JP3820633B2 - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP3820633B2
JP3820633B2 JP16993796A JP16993796A JP3820633B2 JP 3820633 B2 JP3820633 B2 JP 3820633B2 JP 16993796 A JP16993796 A JP 16993796A JP 16993796 A JP16993796 A JP 16993796A JP 3820633 B2 JP3820633 B2 JP 3820633B2
Authority
JP
Japan
Prior art keywords
light
liquid crystal
color
crystal cell
colored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16993796A
Other languages
Japanese (ja)
Other versions
JPH1020109A (en
Inventor
久 青木
哲志 吉田
悟 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP16993796A priority Critical patent/JP3820633B2/en
Publication of JPH1020109A publication Critical patent/JPH1020109A/en
Application granted granted Critical
Publication of JP3820633B2 publication Critical patent/JP3820633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133567Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements on the back side

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)
  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、カラー画像を表示する液晶表示装置に関するものである。
【0002】
【従来の技術】
従来、カラー画像を表示する液晶表示装置としては、各画素にそれぞれ対応する複数の色のカラーフィルタ(一般には赤、緑、青の三色のカラーフィルタ)を備えた液晶セルの背後に光源を配置した構成のものが知られている。
【0003】
【発明が解決しようとする課題】
しかし、上記液晶表示装置は、カラーフィルタを用いて着色光を得るものであるため、表示されるカラー画像の色純度は良いが、画像の明るさが充分でないという問題をもっている。
【0004】
これは、カラーフィルタが、その色の波長域の光を透過させ他の波長域の光を吸収するものであるため、光源からの光がカラーフィルタによって大きく吸収されて、液晶セルを出射する着色光の強度がかなり低くなるからである。
この発明は、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる液晶表示装置を提供することを目的としたものである。
【0005】
【課題を解決するための手段】
この発明の液晶表示装置は、カラー画像を表示する液晶表示装置であって、液晶セルと、この液晶セルの背後に配置され、導光板とその端面に配置された少なくとも1つの光源ランプからなる面光源と、前記液晶セルの外側の面と前記面光源との間に配置され、前記液晶セルの各画素にそれぞれ対応する複数の色の光着色膜とを備え、前記各色の光着色膜はそれぞれ、所定の色のカラーフィルタの層と、それと同系色の蛍光物質を混入した蛍光体膜とを積層した二層膜構造からなり、前記二層膜構造の光着色膜のうち、前記蛍光体膜を前記光源側に向けて配置したことを特徴とするものである。
【0006】
すなわち、この発明の液晶表示装置は、液晶セルの背後に配置され、導光板とその端面に配置された少なくとも1つの光源ランプからなる面光源と、前記液晶セルの外側の面と前記面光源との間に配置され、前記液晶セルの各画素にそれぞれ対応する複数の色の光着色膜とを備え、これらの各色の光着色膜を、所定の色のカラーフィルタと、それと同系色の蛍光物質を混入した蛍光体膜とを積層し、前記蛍光体膜を光源側に向けて配置した二層膜構造とすることによって着色光を得るものであり、この光着色膜に光を入射させると、前記蛍光物質がその蛍光色とは異なる波長域の励起光を吸収してそのエネルギーにより蛍光物質に特有な色の蛍光を発するため、前記光着色膜に入射した光は、前記蛍光物質に特有な蛍光色の波長域の光強度が増加した強度分布の光となって出射する。
【0007】
そして、前記光着色膜のカラーフィルタは、その色の波長域の光を透過させ他の波長域の光を吸収するが、前記蛍光物質が発する蛍光は前記カラーフィルタと同系色であり、しかも前記カラーフィルタに入射する光は、前記カラーフィルタを透過する波長域の光強度が増加した強度分布の光であるから、このカラーフィルタを透過した光、つまり前記光着色膜を出射する着色光の強度が、カラーフィルタだけで光を着色する場合に比べて各段に高くなる。しかも、前記光着色膜を出射する着色光は、前記カラーフィルタを透過した波長域の光であるため、その色純度も良い。
【0008】
したがって、この発明の液晶表示装置によれば、液晶セルの表面側に充分な強度の着色光を出射させて、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0009】
【発明の実施の形態】
この発明の液晶表示装置は、上記のように、液晶セルの背後に配置され、導光板とその端面に配置された少なくとも1つの光源ランプからなる面光源と、前記液晶セルの外側の面と前記面光源との間に配置され、前記液晶セルの各画素にそれぞれ対応する複数の色の光着色膜とを備え、これらの各色の光着色膜を、所定の色のカラーフィルタと、それと同系色の蛍光物質を混入した蛍光体膜とを積層し、前記蛍光体膜を光源側に向けて配置した二層膜構造とすることにより、この光着色膜によって、高強度でしかも色純度の良い着色光を得るものである。
【0011】
この発明の液晶表示装置において、前記各色の光着色膜は、光源と液晶セルとの間に配置しても、あるいは、前記液晶セルの表面に配置してもよいが、前記光着色膜の最も好ましい配置箇所は光源と液晶セルとの間であり、このように光源と液晶セルとの間に光着色膜を配置すれば、光源からの光がまず光着色膜に入射するため、光源からの光を最も効率良く光着色膜の蛍光物質に受光させてより強い着色蛍光を発生させ、前記光着色膜を出射する着色光の強度をさらに高くして、液晶セルの表面側に出射する着色光の強度をより高くすることができる。
【0012】
さらに、この発明は、前記液晶セルからの出射光を拡大して投影する投影手段を備えた、いわゆるプロジェクション方式の液晶表示装置にも適用することができるものであり、その場合、特に、光着色膜を上記のように光源と液晶セルとの間に配置すれば、液晶セルの表面側に出射する着色光の強度をより高くすることができるため、この液晶セルからの出射光を前記投影手段により拡大して投影することによる輝度の低下があっても、スクリーン等の投影面に投影表示される拡大画像の輝度および鮮明度を充分高くすることができる。
【0013】
【実施例】
第1の参考例
図1は第1の参考例を示す液晶表示装置の一部分の断面図である。この液晶表示装置はTN(ツイステッド・ネマティック)型のものであり、液晶セル1と、この液晶セル1をはさんで配置された一対の偏光板21,22と、前記液晶セル1の背後に配置された光源30と、この光源30と前記液晶セル1との間に前記液晶セル1の各画素にそれぞれ対応させて配置された複数の色、例えば赤、緑、青の三色の光着色膜40R,40G,40Bとからなっており、この参考例では、前記光着色膜40R,40G,40Bを、液晶セル1の裏面側に配置した裏側偏光板21と光源30との間に配置している。
【0014】
まず、上記液晶セル1について説明すると、この液晶セル1はアクティブマトリックス型のものであり、液晶14の層をはさんで対向する一対の透明基板2,3のうち、裏側の基板(図において下側の基板)2の内面には、複数の透明な画素電極4とこれら各画素電極4にそれぞれ対応する複数のスイッチング素子5とが行方向および列方向に並べてマトリックス状に配列形成されるとともに、その上に、配向処理が施された配向膜11が形成されている。
【0015】
上記スイッチング素子5は例えばTFT(薄膜トランジスタ)であり、このTFT5は、基板2上に形成されたゲート電極6と、このゲート電極6を覆うゲート絶縁膜7と、このゲート絶縁膜7の上に前記ゲート電極6と対向させて形成された半導体膜8と、その両側に設けられたソース電極9およびドレイン電極10とからなっている。なお、前記ゲート絶縁膜7は透明膜であり、液晶セル1の表示領域全体にわたって形成されている。
【0016】
また、図示しないが、この裏側基板2の内面には、上記TFT5のゲート電極6にゲート信号を供給するゲートライン(アドレスライン)と、前記TFT5のドレイン電極10に画像データに応じたデータ信号を供給するデータラインとが配線されている。
【0017】
上記ゲートラインは、基板2上に、上記TFT5のゲート電極6と一体に形成されており、その端子部を除いてゲート絶縁膜7で覆われている。また、データラインは、前記ゲート絶縁膜7の上に形成されており、このデータラインは上記TFT5のドレイン電極10につながっている。
【0018】
また、上記画素電極4は、上記ゲート絶縁膜7の上に形成されており、各画素電極4はそれぞれ、その一端部において対応するTFT5のソース電極9に接続されている。
【0019】
一方、液晶セル1の表側の基板(図において上側の基板)3の内面には、上記裏側基板2の各画素電極4に対向する一枚膜状の透明な対向電極12が形成されるとともに、その上に、配向処理が施された配向膜13が形成されている。
【0020】
