JP3822257B2 - Process for producing novel hydroquinone and benzoquinone derivatives - Google Patents

Process for producing novel hydroquinone and benzoquinone derivatives Download PDF

Info

Publication number
JP3822257B2
JP3822257B2 JP17799794A JP17799794A JP3822257B2 JP 3822257 B2 JP3822257 B2 JP 3822257B2 JP 17799794 A JP17799794 A JP 17799794A JP 17799794 A JP17799794 A JP 17799794A JP 3822257 B2 JP3822257 B2 JP 3822257B2
Authority
JP
Japan
Prior art keywords
hydrogen atom
group
lower alkyl
ethyl acetate
alkyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17799794A
Other languages
Japanese (ja)
Other versions
JPH0892214A (en
Inventor
雄毅 小松
法夫 南
健 布留川
博 西村
洋二 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Priority to JP17799794A priority Critical patent/JP3822257B2/en
Publication of JPH0892214A publication Critical patent/JPH0892214A/en
Application granted granted Critical
Publication of JP3822257B2 publication Critical patent/JP3822257B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は特開平5−178855号公報に開示されているロイコトリエンおよびトロンボキサン産成抑制作用が有効な疾患の予防と治療に有用なベンゾチアゾール誘導体の重要合成中間体の製造法に関する。
【0002】
【従来の技術】
一般式(IV)で表されるピリジニルメチル−1,4−ベンゾキノン誘導体に類似の化合物(VI)の製造法は特願平4−64545号公報に示されている。それは、下記反応式(R5 、R6 は同一または異なって水素原子、低級アルキル基または低級アルコキシ基を、R7 は低級アルキル基を意味する)に示すごとく、出発原料としてジメトキシベンゼン誘導体を用いピリジルメタノール基を導入し、硝酸第二セリウムアンモニウムにより酸化する方法である。
【0003】
【化13】

