大きい部分を「1」、それ以外の部分を「0」とする2値画像を生成し、その2値画像を細線化することにより対象物体の輪郭を得る領域抽出方法が「特願平5−233810号」に開示されている。ここで、細線化とは、生成した2値画像から値「1」のピクセルを順に取り除いていき、通常は1ピクセル幅になるまで値「1」のピクセルを順に取り除いて1ピクセル幅の中心線を抽出するという公知の手順である。
【0007】
一方、空間フィルタを用いずに統計的な方法でエッジを検出する方法もある。例えば、注目している画素の近傍での画素値の分散、すなわち色相の分散を算出し、その値が大きいところを領域の境界として検出するエッジ検出方法及び装置が「特願平5−181969号」に開示されている。
【0008】
また、文献「カラーエッジ ディテクション ユージング ベクトル オーダスタティスティックス(Trahanias,P.E.et.al.”Color edge detection using vector orderstatistics”,IEEE Transactions on image processing,Vo1.2,No.2,pp.259−264,1993)」では、画素値が各々他の画素値とどれだけ離れているかを表す尺度を基にエッジを検出する方法が述べられている。
【0009】
【発明が解決しようとする課題】
しかし、上述したような従来のエッジ検出方法では、画素値の急峻な変化がある部分を全て検出してしまうという問題があった。例えば、図11(a)に示すように、画像100の対象物体110において、対象物体110の内部に色の違いや背景と対象物体110の交差がある場合、従来のエッジ検出方法では、同図(b)に示すように、物体内部の境界112をも検出されてしまい、同図(c)に示すような本来求めたいエッジ111のみを得ることができなかった。
【0010】
通常、物体内部では、上記図11(a)に示したような色の違い、模様、影等様々な理由による画素値の急峻な変化が不可避である。また、通常は、背景にも様々な模様や色が存在する。これに対して従来のエッジ検出方法では、画素値の急峻な変化を一様に検出していたため、上述したような物体内部の境界や背景の模様等も誤ってエッジとして検出されてしまう可能性があった。
【0011】
そこで、上述のような問題を解決するために、画像の色情報、すなわち明度、彩度、及び色相に基いて明度に対して重み付け補正処理を施した後、重み付け補正処理が施された明度に基いてエッジを検出する自動切抜きシステムが「特願平1−173177号」に開示されている。この自動切抜きシステムは、輪郭付近の画素値の変化、例えば、明度の変化を強調するための重み付け補正処理により輪郭をより際だたせることにより、前景の物体や背景内の模様や色変化の誤った検出を減らしてエッジ検出を行うものである。
【0012】
しかし、上記自動切抜きシステムでは、輪郭上の個々の部分各々について最適な重み付け補正処理を行うことは考慮されていない。また、物体の輪郭に沿って模様や色等が一様であることは、むしろ希である。このため、上記自動切抜きシステムによっても、本来求めたいエッジ以外のエッジの混入を防ぐことができなかった。
【0013】
また、画像のヒストグラムを用いて前景と背景の境界におけるコントラストが上がるように画素値の変換を行うことにより、境界付近のエッジを際だたせてエッジを検出するエッジ抽出装置が「特願平1−76170号」に開示されている。しかし、上記エッジ抽出装置によっても、敏感なエッジの検出には有効であるが、本来求めたいエッジ以外のエッジの混入を防ぐことができなかった。
【0014】
一方、エッジ検出を行う場所を画像上で限定することにより、不必要な場所でのエッジ検出を省き、輪郭以外の場所におけるエッジの混入を最小限にとどめる領域抽出装置が「特願平3−176780号」に開示されている。この領域抽出装置では、人手により対象物体の輪郭の概略を入力し、その輪郭概略内部でのみエッジ検出を行うことにより、余分なエッジの発生を防いでエッジ検出を行うものである。また、人手により対象物体の輪郭の概略を入力し、その輪郭概略の情報に基いてエッジ検出を境界付近でのみ行う構成としたソフトキー生成装置が「特願平5−236347号」に開示されている。
【0015】
しかし、上記領域抽出装置及び上記ソフトキー生成装置では、単に誤ったエッジの検出が発生する領域を狭めるのみであり、輪郭以外のエッジの混入を防ぐことができなかった。
例えば、図12(a)に示すように、画像200において、オペレータが入力した対象物体210の輪郭の概略220を用いてエッジ検出を行った場合、エッジ検出を行う範囲を制限してもその制限には限界があり、上記図12(b)に示すように、不要なエッジ221a,221b,221cが誤って検出されてしまっていた。
【0016】
ここで、輪郭の概略220の精度を上げることにより、不要なエッジ221a,221b,221cの数や長さを次第に減少させることはできるが、このためには、輪郭の概略220を人手で高精度に与える必要があり、これは大変困難な作業である。この問題を解決するために、オペレータがタブレットやマウス等の入力手段をゆっくり動かしている場合には、輪郭の概略の太さが細くなるように制御し、速く動かしている場合には、輪郭の概略の太さが太くなるように制御することにより、エッジ検出を行う範囲を制限してエッジを検出する画像編集装置が「特願平1−180674号」に開示されているが、これにおいても、不要なエッジの混入を防ぐことはできなかった。
【0017】
上述のような問題を解決するために、例えば、エッジ方向を人手で入力した概略の輪郭から推定し、推定したエッジ方向と合致するエッジのみを選択的に検出することにより、上述したような不要なエッジを大幅に除去してエッジの検出を行うエッジ検出方法がある。
【0018】
上記エッジ検出方法では、図13の(a)〜(d)に示すようなロビンソン(Robinson)の3レベル(3−level)と呼ばれるフィルタ群を用いることにより、特定の方向のエッジのみを検出する。
上記図13の(a)〜(d)に示したフィルタ群は、上記図10に示したソーベルフィルタを拡張したものであり、水平及び垂直以外の方向のエッジを検出するものである。例えば、上記図13の(a)に示したフィルタは、画像右側の画素値が大きく、画像左側の画素値が小さい場合に大きな値を出力するものである。すなわち、上記図13の(a)に示したフィルタは、+0°方向のエッジを検出するものである。また、上記図13の(b),(c),(d)に示した各フィルタは、各々、45°、90°、135°方向のエッジを検出するものである。
【0019】
また、上記エッジ検出方法では、上記図13の(a)〜(d)に示したフィルタ群以外に、上記フィルタ群が検出するエッジの方向以外の方向において、45°きざみでエッジを検出するフィルタ群が用いられる。したがって、上記エッジ検出方法では、全部で8方向のエッジを検出するためのフィルタが用いられる。