そして、上記裏側基板2と表側基板3とは、図示しないが、その外周縁部において枠状のシール材を介して接合されており、液晶14は両基板2,3間の前記シール材で囲まれた領域に封入されている。
【0021】
この液晶14は、誘電異方性が正のネマティック液晶であり、その分子は、両基板2,3の内面に設けられた前記配向膜11,13によってそれぞれの基板2,3の近傍における配向方向を規制され、両基板2,3間において所定のツイスト角でツイスト配向している。
【0022】
この液晶分子のツイスト角は、例えばほぼ90°であり、上記一対の偏光板21,22のうちの裏側の偏光板21は、その透過軸を前記液晶セル1の裏側基板2の近傍における液晶分子の配向方向とほぼ平行にするかあるいはほぼ直交差させて配置され、表側の偏光板22は、その透過軸を前記液晶セル1の表側基板3の近傍における液晶分子の配向方向とほぼ平行にするかあるいはほぼ直交差させて配置されている。
【0023】
また、上記光源30は、例えば、一般にサイドランプ型と呼ばれる面光源であり、前記液晶セル1の裏面に対向させて配置されたアクリル樹脂等からなる導光板31と、この導光板31の一端面または両端面に対向させて配置された直管状の蛍光ランプ等からなる光源ランプ(図示せず)とからなっている。
【0024】
このサイドランプ型の光源は、前記光源ランプからの光を図1に破線で示したように導光板31で導いてその表面から出射するものであり、導光板31にその端面から取り込まれた光は、導光板31の表裏面での反射を繰り返して導光板全域に導かれ、そのうちの導光板表面に対して全反射角よりも急な角度で入射する光が導光板31の表面側に出射する。
【0025】
一方、上記赤、緑、青の光着色膜40R,40G,40Bはそれぞれ、所定の色のカラーフィルタと、それと同系色の蛍光物質との複合体からなっており、この実施例では、前記蛍光物質に、蛍光染料で染めた透明樹脂の粒状物からなる蛍光顔料を用い、この蛍光顔料をカラーフィルタ中に分散状態で混入させて各色の光着色膜40R,40G,40Bを形成している。
【0026】
すなわち、赤の光着色膜40Rは、赤の蛍光顔料を混入した赤色カラーフィルタからなっており、緑の光着色膜40Gは、緑の蛍光顔料を混入した緑色カラーフィルタからなっており、青の光着色膜40Bは、青の蛍光顔料を混入した青色カラーフィルタからなっている。
【0027】
そして、これらの光着色膜40R,40G,40Bは、上記光源30の導光板31の表面に交互に並べて配列形成されており、前記導光板31の配置位置を調整することにより、各色の光着色膜40R,40G,40Bが上記液晶セル1の各画素にそれぞれ対応するように配置されている。
【0028】
この液晶表示装置は、光源30からの光をまず前記光着色膜40R,40G,40Bに入射させて赤、緑、青の着色光を得、これらの光着色膜40R,40G,40Bから出射する各色の光を液晶セル1の各画素にそれぞれ入射させるとともに、その光の透過を、前記液晶セル1とそれをはさんで配置した一対の偏光板21,22とにより制御してカラー画像を表示するものである。なお、前記液晶セル1と一対の偏光板21,22とによる透過制御は、一般のTN型液晶表示装置と同じであるから、その説明は省略する。
【0029】
すなわち、この液晶表示装置は、カラーフィルタとそれと同系色の蛍光物質(この実施例では蛍光顔料)との複合体からなる赤、緑、青の光着色膜40R,40G,40Bによって赤、緑、青の着色光を得るものであり、これらの光着色膜40R,40G,40Bに光源30からの光(白色光)を入射させると、前記蛍光物質がその蛍光色とは異なる波長域の励起光を吸収してそのエネルギーにより蛍光物質に特有な色の蛍光を発するため、各色の光着色膜40R,40G,40Bに入射した光は、前記蛍光物質に特有な蛍光色の波長域の光強度が増加した強度分布の光となって出射する。
【0030】
上記赤、緑、青の各色の蛍光物質の例をあげると、青の蛍光物質としては、coumarin102 、coumarin480 、coumarin481 等がある。これらの蛍光物質の吸収波長(励起光の波長)のピーク値と、発光波長のピーク値は、
coumarin102 ;吸収波長ピーク 390nm、発光波長のピーク 468nm
coumarin480 ;吸収波長ピーク 390nm、発光波長のピーク 466nm
coumarin481 ;吸収波長ピーク 390nm、発光波長のピーク 465nm
であり、いずれも、主に紫外線域の光を吸収して励起され、青の蛍光を発生する。
【0031】
また、緑の蛍光物質としては、HPTS、coumarin153 等がある。これらの蛍光物質の吸収波長のピーク値と、発光波長のピーク値は、
HPTS ;吸収波長ピーク 455nm、発光波長のピーク 510nm
coumarin153 ;吸収波長ピーク 423nm、発光波長のピーク 532nm
であり、いずれも、主に青の波長域の光を吸収して励起され、緑の蛍光を発生する。
【0032】
さらに、赤の蛍光物質としては、LDS720等がある。この蛍光物質の吸収波長のピーク値は 529nm、発光波長のピーク値は 699nmであり、主に緑の波長域の光を吸収して励起され、赤の蛍光を発生する。
【0033】
そして、上記各色の光着色膜40R,40G,40Bのカラーフィルタは、その色の波長域の光を透過させ他の波長域の光(励起光)を吸収するが、前記蛍光物質が発する蛍光は前記カラーフィルタと同系色であり、したがってカラーフィルタに入射する光は、前記カラーフィルタを透過する波長域の光強度が増加した強度分布の光であるから、このカラーフィルタを透過した光、つまり光着色膜40R,40G,40Bを出射する着色光の強度が、カラーフィルタだけで光を着色する場合に比べて各段に高くなる。しかも、前記光着色膜40R,40G,40Bを出射する着色光は、前記カラーフィルタを透過した波長域の光であるため、その色純度も良い。
【0034】
したがって、上記液晶表示装置によれば、液晶セル1の表面側に充分な強度の着色光を出射させて、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0035】
第1の実施例
図2はこの発明の第1の実施例を示す液晶表示装置の一部分の断面図である。この実施例の液晶表示装置は、赤、緑、青の光着色膜41R,41G,41Bをそれぞれ、赤、緑、青のカラーフィルタ42R,42G,42Bと、これらのカラーフィルタ42R,42G,42Bと同系色の蛍光物質からなる蛍光体膜43R,43G,43Bとを積層した二層膜構造のものとしたものであり、その他の構成は上述した第1の参考例のものと同じである。
【0036】
上記蛍光体膜43R,43G,43Bは、無色の透明樹脂中に所定の色の蛍光物質(例えば蛍光顔料)を混入したものであり、前記光着色膜41R,41G,41Bは、その蛍光体膜43R,43G,43Bを光源30側に向けて配置されている。
【0037】
この液晶表示装置によれば、光源30から各色の光着色膜41R,41G,41Bに入射する光(白色光)が、まず蛍光体膜43R,43G,43Bに入射して、これらの蛍光体膜43R,43G,43Bを励起し、それぞれの蛍光物質に特有な色の蛍光を発生させ、前記蛍光物質に特有な蛍光色の波長域の光強度が増加された強度分布の着色光になり、その光がカラーフィルタ42R,42G,42Bを透過して色純度の良い着色光になるため、上記第1の参考例よりもさらに強度および色純度の良い着色光を液晶セル1に入射させて、より高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0038】
すなわち、上記第1の参考例では、カラーフィルタ中に蛍光物質を混入させた光着色膜40R,40G,40Bを用いているため、これらの光着色膜40R,40G,40Bの入射面(光源30との対向面)付近の蛍光物質は、入射された光のうちの励起波長域の光(励起光)を充分に吸収して高強度の蛍光を発するが、出射面に近い蛍光物質の励起光がカラーフィルタで吸収されるため、出射面に近い蛍光物質に入射する励起光が弱く、したがって、出射面に近くなるほど蛍光物質が発する蛍光の強度が弱くなる。
【0039】
これに対して、この実施例で用いた光着色膜41R,41G,41Bは、その蛍光体膜43R,43G,43Bが、無色の透明樹脂中に蛍光物質を混入したものであるため、カラーフィルタのような励起光の吸収はなく、したがって、入射面付近の蛍光物質に高強度の蛍光を発生させるとともに、出射面に近い蛍光物質にも前記入射面付近の蛍光物質の隙間を透過してきた光(白色光)のうちの励起光を充分に照射して、高強度の蛍光を発生させることができる。
【0040】
また、上記第1の参考例で用いた光着色膜40R,40G,40Bでは、その出射面に近い蛍光物質が発生する蛍光がほとんどカラーフィルタを通ることなく出射するが、この実施例で用いた光着色膜41R,41G,41Bによれば、前記蛍光体膜43R,43G,43Bを出射した蛍光が必ずカラーフィルタ42R,42G,42Bを透過して各色の光着色膜41R,41G,41Bに不要な波長域の光が吸収されるため、色純度の良い着色光になる。
【0041】
しかも、この実施例の光着色膜41R,41G,41Bでは、前記蛍光体膜43R,43G,43Bを出射する光が、その出射側のカラーフィルタ42R,42G,42Bの色と同系色の蛍光であるため、前記カラーフィルタ42R,42G,42Bの膜厚が薄くても、十分に高い色純度の着色光が得られるから、前記カラーフィルタ42R,42G,42Bは極く薄く形成しておくだけでよい。
【0042】
第2の参考例
図3は第2の参考例を示す液晶表示装置の一部分の断面図である。この参考例の液晶表示装置は、上述した第1の参考例で用いた赤、緑、青の光着色膜を、液晶セルと光源の間のうちの、液晶セルとその裏面側に配置した裏側偏光板との間に配置したものであり、その他の構成は第1の参考例のものと同じである。
【0043】
この参考例の液晶表示装置によれば、光源30からの光が、まず裏側偏光板21を透過して直線偏光した光になり、その光が各色の光着色膜40R,40G,40Bに入射して、これらの光着色膜40R,40G,40Bから出射する赤、緑、青の光が液晶セル1の各画素にそれぞれ入射する。
【0044】