Figure 0003822257
【0004】
【本発明が解決しようとする課題】
従来の製造法において出発原料として用いられている2,5−ジメトキシベンゼン誘導体は、次の反応のピリジルメタノール基の導入に際し使用される試薬(n−BuLi)の特性から水酸基を保護することが必要で、その目的で下記反応式に示すごとくヒドロキノン誘導体(R5 、R6 は前記を意味する)をメチル化して得たものである。ピリジルメタノール基導入後、目的とする1,4−ベンゾキノン製造のために行う酸化工程ではこのメチル基(保護基)が酸化され脱メチル化が起こることを考えると、このメチル化は全く無駄な工程であり、工業的に不利である。また酸化反応においてはメトキシ体(水酸基の保護体)の方がヒドロキシ体より反応に抵抗することから、酸化の条件に制限が加わることになり、この点でもメトキシ体(水酸基の保護体)は不利である。そのため、ヒドロキノン誘導体の水酸基を保護することなくピリジルメタノール基を導入する工業的製法とそれに続く安価な酸化の条件の確立が望まれていた。
【0005】
【化14】
Figure 0003822257
【課題を解決するための手段】
本発明者等は一般式(I)で示されるヒドロキノン誘導体の水酸基を保護することなくピリジルメチル基を導入する製造法につき鋭意検討を重ねた。その結果、一般式(I)で示されるヒドロキノン誘導体を、その水酸基を保護することなく、一般式(II)で示されるピリジルアルデヒドあるいは一般式(II’)で示されるアルキルアセタール誘導体と酸の存在下に処理することにより一般式(III)で示されるピリジルメチルヒドロキノン誘導体の製造方法を見いだした。そして安価な酸化の条件でのピリジルメチル−1,4−ベンゾキノン誘導体(IV)の製造法を確立し、本発明を完成した。
【0006】
以下、本発明について詳しく説明する。
【0007】
(1)ピリジルメチル基の導入工程
【化15】
Figure 0003822257
式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、R’は低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する。
本工程はヒドロキノン誘導体(I)とピリジルアルデヒド誘導体(II)あるいはそのアセタール誘導体(II’)を酸の存在下に縮合しピリジルメチル誘導体(III)を得る工程である。酸として、例えば塩酸、硫酸、りん酸、トリフロロ酢酸、メタンスルホン酸などを挙げることができる。 反応溶媒として、水、メタノール、エタノール、プロパノール、イソプロパノール、塩化メチレン、1,2−ジクロロエタン、ベンゼン、トルエンなどを挙げることができる。反応温度は−10℃から100℃、好ましくは10℃から30℃の範囲である。また、ピリジルアルデヒド誘導体(II)と低級アルキルアルコールから得られるアセタール誘導体(II’)との縮合においては、生成するアセタールを単離することなく反応溶液中に直接ヒドロキノン誘導体(I)を加えることによってもピリジルアルコキシメチル−1,4ーヒドロキノン誘導体(III)を得ることが可能である。
なお、原料化合物(I)のヒドロキノン誘導体は、ジャーナル・オブ・アメリカン・ケミカル・ソサイエティ(J.Am.Chem.Soc.)1944年66巻1330頁に記載の方法、あるいはブレティン・オブ・ザ・ケミカル・ソサイエティ・オブ・ジャパン(Bull.Chem.Soc.Jpn.)1992年65巻1522頁に記載の方法によって得られる1,4−ベンゾキノン誘導体を緩和な還元剤であるナトリウムハイドロサルファイト、酸性亜硫酸ナトリウム、水素化ホウ素ナトリウムを用いてそれ自体常法公知の方法でまたは酸化白金、パラジウム−炭素の存在下に還元することにより容易に得られる。
【0008】
(2)ヒドロキノンからベンゾキノンへの酸化の工程
【0009】
【化16】
Figure 0003822257
式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する。
本工程はヒドロキノン誘導体(III)から1,4−ベンゾキノン誘導体(IV)への酸化の工程である。酸化剤としては緩和な酸化剤から使用が可能で、例えば、空気、酸素、フレミー塩(Fremy’salt)、塩化第二鉄、硫酸第二鉄、過酸化水素、過酸、酸化銀、硝酸第二セリウムアンモニウム、硝酸などを挙げることができる。これらの反応は通常溶媒の存在下に行われ該溶媒としては、例えばメタノール、アセトニトリル、テトラヒドロフラン、ジオキサン、酢酸エチル、1,2−ジメトキシエタン、酢酸およびこれらの有機溶媒と水からなる含水溶媒または水が挙げられる。反応温度は−10℃から100℃、好ましくは−10℃から30℃の範囲で、反応の時間は1分から3日である。
【0010】
上記一般式(III)および(IV)においてR4 およびXの定義中の低級アルキル基とは、炭素数1〜4の直鎖もしくは分枝状のアルキル基、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基などを意味する。これらのうち好ましい基としてはメチル基、エチル基、n−プロピル基、イソプロピル基などを挙げることができる。またXの定義中の低級アルコキシ基とはメトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基などを、ハロゲン原子とはフッ素原子、塩素原子、臭素原子を挙げることができる。
【0011】
以上のように本発明は工業的製法上非常に有利な方法である。即ち、ヒドロキノン誘導体の水酸基をわざわざメチル基のような保護基で保護することなく、ピリジルメチル基を直接導入することが可能である。そして、それによりベンゾキノンへの酸化は緩和な条件から可能となり、安価な酸化条件が選べる。
【0012】
本発明で製造されたキノン化合物(IV)は特開平5−178855号あるいは特願平5−202552号に開示された反応を用いて、チオウレアH2 N−C(=S)−NR1516(R15およびR16は同一または相異なる水素原子、低級アルキル基またはピリジルアルキル基を意味する)と反応させ、2−アミノ−6−ヒドロキシ−4−(ピリジル−ヒドロキシあるいはアルコキシ−メチル)ベンゾチアゾール誘導体(VII)を得る。
【0013】
【化17】
Figure 0003822257
【0014】
これを酢酸中で加熱処理すると、R4 Oが還元的に脱離し、2−アミノ−6−ヒドロキシ−4−ピリジルメチルベンゾチアゾール誘導体が得られる。この化合物は、特会平5−178855号、特に実施例10に開示されているように、5−リポキシゲナーゼ阻害作用およびトロンボキサン産成抑制作用によるロイコトリエンおよびトロンボキサン産成抑制作用が有効な疾患、特に潰瘍性大腸炎の予防と治療に有効である。
【実施例】
【0015】
以下に本発明の実施例を挙げるが、本発明がこれらの実施例に限定されるものでないことは言うまでもない。
【0016】
実施例1
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール
【0017】
【化18】
Figure 0003822257
【0018】
氷冷下、6N塩酸250mlに3−ピリジンカルボキシアルデヒド14ml(0.15mol)を滴下し、次に2,6−ジメチル−p−ヒドロキノン25g(0.18mol)を加え、室温で17時間攪拌した。この反応混合物に水300ml、酢酸エチル25mlを加え、次いで氷冷下に、激しく攪拌しながら炭酸水素ナトリウム111g(1.32mol)を少しずつ加えた後、10分間攪拌し、析出する結晶を濾取した。これを水、酢酸エチル、イソプロピルエーテルで順次浄後、乾燥して表記化合物33.0g(収率91%)を得た。
融点:181−183℃
元素分析値C1415NO3 として
計算値 C,68.56;H,6.16;N,5.71
実測値 C,68.32;H,6.19;N,5.45
1 H−NMR(400MHz,DMSO−d6 )δ;1.91(3H,s),2.07(3H,s),6.28(1H,s),6.45(1H,s),7.27(1H,dd,J=4.0,8.0Hz),7.57(1H,d,J=8.0Hz),8.36(1H,d,J=4.0Hz),8.42(1H,s).
MS(FAB):m/z246(M+H)+
【0019】
実施例2
3,5−ジメチル−2−(メトキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール塩酸塩
【0020】
【化19】
Figure 0003822257
【0021】
3−ピリジンカルボキシアルデヒド1.0ml(10.6mmol)のメタノール(15ml)溶液に、氷冷下塩酸ガスを50分間導入した。次に2,6−ジメチル−p−ヒドロキノン1.6g(11.6mmol)を加え、氷冷下1時間攪拌した後、メタノールを減圧留去し、残渣に水、酢酸エチルを加え、炭酸水素ナトリウムで中和し、有機層を分取し、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n−ヘキサン=1:1)にて精製し、表記化合物のフリー体1.8gを得た。これを水、酢酸エチル36mlに溶かし、氷冷下に4N塩化水素−酢酸エチル2.1mlを滴下し、10分間攪拌後、析出する結晶を濾取し、酢酸エチル、イソプロピルエーテルで順次洗浄後、乾燥して表記化合物1.8g(収率58%)を得た。
融点:177−178℃
元素分析値 C1517NO3 ・HClとして
計算値 C,60.91;H,6.13;N,4.74
実測値 C,60.54;H,6.13;N,4.73
1 H−NMR(400MHz,DMSO−d6 )δ;1.88(3H,s),2.09(3H,s),3.29(3H、s),6.14(1H,s),6.56(1H,s),7.90(1H,dd,J=5.6,8.0Hz),8.14(1H,d,J=8.0Hz),8.59(1H,s),8.75(1H,d,J=5.6Hz),9.10(1H,br s).
MS(FAB):m/z260(M+H)+
【0022】
実施例3
3,5−ジメチル−2−(ヒドロキシ−4−ピリジルメチル)ベンゼン−1,4−ジオール
【0023】
【化20】
Figure 0003822257
【0024】
氷冷下、6N塩酸8mlに4−ピリジンカルボキシアルデヒド1.0ml(10.5mmol)を滴下し、次に2,6−ジメチル−p−ヒドロキノン1.59g(11.5mmol)を加え、室温で17時間攪拌した。この反応混合物に水30ml、酢酸エチル20mlを加え、次いで氷冷下に、激しく攪拌しながら炭酸水素ナトリウムを少しずつ加えてpH6.5に調整し、酢酸エチル層を分液し、硫酸マグネシウムで乾燥後、溶媒を減圧留去した。残渣に酢酸エチル50mlを加え、氷冷下1時間攪拌して析出する結晶を濾取し、酢酸エチル、イソプロピルエーテルで順次洗浄後、乾燥して表記化合物2.02g(収率79%)を得た。
融点:158−159℃
元素分析値C1415NO3 として
計算値 C,68.56;H,6.16;N,5.71
実測値 C,68.52;H,6.17;N,5.66
1 H−NMR(400MHz,DMSO−d6 )δ;1.88(3H,s),2.06(3H,s),5.98(1H,br s),6.25(1H,s),6.45(1H,s),7.20(2H,d,J=6.0Hz),7.38(1H,br s),8.41(1H,d,J=6.0Hz).
MS(FAB):m/z246(M+H)+
【0025】
実施例4
3,5−ジメチル−2−(ヒドロキシ−2−ピリジルメチル)ベンゼン−1,4−ジオール
【0026】
【化21】
Figure 0003822257
【0027】
3−ピリジンカルボキシアルデヒドの代わりに、2−ピリジンカルボキシアルデヒド1.0ml(10.5mmol)を用い、実施例1と同様に処理し、表記化合物2.00g(収率78%)を得た。
融点:160−161℃
元素分析値 C1415NO3 として
計算値 C,68.56;H,6.16;N,5.71
実測値 C,68.57;H,6.14;N,5.72
1 H−NMR(400MHz,DMSO−d6 )δ;1.96(3H,s),2.04(3H,s),6.1−6.2(1H,br s),6.13(1H,s),6.37(1H,s),7.19(1H,dd,J=4.8,8.0Hz),7.35(1H,br s),7.48(1H,d,J=8.0Hz),7.73(1H,ddd,J=1.8,4.8,8.0Hz),8.41(1H,dd,J=1.8,4.8Hz),8.9−9.0(1H,br s).
MS(FAB):m/z245(M)+
【0028】
実施例5
3,5−ジメチル−2−(イソプロピルオキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール塩酸塩
【0029】
【化22】
Figure 0003822257
【0030】
3−ピリジンカルボキシアルデヒド10g(93.4mmol)のイソプロピルアルコール(100ml)溶液に、氷冷下塩酸ガスを50分間導入し、次に溶媒を減圧下に留去した。残渣に水、酢酸エチルを加え炭酸水素ナトリウムで中和し、酢酸エチル層を分液した。これを硫酸マグネシウムで乾燥、溶媒を減圧下に留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:3)にて精製し、3−ピリジンカルボキシアルデヒドジイソプロピルアセタール3.44g(収率18%)を得た。
1 H−NMR(400MHz,CDCl3 )δ;1.18(6H,d,J=6.0Hz),1.21(6H,d,J=6.0Hz),3.93(2H,qq,J=6.0,6.0Hz),5.60(1H,s),7.29(1H,dd,J=4.8,8.0Hz),7.81(1H,d,J=8.0Hz),8.57(1H,d,J=4.8Hz)8.69(1H,s)
上記3−ピリジンカルボキシアルデヒドジイソプロピルアセタール3.40g(16.2mmol)のイソプロピルアルコール(45ml)の溶液に濃硫酸1.77mlを滴下し、これに2,6−ジメチル−p−ヒドロキノン3.07g(22.2mmol)を加え、室温で17時間攪拌した。イソプロピルアルコールを減圧留去し、残渣に水、酢酸エチルを加え、炭酸水素ナトリウムで中和し、有機層を分取し、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n−ヘキサン=2:1)にて精製し、表記化合物のフリー体2.7g(収率58%)を得た。このフリー体1.0gを酢酸エチル15mlに溶かし、氷冷下に4N塩化水素−酢酸エチル1.1mlを滴下し、10分間攪拌後、析出する結晶を濾取し、これをアセトニトリル30mlに加熱溶解し、室温に3時間放置後析出する結晶を濾取し、乾燥し、表記化合物0.78gを得た。
融点:171−173℃(分解)
元素分析値 C1721NO3 ・HClとして
計算値 C,63.06;H,6.85;N,4.33
実測値 C,62.96;H,6.74;N,4.34
1 H−NMR(400MHz,DMSO−d6 )δ;1.09(3H,d,J=6.0Hz),1.21(3H,d,J=6.0Hz),1.85(3H,s),2.09(3H,s),3.62(1H,qq,J=6.0,6.0Hz),6.36(1H,s),6.57(1H,s),7.93(1H,dd,J=5.6,8.0Hz),8.15(1H,d,J=8.0Hz),8.55(1H,s),8.77(1H,d,J=5.6Hz).
MS(FAB):m/z288(M+H)+
【0031】
実施例6
2−(ヒドロキシ−3−ピリジルメチル)−5−メチルベンゼン−1,4−ジオール
【0032】
【化23】
Figure 0003822257
【0033】
氷冷下、5N塩酸12mlに、3−ピリジンカルボキシアルデヒド1.0ml(11.8ml)のテトラヒドロフラン(3ml)溶液を滴下し、次いで2−メチル−p−ヒドロキノン1.46g(11.8ml)を加え、室温で3日間攪拌した。炭酸水素ナトリウムで中和後酢酸エチルで抽出し、水洗、乾燥し、溶媒を減圧下に留去した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:1)にて精製し、表記化合物0.45g(収率18%)を得た。融点:175−176℃(分解)
1 H−NMR(400MHz,DMSO−d6 )δ;1.98(3H,s),5.90(1H,s),6.45(1H,s),6.79(1H,s),6.84(1H,br s),7.27(1H,dd,J=4.8,8.0Hz),7.61(1H,d,J=8.0Hz),8.35(1H,d,J=4.8Hz),8.4−8.5(1H,br s),8.50(1H,s),8.66(1H,s).
MS(FAB):m/z232(M+H)+
【0034】
実施例7
2−(ヒドロキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール
【0035】
【化24】
Figure 0003822257
【0036】
2,6−ジメチル−p−ヒドロキノンの代わりに、p−ヒドロキノン1.95g(17.7mmol,アルデヒドに対し1.5eq.)を用い、実施例1とほぼ同様に処理[室温で43時間反応し、カラムクロマトグラフィー(酢酸エチル:ジクロロメタン=1:1)で精製]し、表記化合物をアモルファスとして0.80g(収率35%)を得た。
1 H−NMR(400MHz,DMSO−d6 )δ;5.75−5.85(1H,br s),5.91(1H,s),6.42(1H,dd,J=2.8,8.4Hz),6.55(1H,d,J=8.4Hz),6.82(1H,d,J=2.8Hz),7.27(1H,dd,J=4.8,8.0Hz),7.64(1H,d,J=8.0Hz),8.36(1H,d,J=4.8Hz),8.51(1H,s),8.6−8.7(1H,br s),8.75−8.85(1H,br s).
MS(FAB):m/z218(M+H)+
【0037】
実施例8
3,5−ジメチル−2−(エトキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール塩酸塩
【0038】
【化25】
Figure 0003822257
【0039】
3−ピリジンカルボキシアルデヒド1.6ml(16.5mmol)の20%(w/w)塩酸−エタノール溶液25mlに、2,6−ジメチル−p−ヒドロキノン2.5g(18.1mmol)を加え、室温で23時間攪拌した。エタノールを減圧留去後、残渣に水、酢酸エチルを加え、炭酸水素ナトリウムで中和し、有機層を分取し、硫酸マグネシウムで乾燥した。溶媒を減圧下に留去後、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル:n−ヘキサン=1:1)にて精製し、表記化合物のフリー体3.2g(収率71%)を得た。このうち1.7gを酢酸エチル33mlに溶解し、氷冷下に4N塩化水素−酢酸エチル1.8mlを滴下し、10分間攪拌した。析出する結晶を濾取し、アセトニトリル60mlを加え10分間加熱還流後、室温で1時間攪拌し、析出物を濾取して、アセトニトリル、イソプロピルエーテルで順次洗浄し、乾燥して表記化合物1.1gを得た。
融点:185−187℃(分解)
元素分析値 C1619NO3 ・HClとして
計算値 C,62.03;H,6.51;N,4.52
実測値 C,61.96;H,6.59;N,4.56
1 H−NMR(400MHz,DMSO−d6 )δ;1.18(3H,t,J=6.8),1.88(3H,s),2.08(3H,s),3.47(3H、m),6.24(1H,s),6.56(1H,s),7.93(1H,dd,J=5.6,8.0Hz),8.17(1H,d,J=8.0Hz),8.58(1H,s),8.76(1H,d,J=5.6Hz).