【0020】
ここで、上記図13の(a)〜(d)に示したロビンソンの3レベルのフィルタの他に、特定の方向のエッジを検出するフィルタとして、上述したプラット(Pratt)著「デジタル イメージ プロセッシング(Digital Image Processing)」に述べられているプレウイット(Prewitt)のコンパス(compass)フィルタやキルシュ(Kirsch)のフィルタ等がある。
【0021】
しかし、上述したロビンソンの3レベルのフィルタ、プレウイットのコンパスフィルタ、及びキルシュのフィルタ等の特定の方向のエッジを検出するフィルタ(以下、方向選択的なフィルタと言う。)においては、方向選択性、すなわち指向性が弱いという欠点がある。
【0022】
具体的に説明すると、例えば、エッジの本来の強度をK、検出したいエッジの方向と実際のエッジの方向のなす角度をθとした場合、方向選択的なフィルタの出力、すなわちエッジ強度Eは、
E = Kcosθ
なる関係式で与えられる。
【0023】
この関係式は、不要なエッジの方向が本来検出したいエッジの方向と90゜異ならない限り、不要なエッジのエッジ強度Eは「0」にならない、すなわち不要なエッジの混入を完全に除去することはできないことを示している。したがって、図14に示すように、方向選択的なフィルタにおける指向性Aに対して、実用上必要となる指向性Bは、さらに強いものである必要があるが、このような強い指向性を方向選択的なフィルタに持たせることができなかったため、不要なエッジの混入を防ぐことができなかった。
【0024】
また、方向選択的なフィルタにおいて、エッジの検出方向を細かくしようとした場合、例えば、上述したような45°単位ではなく、15°単位でエッジの検出方向を細かくしようとした場合には、フィルタが大きくなってしまっていた。すなわち、フィルタの係数の正の部分と負の部分は、エッジの検出方向と直角に配置されなくてはならないが、エッジの検出方向が15°単位のように細かく指定されると、その検出方向の角度を表すためには、3×3程度の小さなフィルタでは不十分となり、フィルタが大きくなってしまっていた。このため、細かいエッジの検出能力が低下すると共に、多数のフィルタを用いなければ全方向のエッジに対応することができないという不便さが生じてしまっていた。
【0025】
そこで、本発明は、上述の如き従来の実情に鑑みてなされたものであり、次のような目的を有するものである。
即ち、本発明の目的は、不要なエッジの混入を防ぎ、エッジ検出精度を高めたエッジ検出方法及びエッジ検出装置を提供することにある。
【0026】
また、本発明の目的は、エッジ検出方向の指向性が強いエッジ検出方法及びエッジ検出装置を提供することにある。
また、本発明の目的は、良好なエッジ画像を容易に得るエッジ検出方法及びエッジ検出装置を提供することにある。
【0027】
また、本発明の目的は、良好なエッジ画像を高速に得るエッジ検出方法及びエッジ検出装置を提供することにある。
【0028】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、濃淡データで構成される入力画像データの中から、画素値が周囲と比べて急峻に変化している画素群をエッジとして検出するエッジ検出方法であって、推定手段により、あらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定する推定工程とグラディエント算出手段により、入力画像データにおける各位置グラディエントを求めるグラディエント算出工程とエッジ強度算出手段により、上記推定工程で推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、上記推定したエッジ方向と上記グラディエントとのなす角度の絶対値が小さいほど大きい値をとる指向性を決定する指数と、からエッジ強度を算出してエッジを検出するエッジ強度算出工程とからなることを特徴とする。
【0029】
また、本発明に係るエッジ検出方法は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出することを特徴とする。
【0030】
また、本発明に係るエッジ検出方法は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求めることを特徴とする。
さらに、本発明は、上記曲線がスプライン曲線であることを特徴とする。
【0031】
本発明は、濃淡データで構成される入力画像データの中から、画素値が周囲と比べて急峻に変化している画素群をエッジとして検出するエッジ検出装置であって、あらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定する推定手段と、入力画像データにおける各位置のグラディエントを求めるグラディエント算出手段と、上記推定手段で推定したエッジ方向と、上記グラディエント算出手段で得られたグラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度を算出するエッジ強度算出手段と、上記エッジ強度算出手段で得られたエッジ強度からエッジを検出する検出手段とを備え、上記指数は、上記推定したエッジ方向と上記グラディエントのなす角度の絶対値が小さいほど、大きい値をとることを特徴とする。
【0032】
また、本発明に係るエッジ検出装置は、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出することを特徴とする。
【0033】
また、本発明に係るエッジ検出装置は、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求めることを特徴とする。
【0034】
また、本発明に係るエッジ検出装置は、上記曲線がスプライン曲線であることを特徴とする。
【0035】
【作用】
本発明に係るエッジ検出方法では、推定手段によりあらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定グラディエント算出手段により入力画像データにおける各位置グラディエントを求める。そして、エッジ強度算出手段により、上記推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、上記推定したエッジ方向と上記グラディエントとのなす角度の絶対値が小さいほど大きい値をとる指向性を決定する指数と、からエッジ強度を算出してエッジを検出する。
【0036】
また、本発明に係るエッジ検出方法では、上記推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度を算出する。
【0037】
また、本発明に係るエッジ検出方法では、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求める。