そして、この液晶表示装置においても、液晶セル1の各画素にそれぞれ対応する赤、緑、青の光着色膜40R,40G,40Bを、所定の色のカラーフィルタと、それと同系色の蛍光物質との複合体とすることにより、この光着色膜40R,40G,40Bによって、高強度でしかも色純度の良い着色光を得るようにしているため、液晶セル1の表面側に充分な強度の着色光を出射させて、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0045】
なお、この第2の参考例では、裏側偏光板21を透過した光を光着色膜40R,40G,40Bに入射させているため、この光着色膜40R,40G,40Bに入射する光の強度が、光源30からの光の強度のほぼ半分であり、したがって、上述した第1の参考例および第1の実施例に比べて、光着色膜40R,40G,40Bを出射する着色光の強度がある程度弱くなるが、それでも、前記着色光の強度はカラーフィルタだけで光を着色する場合に比べて各段に高いため、従来の液晶表示装置に比べれば、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0046】
第3の参考例
図4はこの発明の第3の参考例を示す液晶表示装置の一部分の断面図である。この参考例の液晶表示装置は、上述した第1の参考例で用いた赤、緑、青の光着色膜を、液晶セルの一対の基板のうちの表側基板の内面に設けたものであり、その他の構成は第1の参考例のものと同じである。
【0047】
この参考例の液晶表示装置によれば、光源30からの光が、まず裏側偏光板21を透過して直線偏光した光になり、その光が液晶セル1の裏側基板2および液晶層を透過して各色の光着色膜40R,40G,40Bに入射し、これらの光着色膜40R,40G,40Bにより赤、緑、青に着色されて出射する。
【0048】
そして、この液晶表示装置においても、液晶セル1の各画素にそれぞれ対応する赤、緑、青の光着色膜40R,40G,40Bを、所定の色のカラーフィルタと、それと同系色の蛍光物質との複合体とすることにより、この光着色膜40R,40G,40Bによって、高強度でしかも色純度の良い着色光を得るようにしているため、液晶セル1の表面側に充分な強度の着色光を出射させて、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0049】
なお、この参考例では、光源30からの光が裏側偏光板21を透過してほぼ半分の強度になり、さらに液晶セル1の裏側基板2および液晶層を透過する過程である程度光量を吸収されて各色の光着色膜40R,40G,40Bに入射するため、これらの光着色膜40R,40G,40Bを出射する着色光の強度が上述した第2の参考例よりもある程度弱くなるが、それでも、前記着色光の強度はカラーフィルタだけで光を着色する場合に比べて各段に高いため、従来の液晶表示装置に比べれば、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0050】
ただし、上記参考例では、前記光着色膜40R,40G,40Bを液晶セル1の表側基板3の内面に設けたが、この光着色膜40R,40G,40Bは、液晶セル1の裏側基板2の内面に設けてもよく、このようにすれば、上記実施例に比べて光着色膜40R,40G,40Bに入射する光の強度を、液晶層を透過する過程での光量吸収分だけ多くして、光着色膜40R,40G,40Bを出射する着色光の強度を向上させることができる。
【0051】
第4の参考例
図5は第4の参考例を示す液晶表示装置の一部分の断面図である。この参考例の液晶表示装置は、上述した第1の参考例で用いた赤、緑、青の光着色膜を、液晶セルの表面、つまり液晶セルとその表面側に配置した表側偏光板との間に配置したものであり、その他の構成は第1の参考例のものと同じである。
【0052】
この参考例の液晶表示装置によれば、光源30からの光が、まず裏側偏光板21を透過して直線偏光した光になり、その光が液晶セル1を透過して各色の光着色膜40R,40G,40Bに入射し、これらの光着色膜40R,40G,40Bにより赤、緑、青に着色されて出射する。
【0053】
そして、この液晶表示装置においても、液晶セル1の各画素にそれぞれ対応する赤、緑、青の光着色膜40R,40G,40Bを、所定の色のカラーフィルタと、それと同系色の蛍光物質との複合体とすることにより、この光着色膜40R,40G,40Bによって、高強度でしかも色純度の良い着色光を得るようにしているため、液晶セル1の表面側に充分な強度の着色光を出射させて、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0054】
なお、この参考例では、光源30からの光が裏側偏光板21を透過してほぼ半分の強度になり、さらに液晶セル1の裏側基板2と液晶層および表側基板3を透過する過程である程度光量を吸収されて各色の光着色膜40R,40G,40Bに入射するため、これらの光着色膜40R,40G,40Bを出射する着色光の強度が上述した第3の参考例よりもある程度弱くなるが、それでも、前記着色光の強度はカラーフィルタだけで光を着色する場合に比べて各段に高いため、従来の液晶表示装置に比べれば、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0055】
[他の実施例]
なお、上述した第1の実施例の液晶表示装置は、その表面、つまり表側偏光板22の出射面を表示面とするものであるが、この発明は、液晶セル1からの出射光を拡大して投影する投影手段を備えた、いわゆるプロジェクション方式の液晶表示装置にも適用することができる。
【0056】
すなわち、図6は、この発明をプロジェクション方式の液晶表示装置に適用した第2の実施例を示す液晶表示装置の概略構成図であり、この実施例の液晶表示装置は、上述した第1の実施例の液晶表示装置と同じ構成の液晶表示部Aの前方に、この液晶表示部Aからの出射光を拡大してスクリーン50等の投影面に投影する投影レンズ系51を設けたものである。
【0057】
この実施例の液晶表示装置は、液晶表示部Aからの出射光を投影レンズ系51により拡大して投影するものであるため、液晶表示部Aからの出射光の強度がその光束の拡大にともなって減衰するが、前記液晶表示部Aが上述した第1の実施例の液晶表示装置と同じ構成のものであり、したがって、この液晶表示部Aの液晶セル1の表面側に出射する着色光の強度が十分高いから、光束の拡大による光強度の減衰があっても、高輝度でかつ色純度の良い鮮明な拡大カラー画像をスクリーン50等の投影面に表示することができる。
【0058】
なお、この発明を上記プロジェクション方式の液晶表示装置に適用する場合、液晶表示部Aを、第1の実施例の液晶表示装置のように、光着色膜40R,40G,40Bまたは41R,41G,41Bを光源30と液晶セル1の裏面側に配置した裏側偏光板21との間に配置した構成とすれば、液晶セル1の表面側に出射する着色光の強度をより高くすることができるため、この液晶セル1からの出射光を投影手段により拡大して投影することによる輝度の低下があっても、スクリーン等の投影面に投影表示される拡大画像の輝度および鮮明度を充分高くすることができる。
【0059】
また、上記第1の実施例の液晶表示装置および第2の実施例の液晶表示装置における液晶表示部Aは、液晶セル1に、スイッチング素子としてTFT5を用いたアクティブマトリックス方式のものであるが、前記液晶セル1は、MIM型の二端子素子をスイッチング素子とするアクティブマトリックス方式のものや、単純マトリックス方式のものであってもよい。
【0060】
さらに、上記液晶セル1は、TN型のものに限らず、二色性染料を添加した液晶を用いるゲスト・ホスト型のものであってもよく、その場合は、液晶セル1の表裏面側に偏光板21,22を配置する必要はない。
【0061】
また、上記液晶セル1の背後に配置する光源30は、上記各実施例で用いたサイドランプ型のものに限られるものではなく、例えば、複数本の直管状蛍光ランプ等を適当間隔で互いに平行に配置した、直下型光源と呼ばれるものであってもよい。
【0062】
【発明の効果】
この発明の液晶表示装置は、液晶セルと、この液晶セルの背後に配置され、導光板とその端面に配置された少なくとも1つの光源ランプからなる面光源と、前記液晶セルの外側の面と前記面光源との間に配置され、前記液晶セルの各画素にそれぞれ対応する複数の色の光着色膜とを備え、前記各色の光着色膜がそれぞれ、所定の色のカラーフィルタと、それと同系色の蛍光物質を混入した蛍光体膜とを積層し、前記蛍光体膜を光源側に向けて配置した二層膜構造からなっているものであるから、高輝度でかつ色純度の良い鮮明なカラー画像を表示することができる。
【0064】
また、この発明の液晶表示装置において、前記各色の光着色膜は、光源と液晶セルとの間に配置することにより、光源からの光がまず光着色膜に入射するため、光源からの光を最も効率良く光着色膜の蛍光物質に受光させてより強い着色蛍光を発生させ、前記光着色膜を出射する着色光の強度をさらに高くして、液晶セルの表面側に出射する着色光の強度をより高くすることができる。
【0065】
さらに、この発明は、前記液晶セルからの出射光を拡大して投影する投影手段を備えた、いわゆるプロジェクション方式の液晶表示装置にも適用することができるものであり、その場合、特に、光着色膜を上記のように光源と液晶セルとの間に配置すれば、液晶セルの表面側に出射する着色光の強度をより高くすることができるため、この液晶セルからの出射光を前記投影手段により拡大して投影することによる輝度の低下があっても、スクリーン等の投影面に投影表示される拡大画像の輝度および鮮明度を充分高くすることができる。
【図面の簡単な説明】
【図1】 第1の参考例を示す液晶表示装置の一部分の断面図。
【図2】 この発明の第1実施例を示す液晶表示装置の一部分の断面図。
【図3】 第2の参考例を示す液晶表示装置の一部分の断面図。
【図4】 第3の参考例を示す液晶表示装置の一部分の断面図。
【図5】 第4の参考例を示す液晶表示装置の一部分の断面図。
【図6】 この発明をプロジェクション方式の液晶表示装置に適用した第2の実施例を示す液晶表示装置の概略構成図。
【符号の説明】
1…液晶セル