MS(FAB):m/z274(M+H)+
【0040】
実施例9
3,5−ジメチル−2−(ヒドロキシ−6−メチルピリジルメチル)ベンゼン−1,4−ジオール
【0041】
【化26】
Figure 0003822257
【0042】
3−ピリジンカルボキシアルデヒドの代りに6−メチル−2−ピリジンカルボキシアルデヒドを用い、実施例1と同様に処理して、表記化合物を88%の収率で得た。
融点:176−178℃(分解)
元素分析値C1517NO3 ・0.36H2 Oとして
計算値 C,67.78;H,6.72;N,5.27
実測値 C,67.77;H,6.70;N,5.22
1 H−NMR(400MHz,DMSO−d6 )δ;2.00(3H,s),2.05(3H,s),2.45(3H,s),6.10(1H,s),6.2(1H,br s),6.38(1H、s),7.18(1H,br s),7.22(1H,d,J=8.0Hz),7.41(1H,s),7.7(1H,br s).
MS(FAB):m/z259(M+H)+
【0043】
実施例10
3,5−ジメチル−2−(ヒドロキシ−4−クロロピリジルメチル)ベンゼン− 1,4−ジオール
【0044】
【化27】
Figure 0003822257
【0045】
3−ピリジンカルボキシアルデヒドの代りに6−クロロ−2−ピリジンカルボキシアルデヒドを用い、実施例1と同様に処理して、表記化合物を89%の収率で得た。
融点:155−157℃(分解)
元素分析値C1414NO3 Clとして
計算値 C,60.11;H,5.04;N,5.01
実測値 C,59.94;H,5.16;N,5.03
1 H−NMR(400MHz,DMSO−d6 )δ;1.95(3H,s),2.04(3H,s),6.1(2H,b),6.36(1H,s),7.33(1H,dd,J=2.0,5.2Hz),7.37(1H,s),7.61(1H,d,J=2.0Hz),8.36(1H,d,J=5.2Hz).8.75(1H,s).
MS(FAB):m/z279(M)+
【0046】
実施例11
2−(ヒドロキシ−3−ピリジルメチル)−3,5,6−トリメチルベンゼン−1,4−ジオール
【0047】
【化28】
Figure 0003822257
【0048】
2,6−ジメチル−p−ヒドロキノンの代わりに2,3,5−トリメチル−p−ヒドロキノンを用い、実施例1と同様に処理して、表記化合物を86%の収率で得た。
融点:206−207℃(分解)
元素分析値C1517NO3 として
計算値 C,69.48;H,6.61;N,5.40
実測値 C,69.43;H,6.64;N,5.35
1 H−NMR(400MHz,DMSO−d6 )δ;1.98(3H,s),2.02(3H,s),2.06(3H,s),6.18(1H,s),7.1(1H,s),7.31(1H,dd,J=4.8,8.0Hz),7.4(1H,br s),7.59(1H,d,J=8.0Hz),8.41(1H,d,J=4.8Hz),8.46(1H,s),8.9(1H,br s).
MS(FAB):m/z260(M+H)+
【0049】
実施例12
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)−1,4−ベンゾキノン塩酸塩
【0050】
【化29】
Figure 0003822257
【0051】
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール30g(0.12mol)を水(60ml)とテトラヒドロフラン(60ml)の溶液に溶かし、氷冷下攪拌しながら濃硝酸78mlを15分間で滴下した。5分後酢酸エチル450mlと水60mlを加え、次に炭酸ナトリウム64gの水(250ml)溶液、炭酸水素ナトリウム17.3gを加えて中和した。次に酢酸エチル層を分液し、水、飽和食塩水で洗浄、硫酸マグネシウムで乾燥した。硫酸マグネシウムを除去後、この酢酸エチル溶液に氷冷下4N塩化水素−酢酸エチル33.7mlを滴下し、15分間攪拌した。析出結晶を濾取し、酢酸エチル、イソプロピルエーテルで洗浄、乾燥し表記化合物30.4g(収率90%)を得た。
融点:155−160℃(分解)
1 H−NMR(400MHz,DMSO−d6 )δ;1.97(3H,d,J=1.6Hz),1.98(3H,s),6.14(1H,s),6.68(1H,d,J=1.6Hz),7.95(1H,dd,J=5.6,8.0Hz),8.40(1H,d,J=8.0Hz),8.76(1H,s),8.77(1H,d,J=5.6Hz).
MS(FAB):m/z244(M+ +H).
【0052】
実施例13
3,5−ジメチル−2−(メトキシ−3−ピリジルメチル)−1,4−ベンゾキノン
【0053】
【化30】
Figure 0003822257
【0054】
3,5−ジメチル−2−(メトキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール塩酸塩1.0g(3.38mmol)を水(3ml)とテトラヒドロフラン(2ml)に溶かし、氷冷下濃硝酸3mlを5分間で滴下した。5分後酢酸エチル15mlと水2mlを加え、炭酸ナトリウム、飽和炭酸水素ナトリウム水溶液を加えて中和した。酢酸エチル層を分液し、水、飽和食塩水で洗浄、硫酸マグネシウムで乾燥後、減圧下に溶媒を留去し油状物として表記化合物1.0g(収率100%)を得た。
1 H−NMR(400MHz,CDCl3 )δ;2.07(3H,d,J=1.6Hz),2.10(3H,s),3.42(3H,s),5.90(1H,s),6.63(1H,d,J=1.6Hz),7.26(1H,dd,J=4.8,8.0Hz),7.68(1H,d,J=8.0Hz),8.50(1H,d,J=4.8Hz),8.56(1H,s).
【0055】
実施例14
3,5−ジメチル−2−(イソプロピルオキシ−3−ピリジルメチル)−1,4−ベンゾキノン塩酸塩
【0056】
【化31】
Figure 0003822257
【0057】
3,5−ジメチル−2−(イソプロピルオキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール2.3g(8.01mmol)を酢酸エチル34.5mlに溶かし、塩化第二鉄・六水和物(FeCl3 ・6H2 O)4.33g(16.03mmol)の水(10ml)溶液を加え2分間激しく攪拌した。反応終了後氷冷下に炭酸水素ナトリウム3.37g(40.1mmol)を加え、セライトを引いて濾過し不溶物を除いた。次いで濾液を酢酸エチルで抽出し、水、飽和食塩水で洗浄後、酢酸エチル層を硫酸マグネシウムで乾燥し、硫酸マグネシウムを除いた後、この酢酸エチル溶液に4N塩化水素−酢酸エチル9.6mlを滴下し、溶媒を減圧下に留去し、表記化合物2.3g(収率89%)を得た。
1 H−NMR(400MHz,CDCl3 )δ;1.20(3H,d,J=6.0Hz),1.24(3H,d,J=6.0Hz),2.00(3H,s),2.09(3H,d,J=1.6Hz),3.72(1H,qq,J=6.0,6.0Hz),6.21(1H,s),6.67(1H,d,J=1.6Hz),7.87(1H,dd,J=5.6,8.0Hz),8.30(1H,d,J=8.0Hz),8.67(1H,d,J=5.6Hz),8.77(1H,s).
【0058】
実施例15
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)−1,4−ベンゾキノン塩酸塩
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)ベンゼン−1,4−ジオール0.5g(2.04mmol)を水1.0mlとメタノール(3.0ml)の溶液に溶かし、塩化第二銅・二水和物(CuCl2 ・2H2 O)17mgを加え、空気を吹き込みながら、1時間半攪拌した。反応液に酢酸エチル15ml、水10mlを加えた後、飽和炭酸水素ナトリウム溶液を加えてpH7に調整した。酢酸エチル層を分液し、水、飽和食塩水で洗浄、硫酸マグネシウムで乾燥した。硫酸ンマグネシウムを除去後、この酢酸エチル溶液に氷冷下4N塩化水素−酢酸エチル0.56mlを滴下し、15分間攪拌した。析出結晶を濾取し、酢酸エチル、イソプロピルエーテルで洗浄、乾燥し表記化合物0.46g(収率81%)を得た。融点並びに1 H−NMRスペクトルは実施例12の化合物と一致した。
【0059】
応用例
次に、本発明で得られたキノン化合物より医薬として有用な2−アミノ−6−ヒドロキシ−4−ピリジルメチルベンゾチアゾール化合物を合成する例を示す。
【0060】
応用例1
5,7−ジメチル−6−ヒドロキシ−2−メチルアミノ−4−[(3−ピリジル)ヒドロキシメチル]ベンゾチアゾール
【0061】
【化32】
Figure 0003822257
【0062】
3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)−1,4−ベンゾキノン塩酸塩(実施例12)30g(0.11mol)のエタノール300mlの懸濁液に、濃塩酸21.7mlとメチルチオ尿素9.68g(0.11mol)を氷冷下に加えて、4℃で15時間攪拌した(反応混合物は一度溶解し、次に析出物が徐々に増加した)。酢酸エチル300mlを加え、10分間攪拌後、析出物を濾取し、酢酸エチル、イソプロピルエーテルで洗浄して、チウロニウム塩を得た。このエタノールの300ml懸濁液に、テトラヒドロフラン23.8mlに溶解した1,4−ベンゾキノン2.9gを氷冷下に加えて、4℃で4時間、20℃で3時間攪拌した。次に酢酸エチル300mlを加え、10分間攪拌後、析出物を濾取し、酢酸エチル、イソプロピルエーテルで洗浄し、乾燥して表題化合物の塩酸塩36.3gを得た。これを、水524mlに溶解し 、酢酸エチル、イソプロピルエーテルで洗浄し、五酸化リンの存在下に乾燥して表題化合物26.9g(収率80%)を得た。
融点:201−203℃(分解)
H−NMR(400MHz,DMSO−d6 )δ:2.03(3H,s),2.21(3H,s),2.88(3H,d,J=4.8Hz),6.51(1H,d,J=6.6Hz),6.55(1H,d,J=6.6Hz),7.27(1H,dd,J=4.8,8.0Hz),7.60(1H,d,J=8.0Hz),7.82(1H,d,J=4.8Hz),7.97(1H,s),8.35(1H,d,J=4.8Hz),8.46(1H,s).
MS(FAB):m/z316(M+H)+
応用例2
5,7−ジメチル−6−ヒドロキシ−2−メチルアミノ−4−[(3−ピリジル)メチル]ベンゾチアゾール
【0063】
【化33】
Figure 0003822257
【0064】
5,7−ジメチル−6−ヒドロキシ−2−メチルアミノ−4−[(3−ピリジル)ヒドロキシメチル]ベンゾチアゾール5.0g(15.9mmol)の酢酸50ml溶液に、亜鉛末2.6g(39.8mmol)を加え26時間加熱還流を行った。熱時不溶物を濾去後、酢酸エチル200mlを加え、氷冷下に10分間攪拌し析出物を濾取した。これをエタノール100mlに溶解し、氷冷下に4N塩酸−酢酸エチル溶液24mlを滴下し、30分間攪拌後、析出物を濾取し、酢酸エチル、イソプロピルエーテルで洗浄し、乾燥して表題化合物の塩酸塩5.9gを得た。これを、水100mlに溶解し 、酢酸エチル75mlを加え、氷冷下に飽和炭酸水素ナトリウム水溶液を加えて中和し、析出物を濾取した。さらに析出物をエタノール75mlに懸濁させ1時間加熱還流した後、氷冷下に15分攪拌後結晶を濾取し、エタノールで洗浄、乾燥して表題化合物2.9g(収率61%)を得た。
融点:220−223℃(分解)
1 H−NMR(400MHz,DMSO−d6 )δ:2.07(3H,s),2.20(3H,s),2.87(3H,d,J=4.8Hz),4.25(2H,s),7.20(1H,dd,J=4.8,8.0Hz),7.48(1H,d,J=8.0Hz),7.65(1H,d,J=4.8Hz),7.90(1H,br),8.31(1H,s),8.46(1H,s).[0001]
[Industrial application fields]
The present invention relates to a method for producing an important synthetic intermediate of a benzothiazole derivative useful for the prevention and treatment of diseases in which leukotriene and thromboxane production inhibitory action is effective as disclosed in JP-A-5-178855.
[0002]
[Prior art]
A method for producing a compound (VI) similar to the pyridinylmethyl-1,4-benzoquinone derivative represented by the general formula (IV) is disclosed in Japanese Patent Application No. 4-64545. It is represented by the following reaction formula (RFive , R6 Are the same or different and each represents a hydrogen atom, a lower alkyl group or a lower alkoxy group, R7 Is a method of oxidizing with ceric ammonium nitrate using a dimethoxybenzene derivative as a starting material and introducing a pyridylmethanol group as shown in FIG.
[0003]
Embedded image
Figure 0003822257
[0004]
[Problems to be solved by the present invention]
The 2,5-dimethoxybenzene derivative used as a starting material in the conventional production method needs to protect the hydroxyl group from the characteristics of the reagent (n-BuLi) used in the introduction of the pyridylmethanol group in the next reaction. For that purpose, the hydroquinone derivative (RFive , R6 Is obtained by methylation. Considering that this methyl group (protecting group) is oxidized and demethylation occurs in the oxidation process for the production of the desired 1,4-benzoquinone after the introduction of pyridylmethanol group, this methylation is a completely useless process. It is industrially disadvantageous. In addition, in the oxidation reaction, the methoxy form (hydroxyl protector) is more resistant to the reaction than the hydroxy form, and thus the oxidation conditions are limited. In this respect, the methoxy form (hydroxyl protector) is disadvantageous. It is. For this reason, it has been desired to establish an industrial process for introducing a pyridylmethanol group without protecting the hydroxyl group of the hydroquinone derivative and the subsequent inexpensive oxidation conditions.
[0005]
Embedded image
Figure 0003822257
[Means for Solving the Problems]
The inventors of the present invention have intensively studied a production method for introducing a pyridylmethyl group without protecting the hydroxyl group of the hydroquinone derivative represented by the general formula (I). As a result, the hydroquinone derivative represented by the general formula (I) can be converted into the pyridylaldehyde represented by the general formula (II) or the alkyl acetal derivative represented by the general formula (II ′) and the presence of an acid without protecting the hydroxyl group. The process for producing the pyridylmethylhydroquinone derivative represented by the general formula (III) was found by processing below. And the manufacturing method of the pyridylmethyl-1, 4-benzoquinone derivative (IV) on the conditions of cheap oxidation was established, and this invention was completed.
[0006]
The present invention will be described in detail below.
[0007]
(1) Introduction process of pyridylmethyl group
Embedded image
Figure 0003822257
Where R1 Is a hydrogen atom, methyl group or methoxy group, R2 And RThree Are the same or different and each represents a hydrogen atom or a methyl group, RFour Represents a hydrogen atom or a lower alkyl group, R ′ represents a lower alkyl group, X represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom.