【0038】
本発明に係るエッジ検出装置では、あらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定手段により推定するとともに、入力画像データにおける各位置のグラディエントをグラディエント算出手段により求める。そして、上記推定手段で推定したエッジ方向と、上記グラディエント算出手段で得られたグラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度算出手段によりエッジ強度を算出し、上記エッジ強度算出手段で得られたエッジ強度から検出手段によりエッジを検出する。上記指数は、上記推定したエッジ方向と上記グラディエントのなす角度の絶対値が小さいほど、大きい値をとる。
【0039】
また、本発明に係るエッジ検出装置では、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出する。
【0040】
また、本発明に係るエッジ検出装置では、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求める。
【0042】
【実施例】
以下、本発明の一実施例について図面を参照しながら説明する。
本発明に係るエッジ検出方法は、例えば、図1に示すようなエッジ検出装置10により実施される。また、エッジ検出装置10は、本発明に係るエッジ検出装置を適用したものである。
【0043】
すなわち、エッジ検出装置10は、上記図1に示すように、入力画像Finが供給されるグラディエント計算部11と、輪郭の概略Pが供給されるスプライン曲線発生部12と、助変数tをスプライン曲線発生部12に対して発生するパラメータ座標生成部13と、グラディエント計算部11からの出力とスプライン曲線発生部12からの出力からエッジ強度Eを算出するエッジ強度計算部14とを備えている。また、スプライン曲線発生部12からの出力は、グラディエント計算部11にも供給されるようになされている。
【0044】
また、グラディエント計算部11は、図2に示すように、入力画像Finが各々供給されるフィルタ演算器111とフィルタ演算器112を備えている。フィルタ演算器111は、X方向のソーベルフィルタSXを入力画像Finに対して施すものであり、フィルタ演算器112は、Y方向のソーベルフィルタSYを入力画像Finに対して施すものである。このようなフィルタ演算器111及びフィルタ演算器112からの各出力は、エッジ強度計算部14に供給されるようになされている。
【0045】
また、エッジ強度計算部14には、予め設定されている方向選択指数sが供給されるようになされており、エッジ強度計算部14は、図3に示すように、グラディエント計算部11からの出力を用いて参照するグラディエントテーブルTGと、スプライン曲線発生部12からの出力が供給される座標回転部412と、グラディエントテーブルTGで得られた結果と座標回転部412からの出力が供給される内積計算部141と、供給された方向選択指数sと内部演算部141からの出力を用いて参照するコサインテーブルTCと、コサインテーブルTCで得られた結果とグラディエントテーブルTGで得られた結果からエッジ強度Eを算出する乗算器143とを備えている。
【0046】
ここで、図4は、エッジ検出装置10におけるエッジ検出処理を示すフローチャートである。以下、上記図1〜図3及び図4を用いて具体的に説明する。
エッジ検出装置10には、濃淡データで構成された入力画像Finが入力される。一方、エッジ検出装置10には、例えば、オペレータが図示していないディスプレイ上に表示されている入力画像Finをみながらタブレットを使用することにより、輪郭の概略Pが入力される。
【0047】
グラディエント計算部11は、入力画像Finを取り込む(ステップS1)。尚、グラディエント計算部11における詳細な説明は後述する。
一方、スプライン曲線発生部12は、上述したようなオペレータの入力による輪郭の概略Pを座標列(x0,y0),(x1,y1),(x2,y2),・・・として順次取り込む(ステップS2)。そして、スプライン曲線発生部12は、順次取り込んだ座標列(x0,y0),(x1,y1),(x2,y2),・・・を通るような滑らかな曲線P(t)を生成する(ステップS3)。
【0048】
具体的に説明すると、まず、曲線P(t)は、3次スプライン形式で表現される。すなわち、曲線P(t)は、助変数t、助変数tの3次多項式x(t),y(t)を持って、
P(t) = (x(t),y(t))
なる式で表現される。そして、助変数tが「0」〜「1」まで変化する時、その軌跡である曲線P(t)、すなわちスプライン曲線P(t)は、座標列(x0,y0),(x1,y1),(x2,y2),・・・を滑らかに接続して輪郭を一周することとなる。このようなスプライン曲線は、CADをはじめとする広い分野で使用されている。
【0049】
そこで、スプライン曲線発生部12は、スプライン曲線P(t)が座標列(x0,y0),(x1,y1),(x2,y2),・・・を滑らかに接続するように、3次多項式x(t),y(t)の係数を順次取り込んだ座標列(x0,y0),(x1,y1),(x2,y2),・・・(以下、座標列(xn,yn)と言う。)に基いて決定する。この係数の決定方法は、例えば、代表的な文献であるファーリン(Farin)著の「カーブス アンド サーフェシズ フォーコンピュータ エイディッド ジオメトリック デザイン(Curves and surfaces for computer aided geometric design)」に述べられている係数の決定方法を適用する。この係数の決定方法は、点群を与えられた時、その点群を通過するような係数の決定方法であり、公知のものである。
【0050】
例えば、入力画像Finが図5(a)に示すような画像250であった場合、すなわち画像250の中心付近に円形の物体260が存在する場合、スプライン曲線発生部12は、円形の物体260の周囲に沿ってオペレータが指定した概略の輪郭上の点群271xyを座標列(xn,yn)として取り込む。そして、スプライン曲線発生部12は、点群271xyを補間する曲線270が点群271xyを通過するような係数を決定して、スプライン曲線P(t)を生成する。
【0051】
上述のようにしてスプライン曲線発生部12により生成されたスプライン曲線P(t)は、グラディエント計算部11に供給される。
また、スプライン曲線発生部12は、生成したスプライン曲線P(t)を輪郭の概略として用い、スプライン曲線P(t)上の各画素について以下の処理を行う(ステップS4)。この時、パラメータ座標生成部13は、曲線P(t)の助変数tを「0」〜「1」まで小さな刻み幅で変化させてスプライン曲線発生部12に対して発生する。
【0052】
尚、以下に述べるステップS4の処理は、パラメータ座標生成部13からの少しずつ変化した助変数tにより、スプライン曲線P(t)上の各画素を順にたどっていき、各画素(x,y)について繰り返すループ処理である。