21,22…偏光板
30…光源
40R…カラーフィルタに蛍光物質を混入した光着色膜(赤)
40G…カラーフィルタに蛍光物質を混入した光着色膜(緑)
40B…カラーフィルタに蛍光物質を混入した光着色膜(青)
41R…カラーフィルタと蛍光体膜とを積層膜した光着色膜(赤)
41G…カラーフィルタと蛍光体膜とを積層膜した光着色膜(緑)
41B…カラーフィルタと蛍光体膜とを積層膜した光着色膜(青)
42R,42G,42B…カラーフィルタ
43R,43G,43B…蛍光体膜
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal display device that displays a color image.
[0002]
[Prior art]
Conventionally, as a liquid crystal display device for displaying a color image, a light source is provided behind a liquid crystal cell provided with a plurality of color filters (generally three color filters of red, green, and blue) corresponding to each pixel. An arrangement of the arrangement is known.
[0003]
[Problems to be solved by the invention]
However, since the liquid crystal display device obtains colored light using a color filter, the color purity of the displayed color image is good, but there is a problem that the brightness of the image is not sufficient.
[0004]
This is because the color filter transmits light in the wavelength region of the color and absorbs light in other wavelength regions, so that the light from the light source is largely absorbed by the color filter and emitted from the liquid crystal cell. This is because the light intensity is considerably reduced.
An object of the present invention is to provide a liquid crystal display device capable of displaying a clear color image with high luminance and good color purity.
[0005]
[Means for Solving the Problems]
The liquid crystal display device of the present invention is a liquid crystal display device that displays a color image, and is disposed behind the liquid crystal cell. A surface light source comprising a light guide plate and at least one light source lamp disposed on an end surface thereof, Of the liquid crystal cell Arranged between the outer surface and the surface light source, A plurality of color light-coloring films corresponding to the respective pixels of the liquid crystal cell, each of the color light-coloring films each having a color filter layer of a predetermined color and a fluorescent material mixed with a fluorescent material of the same color A two-layer film structure in which a body film is laminated, and among the photo-colored films having the two-layer film structure, the phosphor film is surface It is arranged toward the light source side.
[0006]
That is, the liquid crystal display device of the present invention is A liquid crystal cell is disposed behind the liquid crystal cell, and is disposed between a light source plate and a surface light source including at least one light source lamp disposed on an end surface thereof, and an outer surface of the liquid crystal cell and the surface light source. A plurality of colored light coloring films corresponding to each pixel, and each of these colors A two-layer film structure in which a light coloring film is formed by laminating a color filter of a predetermined color and a phosphor film mixed with a fluorescent material of the same color and arranging the phosphor film toward the light source side To Therefore, colored light is obtained, and when light is incident on this photo-colored film, the fluorescent material absorbs excitation light in a wavelength region different from the fluorescent color, and the energy causes fluorescence of a color unique to the fluorescent material. Therefore, the light incident on the photo-colored film is emitted as light having an intensity distribution in which the light intensity in the wavelength region of the fluorescent color unique to the fluorescent material is increased.
[0007]
The color filter of the light coloring film transmits light in the wavelength region of the color and absorbs light in other wavelength regions, but the fluorescence emitted from the fluorescent material is similar in color to the color filter, and Since the light incident on the color filter is light having an intensity distribution in which the light intensity in the wavelength range that passes through the color filter is increased, the intensity of the light that has passed through the color filter, that is, the intensity of the colored light that exits the light coloring film. However, it becomes higher in each stage as compared with the case where light is colored only with a color filter. In addition, since the colored light emitted from the photo-colored film is light in a wavelength region that has passed through the color filter, the color purity is good.