In this step, the hydroquinone derivative (I) and the pyridylaldehyde derivative (II) or an acetal derivative (II ′) thereof are condensed in the presence of an acid to obtain a pyridylmethyl derivative (III). Examples of the acid include hydrochloric acid, sulfuric acid, phosphoric acid, trifluoroacetic acid, methanesulfonic acid and the like. Examples of the reaction solvent include water, methanol, ethanol, propanol, isopropanol, methylene chloride, 1,2-dichloroethane, benzene, toluene and the like. The reaction temperature is in the range of -10 ° C to 100 ° C, preferably 10 ° C to 30 ° C. In the condensation of the pyridylaldehyde derivative (II) and the acetal derivative (II ′) obtained from the lower alkyl alcohol, the hydroquinone derivative (I) is added directly to the reaction solution without isolating the acetal to be formed. It is also possible to obtain pyridylalkoxymethyl-1,4-hydroquinone derivative (III).
The hydroquinone derivative of the raw material compound (I) can be obtained by the method described in Journal of American Chemical Society (J. Am. Chem. Soc.) 1944 66, 1330, or Bulletin of the Chemical. -Sodium hydrosulfite, acid sodium sulfite, which is a mild reducing agent for 1,4-benzoquinone derivatives obtained by the method described in Society of Japan (Bull. Chem. Soc. Jpn.) 1992, 65, 1522 It can be easily obtained by reduction using sodium borohydride in a manner known per se or in the presence of platinum oxide or palladium-carbon.
[0008]
(2) Oxidation process from hydroquinone to benzoquinone
[0009]
Embedded image
Figure 0003822257
Where R1 Is a hydrogen atom, methyl group or methoxy group, R2 And RThree Are the same or different and each represents a hydrogen atom or a methyl group, RFour Represents a hydrogen atom or a lower alkyl group, and X represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom.
This step is a step of oxidation from hydroquinone derivative (III) to 1,4-benzoquinone derivative (IV). As the oxidizer, a mild oxidizer can be used. For example, air, oxygen, Fremy'salt, ferric chloride, ferric sulfate, hydrogen peroxide, peracid, silver oxide, nitric acid Examples include cerium ammonium and nitric acid. These reactions are usually carried out in the presence of a solvent. Examples of the solvent include methanol, acetonitrile, tetrahydrofuran, dioxane, ethyl acetate, 1,2-dimethoxyethane, acetic acid, and a water-containing solvent or water composed of these organic solvents and water. Is mentioned. The reaction temperature is in the range of −10 ° C. to 100 ° C., preferably −10 ° C. to 30 ° C., and the reaction time is 1 minute to 3 days.
[0010]
In the general formulas (III) and (IV), RFour And the lower alkyl group in the definition of X is a linear or branched alkyl group having 1 to 4 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group , S-butyl group and the like. Among these, preferred groups include methyl, ethyl, n-propyl, isopropyl and the like. The lower alkoxy group in the definition of X includes a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and the like, and the halogen atom includes a fluorine atom, a chlorine atom, and a bromine atom. .
[0011]
As described above, the present invention is a very advantageous method for industrial production. That is, it is possible to directly introduce a pyridylmethyl group without protecting the hydroxyl group of the hydroquinone derivative with a protecting group such as a methyl group. As a result, oxidation to benzoquinone becomes possible under mild conditions, and inexpensive oxidation conditions can be selected.
[0012]
The quinone compound (IV) produced in the present invention can be obtained by using the reaction disclosed in Japanese Patent Application Laid-Open No. 5-178855 or Japanese Patent Application No. 5-202552.2 N-C (= S) -NR15R16(R15And R16Represent the same or different hydrogen atoms, lower alkyl groups or pyridylalkyl groups) to give 2-amino-6-hydroxy-4- (pyridyl-hydroxy or alkoxy-methyl) benzothiazole derivatives (VII) .
[0013]
Embedded image
Figure 0003822257
[0014]
When this is heat-treated in acetic acid, RFour O is reductively eliminated to give a 2-amino-6-hydroxy-4-pyridylmethylbenzothiazole derivative. This compound is a disease in which leukotriene and thromboxane production inhibitory action by 5-lipoxygenase inhibitory action and thromboxane production inhibitory action is effective, as disclosed in JP-B-5-178855, particularly Example 10. It is particularly effective for the prevention and treatment of ulcerative colitis.
【Example】
[0015]
Examples of the present invention will be given below, but it goes without saying that the present invention is not limited to these examples.
[0016]
Example 1
3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) benzene-1,4-diol
[0017]
Embedded image
Figure 0003822257
[0018]
Under ice cooling, 14 ml (0.15 mol) of 3-pyridinecarboxaldehyde was added dropwise to 250 ml of 6N hydrochloric acid, and then 25 g (0.18 mol) of 2,6-dimethyl-p-hydroquinone was added, followed by stirring at room temperature for 17 hours. To this reaction mixture were added 300 ml of water and 25 ml of ethyl acetate, and then 111 g (1.32 mol) of sodium hydrogen carbonate was added little by little with vigorous stirring under ice cooling, followed by stirring for 10 minutes, and the precipitated crystals were collected by filtration. did. This was sequentially washed with water, ethyl acetate, and isopropyl ether, and then dried to obtain 33.0 g (yield 91%) of the title compound.
Melting point: 181-183 ° C
Elemental analysis value C14H15NOThree As
Calculated C, 68.56; H, 6.16; N, 5.71
Found C, 68.32; H, 6.19; N, 5.45
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.91 (3H, s), 2.07 (3H, s), 6.28 (1H, s), 6.45 (1H, s), 7.27 (1H, dd, J = 4) 0.0, 8.0 Hz), 7.57 (1 H, d, J = 8.0 Hz), 8.36 (1 H, d, J = 4.0 Hz), 8.42 (1 H, s).
MS (FAB): m / z 246 (M + H)+ .
[0019]
Example 2
3,5-Dimethyl-2- (methoxy-3-pyridylmethyl) benzene-1,4-diol hydrochloride
[0020]
Embedded image
Figure 0003822257
[0021]
Hydrochloric acid gas was introduced into a methanol (15 ml) solution of 3-pyridinecarboxaldehyde 1.0 ml (10.6 mmol) for 50 minutes under ice cooling. Next, 1.6 g (11.6 mmol) of 2,6-dimethyl-p-hydroquinone was added and stirred for 1 hour under ice cooling, then methanol was distilled off under reduced pressure, water and ethyl acetate were added to the residue, and sodium hydrogen carbonate was added. The organic layer was separated and dried over magnesium sulfate. After the solvent was distilled off under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate: n-hexane = 1: 1) to obtain 1.8 g of a free form of the title compound. This was dissolved in 36 ml of water and ethyl acetate, and 2.1 ml of 4N hydrogen chloride-ethyl acetate was added dropwise under ice cooling. After stirring for 10 minutes, the precipitated crystals were collected by filtration, washed successively with ethyl acetate and isopropyl ether, Drying gave 1.8 g (58% yield) of the title compound.
Melting point: 177-178 ° C
Elemental analysis value C15H17NOThree ・ As HCl
Calculated value C, 60.91; H, 6.13; N, 4.74
Found C, 60.54; H, 6.13; N, 4.73
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.88 (3H, s), 2.09 (3H, s), 3.29 (3H, s), 6.14 (1H, s), 6.56 (1H, s), 7. 90 (1H, dd, J = 5.6, 8.0 Hz), 8.14 (1H, d, J = 8.0 Hz), 8.59 (1H, s), 8.75 (1H, d, J = 5.6 Hz), 9.10 (1H, br s).
MS (FAB): m / z 260 (M + H)+ .
[0022]
Example 3
3,5-dimethyl-2- (hydroxy-4-pyridylmethyl) benzene-1,4-diol
[0023]
Embedded image
Figure 0003822257
[0024]
Under ice cooling, 1.0 ml (10.5 mmol) of 4-pyridinecarboxaldehyde was added dropwise to 8 ml of 6N hydrochloric acid, and then 1.59 g (11.5 mmol) of 2,6-dimethyl-p-hydroquinone was added. Stir for hours. 30 ml of water and 20 ml of ethyl acetate were added to this reaction mixture, and then sodium bicarbonate was added little by little with vigorous stirring under ice cooling to adjust the pH to 6.5, and the ethyl acetate layer was separated and dried over magnesium sulfate. Thereafter, the solvent was distilled off under reduced pressure. 50 ml of ethyl acetate was added to the residue, and the mixture was stirred for 1 hour under ice-cooling. The precipitated crystals were collected by filtration, washed successively with ethyl acetate and isopropyl ether, and dried to obtain 2.02 g of the title compound (yield 79%). It was.
Melting point: 158-159 ° C
Elemental analysis value C14H15NOThree As
Calculated C, 68.56; H, 6.16; N, 5.71
Found C, 68.52; H, 6.17; N, 5.66