先ず、スプライン曲線発生部12は、パラメータ座標生成部13からの助変数tを上述した「P(t)=(x(t),y(t))」の式に代入することにより、対象画素のX座標及びY座標(以下、対象画素(x,y)と言う。)を求める。そして、スプライン曲線発生部12は、求めた対象画素(x,y)をグラディエント計算部11に供給する。
【0053】
また、スプライン曲線発生部12は、上記図5(b)に示すように、求めた対象画素(x,y)におけるスプライン曲線P(t)の接線方向を求める。この接線方向を対象画素(x,y)における輪郭のおよその方向として使用する。すなわち、接線方向は、スプライン曲線P(t)を微分して得られる速度ベクトルV(t)の方向と等しいため、この速度ベクトルV(t)を接線方向として、
V(t) = d/dtP(t)
なる式で求める。そして、求めた速度ベクトルV(t)の長さを「1」に正規化し、接線ベクトルTを、
T = V(t)/|V(t)|
なる式で求め(ステップS4.1)、求めた接線ベクトルTをエッジ強度計算部14に供給する。
【0054】
次に、上述のようにしてスプライン曲線発生部12で得られた接線ベクトルTを補助情報とし、その補助情報を用いて以下に述べるエッジ検出処理を行う(ステップS4.2)。
先ず、エッジ強度計算部14は、スプライン曲線発生部12からの接線ベクトルTを90゜回転させた法線ベクトルNを求める(ステップS4.2.1)。この回転は、スプライン曲線P(t)の軌跡の進行方向に対して反時計回りを正の向きとする。
【0055】
すなわち、エッジ強度計算部14において、上記図3に示すように、座標回転部142は、スプライン曲線発生部12からの接線ベクトルTを反時計回りに回転した法線ベクトルNに変換する。この座標回転部142における処理は、1倍及び−1倍の係数をかけるのみのごく簡単なものである。
【0056】
上述のような法線ベクトルNを求める処理を演算式を用いて表すと、法線ベクトルNは、数1に示す行列Rを用いて、
【0057】
【数1】
Figure 0003826412
【0058】
N = RT
となる。このようにして求められた法線ベクトルNは、スプライン曲線P(t)の法線ベクトルであるため、エッジの向きと推定した輪郭の方向が平行であるならば、各々に垂直な後述するグラディエントとスプライン曲線P(t)の法線ベクトルNも平行となる。
【0059】
次に、上述したグラディエント計算部11は、スプライン曲線発生部12からの対象画素(x,y)の近傍3×3画素の領域について、ステップS1の処理において取り込んだ入力画像Finの画素値I(x,y)を読み込み、対象画素(x,y)における画像の勾配(以下、グラディエントと言う。)Gを求める。
【0060】
すなわち、グラディエント計算部11において、上記図2に示すように、フィルタ演算器111は、読み込んだ入力画像Finの画素値I(x,y)に対してX方向のソーベルフィルタSXを施す。また、フィルタ演算器112は、読み込んだ入力画像Finの画素値I(x,y)に対してY方向のソーベルフィルタSYを施す。そして、グラディエント計算部11は、フィルタ演算器111及びフィルタ演算器112の出力Dx,Dyを組み合わせて、対象画素(x,y)における画像のグラディエントG(=(Dx,Dy))としてエッジ強度計算部14に供給する(ステップS4.2.2)。
【0061】
上述のようにして得られたグラディエントGは、画像の濃淡を標高としてとらえた場合に、傾斜が最大の方向を示すベクトルであり、エッジの方向に垂直なものである。すなわち、グラディエントGは、入力画像Finの画素値I(x,y)に対して、G = grad I(x,y) = (Dx,Dy)
なる式で表すことができる。
【0062】
次に、エッジ強度計算部14は、グラディエント計算部11で得られたグラディエントGの長さlenGと、グラディエントGの長さlenGが「1」となるように正規化したnormGとを求める(ステップS4.2.3)。
ここで、エッジ強度計算部14は、上記図3に示すように、グラディエントテーブルTGを備えている。このグラディエントテーブルTGには、グラディエントGの長さlenGと、それを正規化したnormGとが[数2]に示す演算式を用いて予め計算された結果が格納されている。
【0063】
【数2】
Figure 0003826412
【0064】
具体的に説明すると、グラディエントテーブルTGは、グラディエント計算部11で得られたグラディエントG(=(Dx,Dy))を入力とし、グラディエントGの長さlenGと、それを正規化したnormGとを出力とするテーブルである。また、画素値の精度は、通常8ビットであり、X方向の出力Dx及びY方向の出力Dyも同じ精度が使用されるため、グラディエントテーブルTGには、X方向の出力DxとY方向の出力Dyの合わせて16ビットが入力されるようになされている。このため、任意のX方向の出力DxとY方向の出力Dyの組み合わせに対して、グラディエントテーブルTGの1要素が割り当てられる。したがって、グラディエントテーブルTGの各要素に各々、グラディエントGの長さlenGの値と、それを正規化したnormGの値とが格納されている。このようなグラディエントテーブルTGを用いることにより、平方根等の複雑な計算を行うこと無しに、容易に結果を得ることができる。また、グラディエントテーブルTGへの入力は、16ビットとしているため、テーブルサイズ、すなわち要素の数は、「65536」であり、現在の計算機に十分適用することができる。
【0065】
上述のようなグラディエントテーブルTGにより、グラディエント計算部11で得られたグラディエントG(=(Dx,Dy))のグラディエントGの長さlenGと、それを正規化したnormGが求められる。そして、求められたグラディエントGの長さlenGを正規化したnormGは、内積計算部141に供給されると共に、グラディエントGの長さlenGは、乗算器143に供給される。
【0066】
最後に、エッジ強度計算部14は、対象画素(x,y)における輪郭のエッジ強度E(x,y)を上述のようにして求めた法線ベクトルN、グラディエントテーブルTGからのグラディエントGの長さlenG、それを正規化したnormG、及び方向選択指数sを持って、
E(x,y) = lenG(normG・N)S
なる式により求める。
【0067】
すなわち、エッジ強度計算部14において、上記図3に示すように、先ず、内積計算部141は、法線ベクトルNと、グラディエントGの長さlenGを正規化したnormGとの内積「normG・N」を、乗算により求める。この結果がグラディエントGと法線ベクトルNのなす角度θのコサイン「cosθ」となる。
【0068】
次に、コサインテーブルTCを用いて、供給される方向選択指数sにより、
cosSθ