[0008]
Therefore, according to the liquid crystal display device of the present invention, it is possible to emit colored light with sufficient intensity to the surface side of the liquid crystal cell and display a clear color image with high luminance and good color purity.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the liquid crystal display device of the present invention is A liquid crystal cell is disposed behind the liquid crystal cell, and is disposed between a light source plate and a surface light source including at least one light source lamp disposed on an end surface thereof, and an outer surface of the liquid crystal cell and the surface light source. A plurality of colored light coloring films corresponding to each pixel, and each of these colors The light coloring film has a two-layer film structure in which a color filter of a predetermined color and a phosphor film mixed with a fluorescent material of the same color are laminated, and the phosphor film is arranged facing the light source side. The photo-colored film provides colored light with high intensity and good color purity.
[0011]
In the liquid crystal display device according to the present invention, the light coloring films of the respective colors may be disposed between the light source and the liquid crystal cell, or ,in front Although it may be arranged on the surface of the liquid crystal cell, the most preferred arrangement location of the photo-colored film is between the light source and the liquid crystal cell, and thus the photo-colored film is arranged between the light source and the liquid crystal cell. For example, since the light from the light source is first incident on the light coloring film, the light from the light source is most efficiently received by the fluorescent material of the light coloring film to generate stronger colored fluorescence and is emitted from the light coloring film. By further increasing the light intensity, the intensity of the colored light emitted to the surface side of the liquid crystal cell can be further increased.
[0012]
Furthermore, the present invention can also be applied to a so-called projection type liquid crystal display device provided with a projection means for enlarging and projecting light emitted from the liquid crystal cell, and in that case, in particular, photo-coloring. If the film is disposed between the light source and the liquid crystal cell as described above, the intensity of the colored light emitted to the surface side of the liquid crystal cell can be further increased. Even if the brightness is reduced due to enlargement and projection, the brightness and sharpness of the enlarged image projected and displayed on a projection surface such as a screen can be sufficiently increased.
[0013]
【Example】
[ First reference example ]
Figure 1 First reference example It is sectional drawing of a part of liquid crystal display device which shows. This liquid crystal display device is of the TN (twisted nematic) type, and is disposed behind the liquid crystal cell 1, a pair of polarizing plates 21 and 22 disposed between the liquid crystal cell 1 and the liquid crystal cell 1. Light source 30 and a light coloring film of a plurality of colors, for example, three colors of red, green, and blue, disposed between the light source 30 and the liquid crystal cell 1 so as to correspond to the respective pixels of the liquid crystal cell 1. 40R, 40G, 40B, and this Reference example Then, the said light coloring film | membrane 40R, 40G, 40B is arrange | positioned between the back side polarizing plate 21 and the light source 30 which are arrange | positioned at the back surface side of the liquid crystal cell 1.
[0014]
First, the liquid crystal cell 1 will be described. The liquid crystal cell 1 is of an active matrix type, and the back substrate (the lower side in the figure) of the pair of transparent substrates 2 and 3 facing each other with the liquid crystal 14 layer interposed therebetween. A plurality of transparent pixel electrodes 4 and a plurality of switching elements 5 respectively corresponding to the pixel electrodes 4 are arranged in a matrix in the row direction and the column direction on the inner surface of the substrate 2 on the side, On top of that, an alignment film 11 subjected to an alignment process is formed.
[0015]
The switching element 5 is, for example, a TFT (thin film transistor). The TFT 5 includes a gate electrode 6 formed on the substrate 2, a gate insulating film 7 covering the gate electrode 6, and the gate insulating film 7 on the gate insulating film 7. It consists of a semiconductor film 8 formed facing the gate electrode 6 and a source electrode 9 and a drain electrode 10 provided on both sides thereof. The gate insulating film 7 is a transparent film and is formed over the entire display area of the liquid crystal cell 1.
[0016]
Although not shown, a gate line (address line) for supplying a gate signal to the gate electrode 6 of the TFT 5 and a data signal corresponding to image data to the drain electrode 10 of the TFT 5 are provided on the inner surface of the back substrate 2. A data line to be supplied is wired.
[0017]
The gate line is formed integrally with the gate electrode 6 of the TFT 5 on the substrate 2 and is covered with a gate insulating film 7 except for the terminal portion. A data line is formed on the gate insulating film 7, and the data line is connected to the drain electrode 10 of the TFT 5.
[0018]
The pixel electrode 4 is formed on the gate insulating film 7, and each pixel electrode 4 is connected to the source electrode 9 of the corresponding TFT 5 at one end thereof.
[0019]
On the other hand, on the inner surface of the front side substrate (upper side substrate in the figure) 3 of the liquid crystal cell 1, a single film-like transparent counter electrode 12 facing each pixel electrode 4 of the back side substrate 2 is formed, An alignment film 13 that has been subjected to an alignment process is formed thereon.
[0020]
The back substrate 2 and the front substrate 3 are bonded to each other at the outer peripheral edge of the back substrate 2 and the front substrate 3 via a frame-shaped sealing material, and the liquid crystal 14 is surrounded by the sealing material between the substrates 2 and 3. Enclosed in the area.
[0021]
The liquid crystal 14 is a nematic liquid crystal having positive dielectric anisotropy, and its molecules are aligned in the vicinity of the substrates 2 and 3 by the alignment films 11 and 13 provided on the inner surfaces of both the substrates 2 and 3. Therefore, the two substrates 2 and 3 are twisted with a predetermined twist angle.
[0022]
The twist angle of the liquid crystal molecules is, for example, approximately 90 °, and the polarizing plate 21 on the back side of the pair of polarizing plates 21 and 22 has a transmission axis in the vicinity of the back side substrate 2 of the liquid crystal cell 1. The polarizing plate 22 on the front side has a transmission axis that is substantially parallel to the alignment direction of the liquid crystal molecules in the vicinity of the front substrate 3 of the liquid crystal cell 1. Alternatively, they are arranged with a substantially orthogonal difference.
[0023]
The light source 30 is, for example, a surface light source generally called a side lamp type, and a light guide plate 31 made of an acrylic resin or the like disposed to face the back surface of the liquid crystal cell 1, and one end surface of the light guide plate 31. Or it consists of the light source lamp (not shown) which consists of a straight tubular fluorescent lamp etc. which were arrange | positioned facing both end surfaces.
[0024]
The side lamp type light source emits light from the light source lamp by the light guide plate 31 as shown by a broken line in FIG. The light is repeatedly reflected on the front and back surfaces of the light guide plate 31 and guided to the entire area of the light guide plate, and light incident on the surface of the light guide plate at a steeper angle than the total reflection angle is emitted to the surface side of the light guide plate 31. To do.
[0025]
On the other hand, the red, green, and blue light coloring films 40R, 40G, and 40B are each composed of a complex of a color filter of a predetermined color and a fluorescent material of the same color. A fluorescent pigment made of transparent resin particles dyed with a fluorescent dye is used as the material, and this fluorescent pigment is mixed in a color filter in a dispersed state to form the light colored films 40R, 40G, and 40B of the respective colors.
[0026]
That is, the red light coloring film 40R is made of a red color filter mixed with a red fluorescent pigment, and the green light coloring film 40G is made of a green color filter mixed with a green fluorescent pigment. The light coloring film 40B is made of a blue color filter mixed with a blue fluorescent pigment.
[0027]
The light coloring films 40R, 40G, and 40B are alternately arranged on the surface of the light guide plate 31 of the light source 30. By adjusting the arrangement position of the light guide plate 31, the light coloring of each color is performed. The films 40R, 40G, and 40B are arranged so as to correspond to the respective pixels of the liquid crystal cell 1.