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.88 (3H, s), 2.06 (3H, s), 5.98 (1H, br s), 6.25 (1H, s), 6.45 (1H, s), 7 .20 (2H, d, J = 6.0 Hz), 7.38 (1 H, br s), 8.41 (1 H, d, J = 6.0 Hz).
MS (FAB): m / z 246 (M + H)+ .
[0025]
Example 4
3,5-dimethyl-2- (hydroxy-2-pyridylmethyl) benzene-1,4-diol
[0026]
Embedded image
Figure 0003822257
[0027]
Instead of 3-pyridinecarboxaldehyde, 1.0 ml (10.5 mmol) of 2-pyridinecarboxaldehyde was used and treated in the same manner as in Example 1 to obtain 2.00 g (yield 78%) of the title compound.
Melting point: 160-161 ° C
Elemental analysis value C14H15NOThree As
Calculated C, 68.56; H, 6.16; N, 5.71
Found C, 68.57; H, 6.14; N, 5.72
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.96 (3H, s), 2.04 (3H, s), 6.1-6.2 (1H, brs), 6.13 (1H, s), 6.37 (1H, s), 7.19 (1H, dd, J = 4.8, 8.0 Hz), 7.35 (1H, br s), 7.48 (1H, d, J = 8.0 Hz), 7.73 (1H, ddd, J = 1.8, 4.8, 8.0 Hz), 8.41 (1H, dd, J = 1.8, 4.8 Hz), 8.9-9.0 (1H, br s).
MS (FAB): m / z 245 (M)+ .
[0028]
Example 5
3,5-Dimethyl-2- (isopropyloxy-3-pyridylmethyl) benzene-1,4-diol hydrochloride
[0029]
Embedded image
Figure 0003822257
[0030]
To a solution of 10 g (93.4 mmol) of 3-pyridinecarboxaldehyde in isopropyl alcohol (100 ml), hydrochloric acid gas was introduced for 50 minutes under ice cooling, and then the solvent was distilled off under reduced pressure. Water and ethyl acetate were added to the residue and neutralized with sodium bicarbonate, and the ethyl acetate layer was separated. This was dried over magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: dichloromethane = 1: 3) to give 3.44 g of 3-pyridinecarboxaldehyde diisopropyl acetal (yield). 18%).
1 H-NMR (400 MHz, CDClThree ) Δ; 1.18 (6H, d, J = 6.0 Hz), 1.21 (6H, d, J = 6.0 Hz), 3.93 (2H, qq, J = 6.0, 6.0 Hz) ), 5.60 (1H, s), 7.29 (1H, dd, J = 4.8, 8.0 Hz), 7.81 (1H, d, J = 8.0 Hz), 8.57 (1H) , D, J = 4.8 Hz) 8.69 (1H, s)
To a solution of 3.40 g (16.2 mmol) of 3-pyridinecarboxaldehyde diisopropyl acetal in isopropyl alcohol (45 ml) was added dropwise 1.77 ml of concentrated sulfuric acid, and 3.07 g of 2,6-dimethyl-p-hydroquinone (22 0.2 mmol) and stirred at room temperature for 17 hours. Isopropyl alcohol was distilled off under reduced pressure, water and ethyl acetate were added to the residue, neutralized with sodium bicarbonate, the organic layer was separated, and dried over magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate: n-hexane = 2: 1) to obtain 2.7 g of the title compound in a free form (yield 58%). Dissolve 1.0 g of this free compound in 15 ml of ethyl acetate, add dropwise 1.1 ml of 4N hydrogen chloride-ethyl acetate under ice cooling, and stir for 10 minutes. Then, the precipitated crystals are collected by filtration and dissolved in 30 ml of acetonitrile by heating. The crystals precipitated after standing at room temperature for 3 hours were collected by filtration and dried to obtain 0.78 g of the title compound.
Melting point: 171-173 ° C (decomposition)
Elemental analysis value C17Htwenty oneNOThree ・ As HCl
Calculated value C, 63.06; H, 6.85; N, 4.33
Found C, 62.96; H, 6.74; N, 4.34
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.09 (3H, d, J = 6.0 Hz), 1.21 (3H, d, J = 6.0 Hz), 1.85 (3H, s), 2.09 (3H, s) 3.62 (1H, qq, J = 6.0, 6.0 Hz), 6.36 (1H, s), 6.57 (1H, s), 7.93 (1H, dd, J = 5. 6, 8.0 Hz), 8.15 (1H, d, J = 8.0 Hz), 8.55 (1H, s), 8.77 (1H, d, J = 5.6 Hz).
MS (FAB): m / z 288 (M + H)+ .
[0031]
Example 6
2- (Hydroxy-3-pyridylmethyl) -5-methylbenzene-1,4-diol
[0032]
Embedded image
Figure 0003822257
[0033]
A solution of 1.0 ml (11.8 ml) of 3-pyridinecarboxaldehyde in tetrahydrofuran (3 ml) was added dropwise to 12 ml of 5N hydrochloric acid under ice cooling, and then 1.46 g (11.8 ml) of 2-methyl-p-hydroquinone was added. And stirred at room temperature for 3 days. The mixture was neutralized with sodium hydrogen carbonate, extracted with ethyl acetate, washed with water and dried, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate: dichloromethane = 1: 1) to obtain 0.45 g (yield 18%) of the title compound. Melting point: 175-176 ° C (decomposition)
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.98 (3H, s), 5.90 (1H, s), 6.45 (1H, s), 6.79 (1H, s), 6.84 (1H, br s), 7 .27 (1H, dd, J = 4.8, 8.0 Hz), 7.61 (1H, d, J = 8.0 Hz), 8.35 (1H, d, J = 4.8 Hz), 8. 4-8.5 (1H, brs), 8.50 (1H, s), 8.66 (1H, s).
MS (FAB): m / z 232 (M + H)+ .
[0034]
Example 7
2- (Hydroxy-3-pyridylmethyl) benzene-1,4-diol
[0035]
Embedded image
Figure 0003822257
[0036]
Instead of 2,6-dimethyl-p-hydroquinone, 1.95 g of p-hydroquinone (17.7 mmol, 1.5 eq. Relative to aldehyde) was used, and the treatment was carried out in the same manner as in Example 1 [reacted at room temperature for 43 hours. And purified by column chromatography (ethyl acetate: dichloromethane = 1: 1)] to obtain 0.80 g (yield 35%) of the title compound as amorphous.
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 5.75-5.85 (1H, br s), 5.91 (1H, s), 6.42 (1H, dd, J = 2.8, 8.4 Hz), 6.55 (1H) , D, J = 8.4 Hz), 6.82 (1H, d, J = 2.8 Hz), 7.27 (1H, dd, J = 4.8, 8.0 Hz), 7.64 (1H, d, J = 8.0 Hz), 8.36 (1H, d, J = 4.8 Hz), 8.51 (1H, s), 8.6-8.7 (1H, br s), 8.75 −8.85 (1H, br s).
MS (FAB): m / z 218 (M + H)+ .
[0037]
Example 8
3,5-Dimethyl-2- (ethoxy-3-pyridylmethyl) benzene-1,4-diol hydrochloride
[0038]
Embedded image
Figure 0003822257
[0039]
To 25 ml of 20% (w / w) hydrochloric acid-ethanol solution of 1.6 ml (16.5 mmol) of 3-pyridinecarboxaldehyde, 2.5 g (18.1 mmol) of 2,6-dimethyl-p-hydroquinone was added, and at room temperature. Stir for 23 hours. Ethanol was distilled off under reduced pressure, water and ethyl acetate were added to the residue, neutralized with sodium bicarbonate, the organic layer was separated, and dried over magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate: n-hexane = 1: 1) to obtain 3.2 g (yield 71%) of the free form of the title compound. Of this, 1.7 g was dissolved in 33 ml of ethyl acetate, and 1.8 ml of 4N hydrogen chloride-ethyl acetate was added dropwise under ice cooling, followed by stirring for 10 minutes. The precipitated crystals were collected by filtration, 60 ml of acetonitrile was added and the mixture was heated to reflux for 10 minutes and stirred at room temperature for 1 hour. The precipitate was collected by filtration, washed successively with acetonitrile and isopropyl ether, and dried to give 1.1 g of the title compound. Got.
Melting point: 185-187 ° C (decomposition)
Elemental analysis value C16H19NOThree ・ As HCl
Calculated value C, 62.03; H, 6.51; N, 4.52
Found C, 61.96; H, 6.59; N, 4.56
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.18 (3H, t, J = 6.8), 1.88 (3H, s), 2.08 (3H, s), 3.47 (3H, m), 6.24 (1H) , S), 6.56 (1H, s), 7.93 (1H, dd, J = 5.6, 8.0 Hz), 8.17 (1H, d, J = 8.0 Hz), 8.58 (1H, s), 8.76 (1H, d, J = 5.6 Hz).
MS (FAB): m / z 274 (M + H)+ .
[0040]
Example 9
3,5-dimethyl-2- (hydroxy-6-methylpyridylmethyl) benzene-1,4-diol
[0041]
Embedded image
Figure 0003822257
[0042]
The title compound was obtained in a yield of 88% by treating in the same manner as in Example 1 using 6-methyl-2-pyridinecarboxaldehyde instead of 3-pyridinecarboxaldehyde.
Melting point: 176-178 ° C (decomposition)
Elemental analysis value C15H17NOThree ・ 0.36H2 As O
Calculated C, 67.78; H, 6.72; N, 5.27
Found C, 67.77; H, 6.70; N, 5.22.
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 2.00 (3H, s), 2.05 (3H, s), 2.45 (3H, s), 6.10 (1H, s), 6.2 (1H, br s), 6 .38 (1H, s), 7.18 (1H, br s), 7.22 (1H, d, J = 8.0 Hz), 7.41 (1H, s), 7.7 (1H, br s) ).
MS (FAB): m / z 259 (M + H)+ .
[0043]
Example 10
3,5-dimethyl-2- (hydroxy-4-chloropyridylmethyl) benzene 1,4-diol
[0044]
Embedded image
Figure 0003822257
[0045]
The title compound was obtained in a yield of 89% by treating in the same manner as in Example 1 using 6-chloro-2-pyridinecarboxaldehyde instead of 3-pyridinecarboxaldehyde.
Melting point: 155-157 ° C (decomposition)
Elemental analysis value C14H14NOThree As Cl
Calculated value C, 60.11; H, 5.04; N, 5.01
Found C, 59.94; H, 5.16; N, 5.03
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.95 (3H, s), 2.04 (3H, s), 6.1 (2H, b), 6.36 (1H, s), 7.33 (1H, dd, J = 2) 0.0, 5.2 Hz), 7.37 (1 H, s), 7.61 (1 H, d, J = 2.0 Hz), 8.36 (1 H, d, J = 5.2 Hz). 8.75 (1H, s).
MS (FAB): m / z 279 (M)+ .
[0046]
Example 11
2- (Hydroxy-3-pyridylmethyl) -3,5,6-trimethylbenzene-1,4-diol
[0047]
Embedded image
Figure 0003822257
[0048]
The title compound was obtained in 86% yield by treating in the same manner as in Example 1 using 2,3,5-trimethyl-p-hydroquinone instead of 2,6-dimethyl-p-hydroquinone.
Melting point: 206-207 ° C (decomposition)
Elemental analysis value C15H17NOThree As