を求める。このコサインテーブルTCは、内積計算部141で得られたコサイン「cosθ」を入力とし、コサイン「cosθ」のS乗を出力とするテーブルであり、コサインテーブルTCから出力されるコサイン「cosθ」のS乗(=cosSθ)は、乗算器143に供給される。ここで、本実施例では、方向選択指数sは、予め設定されている固定値としているため、コサインテーブルTCへの入力は、内積計算部141で得られた内積の結果であり、コサインテーブルTCは、入力が8ビット程度の小さなテーブルである。このようなコサインテーブルTCを用いることにより、複雑な計算を行うこと無しに、コサインのS乗「cosSθ」を容易に求めることができる。
【0069】
そして、最後に、乗算器143は、グラディエントテーブルTGからのグラディエントGの長さlenGと、コサインテーブルTCからのコサインのS乗「cosSθ」とを掛け合わせ、掛け合わせた結果をエッジ強度Eとして出力する。ここで、エッジ強度計算部14に供給される方向選択指数sは、どの程度選択的に特定方向のエッジにだけ反応するかを決定する指数である。この方向選択指数sは、値が大きければその分指向性が強くなるため、不要なエッジの混入をより強く阻止することができるが、所望の方向、すなわち推定したエッジ方向と実際のエッジ方向が少しでもずれていた場合には、エッジ強度の減衰を引き起こす。そこで、方向選択指数sは、通常2〜8の間の値が設定されている。
【0070】
例えば、図6に示すように、方向選択指数sが大きくなると、グラディエントGと法線ベクトルNが同じ方向、すなわち内積「normG・N」の値が「1」に近い場合のみ、エッジ強度E(x,y)が大きい値となる。すなわち、高い指向性が得られる。また、方向選択指数sを「1」とした場合には、上述したロビンソンの3レベルのフィルタ、プレウイットのコンパスフィルタ、及びキルシュのフィルタにおける指向性と同じ指向性が得られる。
【0071】
上述のようなステップS4の処理を概略の輪郭を与えるスプライン曲線P(t)上の各画素(x,y)に対して行う。したがって、エッジ強度計算部14からは、図7に示すように、入力画像Finから得られたエッジ強度画像Foutが出力される(ステップS5)。
上述のように、本実施例では、エッジ強度Eを求める処理において、グラディエントGと法線ベクトルNのなす角度を直接求めずに、内積の計算により直接コサイン「cosθ」を求めているため、3角関数の計算等の複雑な処理を行う必要が無い。すなわち、グラディエントGと法線ベクトルNのなす角度の大きさと対応する量が、乗算2回と加算1回のみのはるかに少ない計算量で算出することができる。
【0072】
また、従来のエッジ検出方法及びエッジ検出装置では、上記図12の(b)に示した前景物体内の色の差や背景物体の交差による不要なエッジ221a〜221cの混入が不可避であり、例えば、推定したエッジ方向から45°ずれた方向のエッジの強度は29%の減衰、60°ずれた方向のエッジの強度は50%の減衰しか得られないのに対して、本実施例によると、上記図6に示すように、方向選択指数sを「4」とした場合、推定したエッジ方向から45°ずれた方向のエッジの強度は75%の減衰、60°ずれた方向のエッジの強度は94%の減衰を得ることができる。また、上述のような前景内の色変化や背景によって生じるうるエッジ221a〜221cの方向は、対象物体の輪郭の方向とは大きく異なる角度となるため、上述したような強い指向性を用いることにより、不要なエッジの混入をほぼ完全に除去することができる。
【0073】
また、概略の輪郭の方向の推定値である接線ベクトルT、及び入力画像FinのグラディエントGを輪郭上の各画素毎に求めるため、輪郭上の各点において輪郭に沿ったエッジを選択的に検出することができる。
例えば、上記図5(a)に示した画像250において、円形の物体260内の色の違いがある箇所A,Bでは、法線ベクトルNは、曲線270に垂直な方向となり、円形の物体260内の色の違いにより生じる水平な線上では、グラディエントGは、上記水平な線に対して垂直方向となる。このため、上記法線ベクトルNと上記グラディエントGの角度差は、90゜となり、上記図6に示すように、エッジ強度Eは、「0」となる。すなわち、円形の物体260内のエッジは、検出されない。一方、輪郭を表すエッジは、曲線270に沿うため、箇所A,BにおけるグラディエントGは、水平方向となる。これは法線ベクトルNと同じ方向であり、このため、輪郭を表すエッジは、強く検出される。したがって、上記図12(b)に示したような不要なエッジ221a,221b,221cを混入することなく、本来求めたいエッジのみを検出することができる。
【0074】
また、エッジ強度計算部14に対してエッジの方向を推定した情報である接線ベクトルTを補助情報として与え、エッジ強度計算部14を特定の方向に強く反応するものとすることにより、不要なエッジが混入することなく必要なエッジのみを高いS/N比で検出することができる。
【0075】
また、オペレータにより入力された輪郭の概略から各位置での対象物体のエッジの方向を算出できるため、オペレータの作業量を増やすこと無く、手間をかけずに必要なエッジのみを検出することができる。
尚、上述した実施例では、方向選択指数sの設定値を2〜8の間の値としたが、エッジの推定方向の精度をさらに高くし、方向選択指数sにさらに大きな値を設定してもよい。これにより、指向性をさらに強めることができる。
【0076】
また、方向選択指数sの値を外部から入力することにより、状況に応じて方向選択指数sの値を変化させてもよい。通常、方向選択指数sの値は、数通り選択できれば十分であるため、方向選択指数sを入力とするコサインテーブルTC追加ビット数は、4ビット程度でよい。また、方向選択指数sの値を整数に限定して、計算機が乗算の繰り返しとして冪乗を計算してもよい。
【0077】
また、上述した実施例では、コサイン「cosθ」の冪乗を使用してエッジ強度を求めることとしたが、上記図3に示した内積演算部141の出力をIP、指向性の分布関数をf(θ)として、
f(cos-1IP)
を計算し、その結果を使用してエッジ強度を求めてもよい。これにより、例えば、図8に示すように、推定したエッジ方向と実際のエッジ方向のなす角度θがしきい値K以下の場合には、エッジ強度を減衰させず、しきい値Kを超えた場合には、エッジ強度を急峻に減衰させる指向性を得ることができる。
【0078】
具体的に説明すると、先ず、所望の分布形状を定義し、上記図8に示したグラフの横軸の値をコサインに変換する。次に、コサインの値各々に対する減衰率、すなわち「f(cos-1IP)」の計算結果をテーブルに格納する。このテーブルを上述した実施例で用いたコサインテーブルTCの代わりに使用する。したがって、分布関数f(θ)を使用してエッジ強度を求めることができる。
【0079】
また、分布関数f(θ)が方向選択指数sをも変数として持つこととしてもよい。すなわち、分布関数f(θs)を使用してエッジ強度を求めてもよい。この場合には、方向選択指数sをも上記テーブルの入力とし、方向選択指数sを変化させながらエッジ強度を求める。