[0028]
In this liquid crystal display device, light from the light source 30 is first incident on the light coloring films 40R, 40G, and 40B to obtain colored light of red, green, and blue, and emitted from these light coloring films 40R, 40G, and 40B. Light of each color is incident on each pixel of the liquid crystal cell 1 and transmission of the light is controlled by the liquid crystal cell 1 and a pair of polarizing plates 21 and 22 disposed therebetween to display a color image. To do. Note that the transmission control by the liquid crystal cell 1 and the pair of polarizing plates 21 and 22 is the same as that of a general TN liquid crystal display device, and thus the description thereof is omitted.
[0029]
In other words, the liquid crystal display device includes red, green, and blue light-colored films 40R, 40G, and 40B made of a composite of a color filter and a fluorescent substance of the same color (fluorescent pigment in this embodiment). Blue colored light is obtained. When light (white light) from the light source 30 is incident on these light colored films 40R, 40G, and 40B, excitation light having a wavelength range different from the fluorescent color of the fluorescent material. The light that is incident on the light-colored films 40R, 40G, and 40B of each color has a light intensity in the wavelength region of the fluorescent color that is specific to the fluorescent material. The light is emitted with increased intensity distribution.
[0030]
Examples of the red, green, and blue phosphors include coumarin102, coumarin480, coumarin481, and the like. The peak value of the absorption wavelength (excitation light wavelength) and the emission wavelength of these fluorescent substances are:
coumarin102; absorption wavelength peak 390nm, emission wavelength peak 468nm
coumarin480 : Absorption wavelength peak 390nm, emission wavelength peak 466nm
coumarin481; absorption wavelength peak 390 nm, emission wavelength peak 465 nm
Both are excited mainly by absorbing light in the ultraviolet region and generate blue fluorescence.
[0031]
Examples of green fluorescent materials include HPTS and coumarin153. The peak value of the absorption wavelength of these fluorescent substances and the peak value of the emission wavelength are
HPTS: Absorption wavelength peak 455nm, emission wavelength peak 510nm
coumarin153; absorption wavelength peak 423nm, emission wavelength peak 532nm
Both of them are excited mainly by absorbing light in the blue wavelength region, and generate green fluorescence.
[0032]
Furthermore, as a red fluorescent material, there is LDS720 or the like. This fluorescent substance has an absorption wavelength peak value of 529 nm and an emission wavelength peak value of 699 nm, which is mainly excited by absorbing light in the green wavelength range to generate red fluorescence.
[0033]
The color filters of the light colored films 40R, 40G, and 40B for each color transmit light in the wavelength region of the color and absorb light in other wavelength regions (excitation light), but the fluorescence emitted by the fluorescent material is The light having the same color as that of the color filter, and therefore the light incident on the color filter is light having an intensity distribution in which the light intensity in the wavelength region transmitting the color filter is increased. The intensity of the colored light emitted from the colored films 40R, 40G, and 40B is higher in each stage than in the case where the light is colored using only the color filter. In addition, since the colored light emitted from the light colored films 40R, 40G, and 40B is light in the wavelength region that has passed through the color filter, its color purity is good.
[0034]
Therefore, according to the above liquid crystal display device, it is possible to emit colored light with sufficient intensity to the surface side of the liquid crystal cell 1 and display a clear color image with high luminance and good color purity.
[0035]
[ First embodiment ]
FIG. 2 shows the present invention. First embodiment of It is sectional drawing of a part of liquid crystal display device which shows. In the liquid crystal display device of this embodiment, red, green, and blue light coloring films 41R, 41G, and 41B are respectively provided with red, green, and blue color filters 42R, 42G, and 42B, and these color filters 42R, 42G, and 42B. And a phosphor film 43R, 43G, 43B made of a fluorescent material of the same color as the above, and other configurations are as described above. First reference example Is the same as
[0036]
The phosphor films 43R, 43G, and 43B are obtained by mixing a fluorescent material of a predetermined color (for example, a fluorescent pigment) in a colorless transparent resin, and the photo-colored films 41R, 41G, and 41B are the phosphor films. 43R, 43G, and 43B are arranged toward the light source 30 side.
[0037]
According to this liquid crystal display device, light (white light) incident on the light colored films 41R, 41G, 41B of the respective colors from the light source 30 first enters the phosphor films 43R, 43G, 43B, and these phosphor films. 43R, 43G, and 43B are excited to generate fluorescence of a color unique to each fluorescent substance, and become colored light having an intensity distribution in which the light intensity in the wavelength region of the fluorescent color unique to the fluorescent substance is increased. The light passes through the color filters 42R, 42G, and 42B and becomes colored light with good color purity. First reference example In addition, it is possible to display a clear color image with higher luminance and better color purity by making colored light having higher intensity and better color purity incident on the liquid crystal cell 1.
[0038]
That is, the above First reference example In this case, since the light coloring films 40R, 40G, and 40B in which the fluorescent material is mixed in the color filter are used, the fluorescence in the vicinity of the incident surface (the surface facing the light source 30) of these light coloring films 40R, 40G, and 40B. The substance sufficiently absorbs light in the excitation wavelength region (excitation light) of the incident light and emits high-intensity fluorescence, but the excitation light of the fluorescent substance close to the emission surface is absorbed by the color filter. The excitation light incident on the fluorescent material close to the emission surface is weak, and therefore the intensity of the fluorescence emitted by the fluorescent material becomes weaker the closer to the emission surface.
[0039]
On the other hand, the light coloring films 41R, 41G, and 41B used in this example are color filters because the phosphor films 43R, 43G, and 43B are obtained by mixing a fluorescent substance in a colorless transparent resin. Therefore, light that has generated high-intensity fluorescence in the fluorescent material in the vicinity of the incident surface and also transmitted through the gap between the fluorescent materials in the vicinity of the incident surface. High intensity fluorescence can be generated by sufficiently irradiating excitation light of (white light).
[0040]
Also, above First reference example In the photo-coloring films 40R, 40G, and 40B used in the above, the fluorescence generated by the fluorescent material near the exit surface is emitted without passing through the color filter. However, the photo-coloring films 41R, 41G, and 41B used in this embodiment are used. According to the above, the fluorescence emitted from the phosphor films 43R, 43G, and 43B is always transmitted through the color filters 42R, 42G, and 42B, and light of unnecessary wavelengths is absorbed by the light-colored films 41R, 41G, and 41B of the respective colors. Therefore, it becomes colored light with good color purity.
[0041]
In addition, in the light coloring films 41R, 41G, and 41B of this embodiment, the light emitted from the phosphor films 43R, 43G, and 43B is fluorescence having the same color as the color of the color filters 42R, 42G, and 42B on the emission side. Therefore, even if the color filters 42R, 42G, and 42B are thin, colored light with sufficiently high color purity can be obtained. Therefore, the color filters 42R, 42G, and 42B need only be formed very thin. Good.
[0042]
[ Second reference example ]
Figure 3 Second reference example It is sectional drawing of a part of liquid crystal display device which shows. this Reference example The liquid crystal display device described above First reference example The red, green, and blue light-colored films used in the above are disposed between the liquid crystal cell and the light source, between the liquid crystal cell and the back-side polarizing plate disposed on the back side thereof, and other configurations are as follows. First reference example Is the same as
[0043]
this Reference example According to the liquid crystal display device, the light from the light source 30 first passes through the back-side polarizing plate 21 and becomes linearly polarized light, and the light is incident on the color coloring films 40R, 40G, and 40B of the respective colors. The red, green, and blue light emitted from the photo-colored films 40R, 40G, and 40B enter the pixels of the liquid crystal cell 1, respectively.
[0044]
Also in this liquid crystal display device, the red, green, and blue light coloring films 40R, 40G, and 40B respectively corresponding to the respective pixels of the liquid crystal cell 1 are provided with a color filter of a predetermined color and a fluorescent material of the same color as the color filter. In this composite, the light coloring films 40R, 40G, and 40B are used to obtain colored light with high intensity and good color purity. Can be emitted to display a clear color image with high brightness and good color purity.