Calculated C, 69.48; H, 6.61; N, 5.40
Found C, 69.43; H, 6.64; N, 5.35
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.98 (3H, s), 2.02 (3H, s), 2.06 (3H, s), 6.18 (1H, s), 7.1 (1H, s), 7. 31 (1H, dd, J = 4.8, 8.0 Hz), 7.4 (1H, brs), 7.59 (1H, d, J = 8.0 Hz), 8.41 (1H, d, J = 4.8 Hz), 8.46 (1H, s), 8.9 (1H, br s).
MS (FAB): m / z 260 (M + H)+ .
[0049]
Example 12
3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) -1,4-benzoquinone hydrochloride
[0050]
Embedded image
Figure 0003822257
[0051]
While dissolving 30 g (0.12 mol) of 3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) benzene-1,4-diol in a solution of water (60 ml) and tetrahydrofuran (60 ml), the mixture was stirred under ice-cooling. 78 ml of concentrated nitric acid was added dropwise over 15 minutes. After 5 minutes, 450 ml of ethyl acetate and 60 ml of water were added, and then neutralized by adding a solution of 64 g of sodium carbonate in water (250 ml) and 17.3 g of sodium bicarbonate. Next, the ethyl acetate layer was separated, washed with water and saturated brine, and dried over magnesium sulfate. After removing magnesium sulfate, 43.7 hydrogen chloride-ethyl acetate (33.7 ml) was added dropwise to the ethyl acetate solution under ice cooling, and the mixture was stirred for 15 minutes. Precipitated crystals were collected by filtration, washed with ethyl acetate and isopropyl ether, and dried to obtain 30.4 g (yield 90%) of the title compound.
Melting point: 155-160 ° C (decomposition)
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ; 1.97 (3H, d, J = 1.6 Hz), 1.98 (3H, s), 6.14 (1H, s), 6.68 (1H, d, J = 1.6 Hz) 7.95 (1H, dd, J = 5.6, 8.0 Hz), 8.40 (1H, d, J = 8.0 Hz), 8.76 (1H, s), 8.77 (1H, d, J = 5.6 Hz).
MS (FAB): m / z 244 (M+ + H).
[0052]
Example 13
3,5-dimethyl-2- (methoxy-3-pyridylmethyl) -1,4-benzoquinone
[0053]
Embedded image
Figure 0003822257
[0054]
1.0 g (3.38 mmol) of 3,5-dimethyl-2- (methoxy-3-pyridylmethyl) benzene-1,4-diol hydrochloride was dissolved in water (3 ml) and tetrahydrofuran (2 ml) and concentrated under ice-cooling. 3 ml of nitric acid was added dropwise over 5 minutes. After 5 minutes, 15 ml of ethyl acetate and 2 ml of water were added, and neutralized by adding sodium carbonate and a saturated aqueous sodium hydrogen carbonate solution. The ethyl acetate layer was separated, washed with water and saturated brine, and dried over magnesium sulfate, and the solvent was evaporated under reduced pressure to give the title compound (1.0 g, yield 100%) as an oil.
1 H-NMR (400 MHz, CDClThree ) Δ; 2.07 (3H, d, J = 1.6 Hz), 2.10 (3H, s), 3.42 (3H, s), 5.90 (1H, s), 6.63 (1H) , D, J = 1.6 Hz), 7.26 (1H, dd, J = 4.8, 8.0 Hz), 7.68 (1H, d, J = 8.0 Hz), 8.50 (1H, d, J = 4.8 Hz), 8.56 (1H, s).
[0055]
Example 14
3,5-Dimethyl-2- (isopropyloxy-3-pyridylmethyl) -1,4-benzoquinone hydrochloride
[0056]
Embedded image
Figure 0003822257
[0057]
Dissolve 2.3 g (8.01 mmol) of 3,5-dimethyl-2- (isopropyloxy-3-pyridylmethyl) benzene-1,4-diol in 34.5 ml of ethyl acetate, and ferric chloride hexahydrate (FeClThree ・ 6H2 A solution of 4.33 g (16.03 mmol) in water (10 ml) was added and stirred vigorously for 2 minutes. After completion of the reaction, 3.37 g (40.1 mmol) of sodium hydrogen carbonate was added under ice-cooling, filtered through Celite, and insoluble matters were removed. The filtrate was extracted with ethyl acetate, washed with water and saturated brine, and the ethyl acetate layer was dried over magnesium sulfate. After removing the magnesium sulfate, 9.6 ml of 4N hydrogen chloride-ethyl acetate was added to the ethyl acetate solution. The solvent was distilled off under reduced pressure to obtain 2.3 g (yield 89%) of the title compound.
1 H-NMR (400 MHz, CDClThree ) Δ; 1.20 (3H, d, J = 6.0 Hz), 1.24 (3H, d, J = 6.0 Hz), 2.00 (3H, s), 2.09 (3H, d, J = 1.6 Hz), 3.72 (1H, qq, J = 6.0, 6.0 Hz), 6.21 (1H, s), 6.67 (1H, d, J = 1.6 Hz), 7.87 (1H, dd, J = 5.6, 8.0 Hz), 8.30 (1H, d, J = 8.0 Hz), 8.67 (1H, d, J = 5.6 Hz), 8 .77 (1H, s).
[0058]
Example 15
3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) -1,4-benzoquinone hydrochloride
3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) benzene-1,4-diol (0.5 g, 2.04 mmol) was dissolved in a solution of water (1.0 ml) and methanol (3.0 ml). Dicopper dihydrate (CuCl2 ・ 2H2 O) 17 mg was added, and the mixture was stirred for 1.5 hours while blowing air. After adding 15 ml of ethyl acetate and 10 ml of water to the reaction solution, a saturated sodium hydrogen carbonate solution was added to adjust the pH to 7. The ethyl acetate layer was separated, washed with water and saturated brine, and dried over magnesium sulfate. After removing magnesium sulfate, 0.56 ml of 4N hydrogen chloride-ethyl acetate was added dropwise to the ethyl acetate solution under ice cooling, followed by stirring for 15 minutes. The precipitated crystals were collected by filtration, washed with ethyl acetate and isopropyl ether, and dried to obtain the title compound (0.46 g, yield 81%). Melting point1 The 1 H-NMR spectrum was consistent with the compound of Example 12.
[0059]
Application examples
Next, an example of synthesizing a 2-amino-6-hydroxy-4-pyridylmethylbenzothiazole compound useful as a pharmaceutical from the quinone compound obtained in the present invention is shown.
[0060]
Application example 1
5,7-Dimethyl-6-hydroxy-2-methylamino-4-[(3-pyridyl) hydroxymethyl] benzothiazole
[0061]
Embedded image
Figure 0003822257
[0062]
To a suspension of 30 g (0.11 mol) of 3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) -1,4-benzoquinone hydrochloride (Example 12) in 300 ml of ethanol, 21.7 ml of concentrated hydrochloric acid and 9.68 g (0.11 mol) of methylthiourea was added under ice cooling, and the mixture was stirred at 4 ° C. for 15 hours (the reaction mixture dissolved once and then the precipitate gradually increased). After adding 300 ml of ethyl acetate and stirring for 10 minutes, the precipitate was collected by filtration and washed with ethyl acetate and isopropyl ether to obtain a thuronium salt. To this 300 ml suspension of ethanol, 2.9 g of 1,4-benzoquinone dissolved in 23.8 ml of tetrahydrofuran was added under ice cooling, and the mixture was stirred at 4 ° C. for 4 hours and at 20 ° C. for 3 hours. Next, 300 ml of ethyl acetate was added, and the mixture was stirred for 10 minutes. The precipitate was collected by filtration, washed with ethyl acetate and isopropyl ether, and dried to obtain 36.3 g of the hydrochloride of the title compound. This was dissolved in 524 ml of water, washed with ethyl acetate and isopropyl ether, and dried in the presence of phosphorus pentoxide to obtain 26.9 g (yield 80%) of the title compound.
Melting point: 201-203 ° C. (decomposition)
1 H-NMR (400 MHz, DMSO-d6 ) Δ: 2.03 (3H, s), 2.21 (3H, s), 2.88 (3H, d, J = 4.8 Hz), 6.51 (1H, d, J = 6.6 Hz) 6.55 (1H, d, J = 6.6 Hz), 7.27 (1H, dd, J = 4.8, 8.0 Hz), 7.60 (1H, d, J = 8.0 Hz), 7.82 (1H, d, J = 4.8 Hz), 7.97 (1H, s), 8.35 (1H, d, J = 4.8 Hz), 8.46 (1H, s).
MS (FAB): m / z 316 (M + H)+ .
Application example 2
5,7-Dimethyl-6-hydroxy-2-methylamino-4-[(3-pyridyl) methyl] benzothiazole
[0063]
Embedded image
Figure 0003822257
[0064]
To a solution of 5.0 g (15.9 mmol) of 5,7-dimethyl-6-hydroxy-2-methylamino-4-[(3-pyridyl) hydroxymethyl] benzothiazole in 50 ml of acetic acid, 2.6 g (39. 8 mmol) was added and the mixture was heated to reflux for 26 hours. After removing hot insoluble matter, 200 ml of ethyl acetate was added, and the mixture was stirred for 10 minutes under ice cooling, and the precipitate was collected by filtration. This was dissolved in 100 ml of ethanol, and 24 ml of 4N hydrochloric acid-ethyl acetate solution was added dropwise under ice cooling. After stirring for 30 minutes, the precipitate was collected by filtration, washed with ethyl acetate, isopropyl ether, and dried to give the title compound. 5.9 g of hydrochloride was obtained. This was dissolved in 100 ml of water, 75 ml of ethyl acetate was added, neutralized by adding a saturated aqueous solution of sodium bicarbonate under ice cooling, and the precipitate was collected by filtration. Further, the precipitate was suspended in 75 ml of ethanol and heated under reflux for 1 hour, and then stirred for 15 minutes under ice cooling. The crystals were collected by filtration, washed with ethanol and dried to obtain 2.9 g (yield 61%) of the title compound. Obtained.
Melting point: 220-223 ° C. (decomposition)
1 1 H-NMR (400 MHz, DMSO-d6 ) Δ: 2.07 (3H, s), 2.20 (3H, s), 2.87 (3H, d, J = 4.8 Hz), 4.25 (2H, s), 7.20 (1H) , Dd, J = 4.8, 8.0 Hz), 7.48 (1H, d, J = 8.0 Hz), 7.65 (1H, d, J = 4.8 Hz), 7.90 (1H, br), 8.31 (1H, s), 8.46 (1H, s).