【0080】
また、上述した実施例では、輪郭の概略を3次スプライン形式で表現されるスプライン曲線P(t)としたが、異なる次数のスプライン形式で表現されるものとしてもよい。また、助変数tを用いずに、インプリサイトフォーム(implicit form)形式で表現される曲線
Q(x,y) = 0
としてもよい。
【0081】
また、オペレータが描画した概略の輪郭線の画像を細線化し、隣接する画素の位置関係からエッジの方向を推定してもよい。この場合には、上記図4に示したステップS3において、概略の輪郭線の画像を細線化し、上記図4に示したステップS4.1において、細線化した画像中の対象画素に隣接する複数の画素の並びからその位置における輪郭の方向を求めるようにする。
【0082】
また、上記図4に示したステップS4において、特定の方向のエッジに選択的に反応するような複数のフィルタ、例えば、コンパスオペレータ(compass operator)を用いて、エッジの推定した方向を基にしてその方向に対する検出能力の最も高いフィルタを上記複数のフィルタから選択してエッジ強度を求めるようにしてもよい。
【0083】
また、上述した実施例では、輪郭の概略を表す情報がオペレータにより入力されるものとしたが、複数枚の時間的に連続する画像、すなわち動画像から連続的にエッジを検出することとしてもよい。
この場合には、上記図4に示したフローチャートのステップS2の処理において、概略の輪郭を座標列(xn,yn)として取り込むのではなく、現在の処理対象の画像に対して直前の画像、直前の画像から得られたエッジ検出の結果、及び現在の処理対象の画像の3つの情報から現在の処理対象の画像における輪郭を推定する。
【0084】
すなわち、図9に示すように、先ず、現在の処理対象の画像FCの直前の画像FPに対するエッジ検出処理の結果得られたエッジ30上に一定間隔で画素(以下、マークと言う)311,312,313,・・・を結ぶ。次に、各マーク311,312,313,・・・に対して、各々マークを含む小ブロックを定める。例えば、マーク311に対しては、マーク311を含む小ブロック32を定める。このようにして定めた小ブロック内のデータと最も相関が高い部分を現在の処理対象の画像FC中からブロックマッチング処理により検出する。
【0085】
このブロックマッチング処理においては、先ず、例えば、小ブロック32内の画素値と、現在の処理対象の画像FC中の同じ大きさのブロック内の画素値とを比較し、その差の総和の大小により相関の高さを決定することにより、最も相関が高いブロック33を検出する。この時、ブロック33における画素34が小ブロック32のマーク311に対応する画素となる。マーク311以外のマーク312,313,・・・に対しても同様にして、対応する画素を現在の処理対象の画像FC中から検出する。
【0086】
したがって、上記図4に示したフローチャートのステップS3の処理において、上述のようにして得られた一連の対応する画素の座標列を用いて、スプライン曲線P(t)を生成する。
上述のように、現在の処理対象の画像と直前の画像からブロックマッチング処理により連続的に輪郭を抽出し、その輪郭を用いてエッジ検出を行うことにより、動画像に対してオペレータの介在なく自動的にエッジを検出することができる。また、この場合、ブロックマッチング処理に用いる画像を現在の処理対象の画像と直前の画像のみではなく、画像の枚数を増やしてブロックマッチング処理を行ってもよい。これにより、ブロックの移動量の算出精度を高めることができるため、より正確にエッジを検出することができる。
【0087】
また、時間的に離れた複数の画像において、上記図4に示したフローチャートのステップS2の処理にキーフレーム法を適用してもよい。すなわち、複数の画像についてオペレータが形状の指示を与え、中間の画像については計算機が補間によりオペレータの代替を行う手法を適用してもよい。この場合には、上記ステップS2の処理において、概略の輪郭をオペレータが設定し、中間の画像群については、概略の輪郭上の点群を補間し、自動的にその画像におけるスプライン曲線を生成する。
【0088】
上述のように複数枚の画像と過去のエッジ検出の結果を基にして現在の処理対象の画像におけるエッジを検出することにより、フレーム間の相関を用いてさらに精度良くエッジ方向又は色の変化の情報である補助情報を求めることができる。したがって、エッジ検出精度をさらに高めることができ、動画像におけるエッジ検出を手間をかけずに行うことができる。
【0089】
【発明の効果】
本発明に係るエッジ検出方法では、推定手段によりあらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定グラディエント算出手段により入力画像データにおける各位置グラディエントを求め、グラディエント強度算出手段により、上記推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、上記推定したエッジ方向と上記グラディエントとのなす角度の絶対値が小さいほど大きい値をとる指向性を決定する指数と、からエッジ強度を算出してエッジを検出する。
これにより、エッジ検出において強い指向性を得ることができ、不要なエッジが混入すること無く、対象物体の輪郭を構成するエッジのみを検出することができる。したがって、検出精度を高めることができる。
【0090】
また、本発明に係るエッジ検出方法では、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出する。これにより、少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像を容易に得ることができる。
【0091】
また、本発明に係るエッジ検出方法では、上記推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度を算出するので、少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像を容易に得ることができる。
【0092】
また、本発明に係るエッジ検出方法では、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求める。これにより、さらに強い指向性を得ることができ、さらに少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像をさらに容易に得ることができる。
【0094】