[0045]
In addition, this Second reference example Then, since the light transmitted through the back-side polarizing plate 21 is made incident on the photo-colored films 40R, 40G, and 40B, the intensity of the light that enters the photo-colored films 40R, 40G, and 40B is the intensity of the light from the light source 30. Is almost half of the First reference example Compared with the first embodiment, the intensity of the colored light emitted from the photo-colored films 40R, 40G, and 40B is somewhat weakened. However, the intensity of the colored light is still higher than that when the light is colored only by the color filter. Therefore, a clear color image with high luminance and good color purity can be displayed as compared with a conventional liquid crystal display device.
[0046]
[ Third reference example ]
FIG. 4 shows the present invention. Third reference example It is sectional drawing of a part of liquid crystal display device which shows. this Reference example The liquid crystal display device described above First reference example The red, green, and blue light-colored films used in the above are provided on the inner surface of the front substrate of the pair of substrates of the liquid crystal cell. First reference example Is the same as
[0047]
this Reference example According to the liquid crystal display device, the light from the light source 30 firstly passes through the back-side polarizing plate 21 and becomes linearly polarized light, and the light passes through the back-side substrate 2 and the liquid crystal layer of the liquid crystal cell 1 and each color. The light enters the light coloring films 40R, 40G, and 40B, and is emitted by being colored red, green, and blue by the light coloring films 40R, 40G, and 40B.
[0048]
Also in this liquid crystal display device, the red, green, and blue light coloring films 40R, 40G, and 40B respectively corresponding to the respective pixels of the liquid crystal cell 1 are provided with a color filter of a predetermined color and a fluorescent material of the same color as the color filter. In this composite, the light coloring films 40R, 40G, and 40B are used to obtain colored light with high intensity and good color purity. Can be emitted to display a clear color image with high brightness and good color purity.
[0049]
In addition, this In reference example The light from the light source 30 passes through the back-side polarizing plate 21 and becomes almost half intensity. Further, in the process of passing through the back-side substrate 2 and the liquid crystal layer of the liquid crystal cell 1, a certain amount of light is absorbed, and the light-colored film of each color Since the light is incident on 40R, 40G, and 40B, the intensity of the colored light that exits these light-colored films 40R, 40G, and 40B is described above. Second reference example However, since the intensity of the colored light is higher in each stage compared to the case where the light is colored only with a color filter, it has higher luminance and better color purity than a conventional liquid crystal display device. A clear color image can be displayed.
[0050]
However, the above Reference example Then, the photo-coloring films 40R, 40G, and 40B are provided on the inner surface of the front-side substrate 3 of the liquid crystal cell 1. However, the photo-coloring films 40R, 40G, and 40B may be provided on the inner surface of the back-side substrate 2 of the liquid-crystal cell 1. If it does in this way, compared with the said Example, the intensity | strength of the light which injects into light coloring film | membrane 40R, 40G, 40B will be increased only by the light quantity absorption in the process which permeate | transmits a liquid-crystal layer, and light coloring film | membrane 40R. , 40G, 40B, the intensity of the colored light can be improved.
[0051]
[ Fourth reference example ]
FIG. Fourth reference example It is sectional drawing of a part of liquid crystal display device which shows. this Reference example The liquid crystal display device described above First reference example The red, green, and blue light-colored films used in the above are arranged on the surface of the liquid crystal cell, that is, between the liquid crystal cell and the front-side polarizing plate arranged on the surface side. First reference example Is the same as
[0052]
this Reference example According to the liquid crystal display device, the light from the light source 30 firstly passes through the back-side polarizing plate 21 to become linearly polarized light, and the light passes through the liquid crystal cell 1 to transmit the light colored films 40R, 40G, The light is incident on 40B, and is colored by red, green, and blue by these photo-coloring films 40R, 40G, and 40B and is emitted.
[0053]
Also in this liquid crystal display device, the red, green, and blue light coloring films 40R, 40G, and 40B respectively corresponding to the respective pixels of the liquid crystal cell 1 are provided with a color filter of a predetermined color and a fluorescent material of the same color as the color filter. In this composite, the light coloring films 40R, 40G, and 40B are used to obtain colored light with high intensity and good color purity. Can be emitted to display a clear color image with high brightness and good color purity.
[0054]
In addition, this Reference example Then, the light from the light source 30 passes through the back-side polarizing plate 21 and becomes almost half intensity. Further, in the process of passing through the back-side substrate 2, the liquid crystal layer and the front-side substrate 3 of the liquid crystal cell 1, a certain amount of light is absorbed to each color. The intensity of the colored light emitted from the light coloring films 40R, 40G, and 40B is as described above. Third reference example However, since the intensity of the colored light is higher in each stage compared to the case where the light is colored only with a color filter, it has higher luminance and better color purity than a conventional liquid crystal display device. A clear color image can be displayed.
[0055]
[Other Examples]
As mentioned above First embodiment Liquid crystal display devices , That The display surface is the display surface, that is, the exit surface of the front-side polarizing plate 22. The present invention is a so-called projection-type liquid crystal display provided with projection means for projecting the emitted light from the liquid crystal cell 1 in an enlarged manner. It can also be applied to devices.
[0056]
That is, in FIG. 6, the present invention is applied to a projection type liquid crystal display device. Second embodiment FIG. 1 is a schematic configuration diagram of a liquid crystal display device showing the liquid crystal display device according to the embodiment described above. First embodiment A projection lens system 51 is provided in front of a liquid crystal display unit A having the same configuration as that of the liquid crystal display device A and projects the light emitted from the liquid crystal display unit A onto a projection surface such as a screen 50.
[0057]
In the liquid crystal display device of this embodiment, the light emitted from the liquid crystal display unit A is enlarged and projected by the projection lens system 51. Therefore, the intensity of the light emitted from the liquid crystal display unit A increases as the luminous flux increases. Although the liquid crystal display unit A is First embodiment Therefore, since the intensity of the colored light emitted to the surface side of the liquid crystal cell 1 of the liquid crystal display portion A is sufficiently high, even if the light intensity is attenuated due to the expansion of the luminous flux A clear enlarged color image with high luminance and good color purity can be displayed on the projection surface such as the screen 50.
[0058]
When the present invention is applied to the projection type liquid crystal display device ,liquid Crystal display part A First embodiment As in the case of the liquid crystal display device, if the light coloring films 40R, 40G, 40B or 41R, 41G, 41B are arranged between the light source 30 and the back side polarizing plate 21 arranged on the back side of the liquid crystal cell 1, Since the intensity of the colored light emitted to the surface side of the liquid crystal cell 1 can be further increased, even if there is a decrease in brightness due to the projection of the emitted light from the liquid crystal cell 1 by the projection means, the screen Thus, the brightness and sharpness of the enlarged image projected and displayed on the projection surface can be sufficiently increased.
[0059]
Also, above First embodiment Liquid crystal display device and Second embodiment The liquid crystal display portion A of the liquid crystal display device is of an active matrix type using a TFT 5 as a switching element in the liquid crystal cell 1, but the liquid crystal cell 1 is an active having a MIM type two-terminal element as a switching element. A matrix system or a simple matrix system may be used.
[0060]
Furthermore, the liquid crystal cell 1 is not limited to the TN type, but may be a guest / host type using a liquid crystal to which a dichroic dye is added. There is no need to dispose the polarizing plates 21 and 22.
[0061]
Further, the light source 30 disposed behind the liquid crystal cell 1 is not limited to the side lamp type used in each of the above embodiments. For example, a plurality of straight tube fluorescent lamps are parallel to each other at an appropriate interval. It may be a so-called direct light source arranged in
[0062]
【The invention's effect】
The liquid crystal display device of the present invention is provided with a liquid crystal cell and behind the liquid crystal cell. A surface light source comprising a light guide plate and at least one light source lamp disposed on an end surface thereof, Of the liquid crystal cell Arranged between the outer surface and the surface light source, A plurality of colored light-coloring films corresponding to each pixel of the liquid crystal cell, each of the colored light-coloring films mixed with a color filter of a predetermined color and a fluorescent material of the same color And the phosphor film is arranged with the phosphor film facing the light source, so that a clear color image with high luminance and good color purity can be displayed.