Claims (10)

一般式(I)
Figure 0003822257
(式中、R1 は水素原子,メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を意味する)で表されるヒドロキノン誘導体と一般式(II)あるいは一般式(II')
Figure 0003822257
(式中、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を、R'は低級アルキル基を意味する)で表されるアルデヒド誘導体を酸の存在下に縮合することを特徴とする一般式(III)
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)で表されるヒドロキノン誘導体またはその塩の製造方法。
Formula (I)
Figure 0003822257
(Wherein R 1 represents a hydrogen atom, a methyl group or a methoxy group, and R 2 and R 3 are the same or different and represent a hydrogen atom or a methyl group) and a general formula (II) or a general formula Formula (II ′)
Figure 0003822257
An aldehyde derivative represented by the formula (wherein X represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom, and R ′ represents a lower alkyl group) is condensed in the presence of an acid. Formula (III)
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a lower alkyl group, X is a hydrogen atom, A method for producing a hydroquinone derivative represented by a lower alkyl group, a lower alkoxy group or a halogen atom) or a salt thereof.
一般式(III)
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)で表されるヒドロキノン誘導体を酸化することを特徴とする一般式(IV)
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)で表される1,4−ベンゾキノン誘導体またはその塩の製造方法。
Formula (III)
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a lower alkyl group, X is a hydrogen atom, A hydroquinone derivative represented by the general formula (IV) represented by a lower alkyl group, a lower alkoxy group or a halogen atom)
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a lower alkyl group, X is a hydrogen atom, A lower alkyl group, a lower alkoxy group, or a halogen atom).
一般式(III)
Figure 0003822257
において、R1 およびR3 は同一または異なって水素原子またはメチル基を意味し、R2 およびXが水素原子である請求項1記載のヒドロキノン誘導体またはその塩の製造方法。
Formula (III)
Figure 0003822257
2. The method for producing a hydroquinone derivative or a salt thereof according to claim 1, wherein R 1 and R 3 are the same or different and each represents a hydrogen atom or a methyl group, and R 2 and X are a hydrogen atom.
一般式(IV)
Figure 0003822257
において、R1 およびR3 は同一または異なって水素原子またはメチル基を意味し、R2 およびXが水素原子である請求項2記載の1,4−ベンゾキノン誘導体またはその塩の製造方法。
Formula (IV)
Figure 0003822257
Wherein R 1 and R 3 are the same or different and each represents a hydrogen atom or a methyl group, and R 2 and X are hydrogen atoms, The method for producing a 1,4-benzoquinone derivative or a salt thereof according to claim 2.
一般式(III)
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)で表されるヒドロキノン誘導体またはその塩。
Formula (III)
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a lower alkyl group, X is a hydrogen atom, A hydroquinone derivative represented by a lower alkyl group, a lower alkoxy group or a halogen atom) or a salt thereof.
一般式(IV)
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)で表される1,4−ベンゾキノン誘導体またはその塩。
Formula (IV)
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R 4 is a hydrogen atom or a lower alkyl group, X is a hydrogen atom, A 1,4-benzoquinone derivative represented by a lower alkyl group, a lower alkoxy group or a halogen atom) or a salt thereof.
一般式(III)
Figure 0003822257
において、R1 およびR3 がメチル基、R2 およびXが水素原子である請求項記載のヒドロキノン誘導体またはその塩。
Formula (III)
Figure 0003822257
The hydroquinone derivative or a salt thereof according to claim 5 , wherein R 1 and R 3 are methyl groups, and R 2 and X are hydrogen atoms.
一般式(IV)
Figure 0003822257
において、R1 およびR3 がメチル基、R2 およびXが水素原子である請求項記載の1,4−ベンゾキノン誘導体またはその塩。
Formula (IV)
Figure 0003822257
The 1,4-benzoquinone derivative or a salt thereof according to claim 6 , wherein R 1 and R 3 are methyl groups, and R 2 and X are hydrogen atoms.
一般式(I)で表されるヒドロキノン誘導体と一般式(II)あるいは一般式(II')で表されるアルデヒド誘導体を酸の存在下に縮合し、得られた一般式(III)で表されるヒドロキノン誘導体またはその塩を酸化することを特徴とする一般式(IV)で表される1,4−ベンゾキノン誘導体またはその塩の製造方法。
Figure 0003822257
(式中、R1 は水素原子、メチル基またはメトキシ基を、R2 およびR3 は同一または異なって水素原子またはメチル基を、R'は低級アルキル基を、R4 は水素原子または低級アルキル基を、Xは水素原子、低級アルキル基、低級アルコキシ基またはハロゲン原子を意味する)。
The hydroquinone derivative represented by the general formula (I) and the aldehyde derivative represented by the general formula (II) or the general formula (II ′) are condensed in the presence of an acid. A method for producing a 1,4-benzoquinone derivative represented by the general formula (IV) or a salt thereof, which comprises oxidizing a hydroquinone derivative or a salt thereof.
Figure 0003822257
Wherein R 1 is a hydrogen atom, a methyl group or a methoxy group, R 2 and R 3 are the same or different and are a hydrogen atom or a methyl group, R ′ is a lower alkyl group, and R 4 is a hydrogen atom or a lower alkyl group. And X represents a hydrogen atom, a lower alkyl group, a lower alkoxy group or a halogen atom).
3−ピリジンカルボキシアルデヒドと2,6−ジメチル−p−ヒドロキノンとを酸の存在下に縮合し、得られた3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)ベンゼン−1,4−ジオールを酸化することを特徴とする3,5−ジメチル−2−(ヒドロキシ−3−ピリジルメチル)−1,4−ベンゾキノンまたはその塩の製造方法。 3,5-Dimethyl-2- (hydroxy-3-pyridylmethyl) benzene-1,4- obtained by condensing 3-pyridinecarboxaldehyde and 2,6-dimethyl-p-hydroquinone in the presence of an acid. A process for producing 3,5-dimethyl-2- (hydroxy-3-pyridylmethyl) -1,4-benzoquinone or a salt thereof, characterized by oxidizing a diol.
JP17799794A 1993-07-30 1994-07-29 Process for producing novel hydroquinone and benzoquinone derivatives Expired - Lifetime JP3822257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17799794A JP3822257B2 (en) 1993-07-30 1994-07-29 Process for producing novel hydroquinone and benzoquinone derivatives