本発明に係るエッジ検出装置では、あらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定手段により推定するとともに、入力画像データにおける各位置のグラディエントをグラディエント算出手段により求め、上記推定手段で推定したエッジ方向と、上記グラディエント算出手段で得られたグラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度算出手段によりエッジ強度を算出し、上記エッジ強度算出手段で得られたエッジ強度から検出手段によりエッジを検出する。上記指数は、上記推定したエッジ方向と上記グラディエントのなす角度の絶対値が小さいほど、大きい値をとる。
これにより、エッジ検出において強い指向性を得ることができ、不要なエッジが混入すること無く、対象物体の輪郭を構成するエッジのみを検出することができる。したがって、エッジ検出精度を高めることができる。
【0095】
また、本発明に係るエッジ検出装置では、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出する。これにより、少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像を容易に得ることができる。
【0096】
また、本発明に係るエッジ検出装置では、上記エッジ強度算出手段により、上記推定したエッジ方向と上記グラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度を算出するので、少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像を容易に得ることができる。
【0097】
また、本発明に係るエッジ検出装置では、上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求める。これにより、さらに強い指向性を得ることができ、さらに少ない計算量でエッジ強度を算出することができる。したがって、良好なエッジ画像をさらに容易に得ることができる。
【図面の簡単な説明】
【図1】本発明に係るエッジ検出装置の構成を示すブロック図である。
【図2】上記エッジ検出装置のグラディエント計算部の構成を示すブロック図である。
【図3】上記エッジ検出装置のエッジ強度計算部の構成を示すブロック図である。
【図4】上記エッジ検出装置におけるエッジ検出処理を示すフローチャートである。
【図5】概略の輪郭を与える曲線を説明するための図である。
【図6】方向選択指数とエッジ強度の関係を示すグラフである。
【図7】入力画像とエッジ強度画像の関係を説明するための図である。
【図8】指向性分布関数を用いてエッジ強度を求める場合を説明するための図である。
【図9】ブロックマッチング処理を説明するための図である。
【図10】特定方向のエッジを検出するソーベルフィルタを示す略線図である。
【図11】従来のエッジ検出方法を用いて物体内部に色の違いがある画像のエッジ検出を行った場合の結果を説明するための図である。
【図12】オペレータにより入力される輪郭の概略を使用する従来のエッジ検出方法を用いて物体内部に色の違いがある画像のエッジ検出を行った場合の結果を説明するための図である。
【図13】特定方向のエッジを検出するロビンソン3レベルフィルタ群を示す略線図である。
【図14】従来のエッジ検出方法における指向性と実用上必要となる指向性の比較を説明するための図である。
【符号の説明】
10 エッジ検出装置
11 グラディエント計算部
12 スプライン曲線発生部
13 パラメータ座標生成部
14 エッジ強度計算部

Claims (8)

  1. 濃淡データで構成される入力画像データの中から、画素値が周囲と比べて急峻に変化している画素群をエッジとして検出するエッジ検出方法であって、
    推定手段により、あらかじめ示されているエッジ抽出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定する推定工程と
    グラディエント算出手段により、入力画像データにおける各位置グラディエントを求めるグラディエント算出工程と
    エッジ強度算出手段により、上記推定工程で推定したエッジ方向と上記グラディエント算出工程で得られたグラディエントのなす角度と、上記グラディエントの大きさと、上記推定したエッジ方向と上記グラディエントとのなす角度の絶対値が小さいほど大きい値をとる指向性を決定する指数と、からエッジ強度を算出してエッジを検出するエッジ強度算出工程とからなることを特徴とするエッジ検出方法。
  2. 上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出することを特徴とする請求項1記載のエッジ検出方法。
  3. 上記推定したエッジ方向と上記グラディエントのなす方向のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求めることを特徴とする請求項1記載のエッジ検出方法。
  4. 上記曲線は、スプライン曲線であることを特徴とする請求項1に記載のエッジ検出方法。
  5. 濃淡データで構成される入力画像データの中から、画素値が周囲と比べて急峻に変化している画素群をエッジとして検出するエッジ検出装置であって、
    あらかじめ示されているエッジ検出処理対象の点群に沿うように曲線を発生させ、発生させた曲線上に存在する点に対して、入力画像データにおける各位置のエッジ方向を推定する推定手段と、
    入力画像データにおける各位置のグラディエントを求めるグラディエント算出手段と、
    上記推定手段で推定したエッジ方向と、上記グラディエント算出手段で得られたグラディエントのなす角度と、上記グラディエントの大きさと、指向性を決定する指数から、エッジ強度を算出するエッジ強度算出手段と、
    上記エッジ強度算出手段で得られたエッジ強度からエッジを検出する検出手段とを備え、
    上記指数は、上記推定したエッジ方向と上記グラディエントのなす角度の絶対値が小さいほど、大きい値をとることを特徴とするエッジ検出装置。
  6. 上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを求めてエッジ強度を算出することを特徴とする請求項5記載のエッジ検出装置。
  7. 上記エッジ強度算出手段は、上記推定したエッジ方向と上記グラディエントのなす角度のコサインを、予め正規化したベクトルである上記推定したエッジ方向と、長さを「1」に正規化した上記グラディエントとの内積として求めることを特徴とする請求項5記載のエッジ検出装置。
  8. 上記曲線は、スプライン曲線であることを特徴とする請求項5記載のエッジ検出装置。
JP13441895A 1995-05-31 1995-05-31 エッジ検出方法及びエッジ検出装置 Expired - Fee Related JP3826412B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13441895A JP3826412B2 (ja) 1995-05-31 1995-05-31 エッジ検出方法及びエッジ検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13441895A JP3826412B2 (ja) 1995-05-31 1995-05-31 エッジ検出方法及びエッジ検出装置