[0064]
Further, in the liquid crystal display device of the present invention, the light coloring film of each color is disposed between the light source and the liquid crystal cell. By doing Since the light from the light source first enters the light coloring film, the light from the light source is most efficiently received by the fluorescent material of the light coloring film to generate stronger colored fluorescence, and the colored light emitted from the light coloring film is emitted. The intensity can be further increased, and the intensity of the colored light emitted to the surface side of the liquid crystal cell can be further increased.
[0065]
Furthermore, the present invention can also be applied to a so-called projection type liquid crystal display device provided with a projection means for enlarging and projecting light emitted from the liquid crystal cell, and in that case, in particular, photo-coloring. If the film is disposed between the light source and the liquid crystal cell as described above, the intensity of the colored light emitted to the surface side of the liquid crystal cell can be further increased. Even if the brightness is reduced due to enlargement and projection, the brightness and sharpness of the enlarged image projected and displayed on a projection surface such as a screen can be sufficiently increased.
[Brief description of the drawings]
[Figure 1] First reference example Sectional drawing of the part of the liquid crystal display device which shows this.
FIG. 2 of the present invention First implementation FIG. 6 is a cross-sectional view of a part of a liquid crystal display device showing an example.
[Fig. 3] Second reference example Sectional drawing of the part of the liquid crystal display device which shows this.
[Fig. 4] Third reference example Sectional drawing of the part of the liquid crystal display device which shows this.
[Figure 5] Fourth reference example Sectional drawing of the part of the liquid crystal display device which shows this.
FIG. 6 is an application of the present invention to a projection-type liquid crystal display device. Second embodiment The schematic block diagram of the liquid crystal display device which shows.
[Explanation of symbols]
1 ... Liquid crystal cell
21, 22 ... Polarizing plate
30 ... Light source
40R ... Photo-colored film in which a fluorescent material is mixed in a color filter (red)
40G ... Photo-colored film in which a fluorescent material is mixed in a color filter (green)
40B ... Photo-colored film in which a fluorescent material is mixed in a color filter (blue)
41R: Photo-colored film (red) in which color filters and phosphor films are laminated
41G ... Photo-colored film (green) in which color filters and phosphor films are laminated
41B: Photo-colored film (blue) in which a color filter and a phosphor film are laminated
42R, 42G, 42B ... color filters
43R, 43G, 43B ... phosphor film

Claims (2)

カラー画像を表示する液晶表示装置であって、
液晶セルと、この液晶セルの背後に配置され、導光板とその端面に配置された少なくとも1つの光源ランプからなる面光源と、前記液晶セルの外側の面と前記面光源との間に配置され、前記液晶セルの各画素にそれぞれ対応する複数の色の光着色膜とを備え、前記各色の光着色膜はそれぞれ、所定の色のカラーフィルタの層と、それと同系色の蛍光物質を混入した蛍光体膜とを積層した二層膜構造からなり、前記二層膜構造の光着色膜のうち、前記蛍光体膜を前記光源側に向けて配置したことを特徴とする液晶表示装置。
A liquid crystal display device for displaying a color image,
A liquid crystal cell, a surface light source that is disposed behind the liquid crystal cell and includes a light guide plate and at least one light source lamp disposed on an end surface thereof, and is disposed between an outer surface of the liquid crystal cell and the surface light source. , and a plurality of colors of light colored film corresponding to each pixel of the liquid crystal cell, each of the light colored layer of each color, a layer of color filter of a predetermined color, therewith were mixed fluorescent substance similar colors 2. A liquid crystal display device comprising a two-layer film structure in which a phosphor film is laminated, wherein the phosphor film is disposed toward the surface light source side among the two-layer photo-colored films.
前記液晶セルからの出射光を拡大して投影する投影手段を備えたことを特徴とする請求項に記載の液晶表示装置。2. The liquid crystal display device according to claim 1 , further comprising projection means for enlarging and projecting light emitted from the liquid crystal cell.
JP16993796A 1996-06-28 1996-06-28 Liquid crystal display Expired - Lifetime JP3820633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16993796A JP3820633B2 (en) 1996-06-28 1996-06-28 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16993796A JP3820633B2 (en) 1996-06-28 1996-06-28 Liquid crystal display

Publications (2)

Publication Number Publication Date
JPH1020109A JPH1020109A (en) 1998-01-23
JP3820633B2 true JP3820633B2 (en) 2006-09-13

Family

ID=15895683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16993796A Expired - Lifetime JP3820633B2 (en) 1996-06-28 1996-06-28 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP3820633B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
WO2020025651A1 (en) 2018-08-03 2020-02-06 Merck Patent Gmbh A composition
WO2021048244A1 (en) 2019-09-13 2021-03-18 Merck Patent Gmbh Semiconducting nanoparticle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002040408A (en) * 2000-07-28 2002-02-06 Hitachi Ltd Liquid crystal display device
CN100437288C (en) * 2002-12-26 2008-11-26 鸿富锦精密工业(深圳)有限公司 Area light sources
US8947619B2 (en) * 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
JP2009251129A (en) * 2008-04-02 2009-10-29 Optoelectronic Industry & Technology Development Association Color filter for liquid crystal display device and liquid crystal display device
JP5768614B2 (en) * 2011-09-20 2015-08-26 大日本印刷株式会社 Liquid crystal display
CN107209419B (en) * 2015-02-04 2022-08-12 默克专利股份有限公司 Electro-optical switching element and display device
WO2016154214A1 (en) 2015-03-23 2016-09-29 Intematix Corporation Photoluminescence color display

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017054898A1 (en) 2015-09-29 2017-04-06 Merck Patent Gmbh A photosensitive composition and color converting film
WO2018024592A1 (en) 2016-08-01 2018-02-08 Merck Patent Gmbh A photosensitive composition, color converting medium, optical devices and method for preparing the thereof
WO2020025651A1 (en) 2018-08-03 2020-02-06 Merck Patent Gmbh A composition
WO2021048244A1 (en) 2019-09-13 2021-03-18 Merck Patent Gmbh Semiconducting nanoparticle

Also Published As

Publication number Publication date
JPH1020109A (en) 1998-01-23

Similar Documents

Publication Publication Date Title
TW556026B (en) Blue backlight and phosphor layer for a color LCD
US5029986A (en) Electro-optical color display device and projection apparatus
KR19980064522A (en) Color liquid crystal display element
JP3820633B2 (en) Liquid crystal display
JP2004094039A (en) Liquid crystal display
JPH09244018A (en) Liquid crystal display device
JP3416056B2 (en) Liquid crystal display
JP2002107719A (en) Liquid crystal device and electronic appliance
WO2019019570A1 (en) Quantum dot liquid crystal panel and liquid crystal display device
JP4494110B2 (en) Color display device
JP2003255320A (en) Liquid crystal display
CN105785494A (en) Polarizer and display panel
KR20130026070A (en) Liquid crystal display device
JP2010122435A (en) Liquid crystal display device, backlight unit, and optical filter
US20020008841A1 (en) Flat display device having a liquid crystal panel
JP2004287324A (en) Semitransmissive liquid crystal display device
JP2000075278A (en) Liquid crystal display device
JP3337044B2 (en) LCD color display
KR100293103B1 (en) LCD Display
KR0163920B1 (en) Liquid crystal display device and its manufacturing method of combined reflection and projection for using color reflection film
JP3672466B2 (en) Liquid crystal display
JP2003021831A (en) Liquid crystal display device using fluorescent material
JPS6156325A (en) Liquid crystal color image display device
JP3298263B2 (en) Active matrix liquid crystal display
JP3298275B2 (en) Active matrix liquid crystal display

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

EXPY Cancellation because of completion of term