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP20680993 1993-07-30
JP23719393 1993-08-31
JP16548294 1994-07-18
JP5-237193 1994-07-18
JP6-165482 1994-07-18
JP5-206809 1994-07-18
JP17799794A JP3822257B2 (en) 1993-07-30 1994-07-29 Process for producing novel hydroquinone and benzoquinone derivatives

Publications (2)

Publication Number Publication Date
JPH0892214A JPH0892214A (en) 1996-04-09
JP3822257B2 true JP3822257B2 (en) 2006-09-13

Family

ID=27474007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17799794A Expired - Lifetime JP3822257B2 (en) 1993-07-30 1994-07-29 Process for producing novel hydroquinone and benzoquinone derivatives

Country Status (1)

Country Link
JP (1) JP3822257B2 (en)

Also Published As

Publication number Publication date
JPH0892214A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
JPH0597768A (en) Production of intermediate for producing alkoxyiminoacetoamide compounds and intermediate used therefor
CN114805314A (en) Synthesis method of Ensaitevir
US6245913B1 (en) Synthetic procedure for 5-methoxy-2-[(4-methoxy-3,5-dimethyl-2-pyridinyl)-methylthio]-IH-benzimidazole hydrochloride and its conversion to omeprazole
JP3822257B2 (en) Process for producing novel hydroquinone and benzoquinone derivatives
US5637716A (en) Processes for the preparation of hydroquinone and benzoquinone derivatives
CN111566075A (en) Method for preparing Keruisha boron
EP0704435B1 (en) Process for producing hydroquinone and benzoquinone derivative
CN113956243A (en) Rosuvastatin intermediate and preparation method thereof
KR100641825B1 (en) Preparation method of 4-biphenylacetic acid
KR0131051B1 (en) Process for preparing pyridine derivatives
JPH0421674A (en) Production of 2-chloro-5-(aminomethyl)thiazole
US5959118A (en) Process for the preparation of 5-hydroxymethylthiazoles
WO1991001315A1 (en) New quinoline derivatives and process for the preparation thereof
AU627609B2 (en) New quinoline derivatives and process for the preparation thereof
KR100856133B1 (en) Improved process for preparing atorvastatin
KR100730766B1 (en) New method for preparing biphenylacetic acid
JPH1129540A (en) Production of ester derivative
JPH07304726A (en) Preparation of 2-arylethanesulfonic acids
KR920004932B1 (en) Method of producing for pyridine derivatives
JP2894366B2 (en) Method for producing deacetylcolchicine
JP4287083B2 (en) Process for producing 2- or 4-monosubstituted pyridine and process for selective production and separation of 4-monosubstituted pyridine or a salt thereof
JPS5916878A (en) Production of 2,4-dihydroxy-3-acetylquinoline
KR100771659B1 (en) Method of Preparing Pantoprazole and Its Intermediate
KR20000018793A (en) Method for manufacturing 1,2-benzisothiazolones-3-one
JP2853929B2 (en) Method for producing 2-chloro-4,5-difluoro-3-methoxybenzoic acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060622

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4