Publications (2)

Publication Number Publication Date
JPH08329252A JPH08329252A (ja) 1996-12-13
JP3826412B2 true JP3826412B2 (ja) 2006-09-27

Family

ID=15127930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13441895A Expired - Fee Related JP3826412B2 (ja) 1995-05-31 1995-05-31 エッジ検出方法及びエッジ検出装置

Country Status (1)

Country Link
JP (1) JP3826412B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10311546B2 (en) * 2015-12-21 2019-06-04 Canon Kabushiki Kaisha Edge detection apparatus and edge detection method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2328355B (en) * 1997-08-05 2002-04-17 Canon Kk Image processing apparatus
US6647146B1 (en) 1997-08-05 2003-11-11 Canon Kabushiki Kaisha Image processing apparatus
US7400766B1 (en) * 2004-02-19 2008-07-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Image edge extraction via fuzzy reasoning
JP4576358B2 (ja) * 2006-06-27 2010-11-04 富士通株式会社 文字画像処理装置及び文字画像処理方法
JP2009116464A (ja) * 2007-11-02 2009-05-28 Hitachi Software Eng Co Ltd 輪郭情報生成方法及びシステム、並びにプログラム
JP5356728B2 (ja) 2008-05-26 2013-12-04 株式会社トプコン エッジ抽出装置、測量機、およびプログラム
JP6037791B2 (ja) * 2012-11-16 2016-12-07 三菱重工メカトロシステムズ株式会社 画像認識装置、画像認識方法、プログラム、及び記録媒体
US10129547B2 (en) 2015-02-26 2018-11-13 Mitsubishi Electric Corporation Image processing apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10311546B2 (en) * 2015-12-21 2019-06-04 Canon Kabushiki Kaisha Edge detection apparatus and edge detection method

Also Published As

Publication number Publication date
JPH08329252A (ja) 1996-12-13

Similar Documents

Publication Publication Date Title
US7342572B2 (en) System and method for transforming an ordinary computer monitor into a touch screen
US6249285B1 (en) Computer assisted mark-up and parameterization for scene analysis
CN109034017A (zh) 头部姿态估计方法及机器可读存储介质
KR100326702B1 (ko) 차선이탈 경보장치의 실 도로폭 산출방법
WO2001026050A2 (en) Improved image segmentation processing by user-guided image processing techniques
CN105894521A (zh) 基于高斯拟合的亚像素边缘检测方法
CN106934806B (zh) 一种基于结构清晰度的无参考图失焦模糊区域分割方法
JPH0935061A (ja) 画像処理方法
JP3826412B2 (ja) エッジ検出方法及びエッジ検出装置
CN115096206B (zh) 一种基于机器视觉的零件尺寸高精度测量方法
US5621825A (en) Image processor, image processing method and apparatus applying same
CN109872343B (zh) 弱纹理物体姿态跟踪方法、***及装置
JP3659426B2 (ja) エツジ検出方法及びエツジ検出装置
JPH08249471A (ja) 動画像処理装置
JP2003143401A (ja) オリジナル画像の自動的なリアルタイムの修復方法
JPH08329253A (ja) エッジ検出方法及びエッジ検出装置
Dryanovski et al. Real-time pose estimation with RGB-D camera
Trang et al. Irregular moving object detecting and tracking based on color and shape in real-time system
JP2981382B2 (ja) パターンマッチング方法
CN114155236A (zh) 一种适用于动态测量环境的激光条纹中心线提取方法
JP4639044B2 (ja) 輪郭形状抽出装置
US7386169B2 (en) Method for edge detection and contour stroke generation
CN116309758B (zh) 一种基于OpenCV的线激光图像自动对齐方法及终端设备
JPH01145570A (ja) 流れ画像解析装置
CN112669337A (zh) 一种自迭代式的局部绿幕抠像方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees