JP3819897B2 - Electric fence impact voltage generator power supply - Google Patents

Electric fence impact voltage generator power supply Download PDF

Info

Publication number
JP3819897B2
JP3819897B2 JP2003388188A JP2003388188A JP3819897B2 JP 3819897 B2 JP3819897 B2 JP 3819897B2 JP 2003388188 A JP2003388188 A JP 2003388188A JP 2003388188 A JP2003388188 A JP 2003388188A JP 3819897 B2 JP3819897 B2 JP 3819897B2
Authority
JP
Japan
Prior art keywords
voltage
impact
impact voltage
terminal
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003388188A
Other languages
Japanese (ja)
Other versions
JP2005151748A (en
Inventor
弘 末松
淳一 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suematsu Electronics Co Ltd
Original Assignee
Suematsu Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suematsu Electronics Co Ltd filed Critical Suematsu Electronics Co Ltd
Priority to JP2003388188A priority Critical patent/JP3819897B2/en
Publication of JP2005151748A publication Critical patent/JP2005151748A/en
Application granted granted Critical
Publication of JP3819897B2 publication Critical patent/JP3819897B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

本発明は、牛等の畜産動物が牧場以外へ脱出するのを防止するため、あるいは田畑に猪、鹿等の害獣が侵入するのを防止するために、牧場あるいは田畑の周囲に設置される電気柵の衝撃電圧発生装置の電源装置に関するものである。   The present invention is installed around a ranch or a field in order to prevent livestock animals such as cattle from escaping outside the ranch, or to prevent infestation of wild animals such as foxes and deer into the field. The present invention relates to a power supply device for an impact voltage generator for an electric fence.

従来、例えば中山間地域の農村地帯では、田畑を荒らす猪、鹿等の害獣を電気ショックで撃退するために、田畑の周囲に裸電線を張り巡らしこの裸電線に衝撃電圧を印加するようにした電気柵が多く使用されている(例えば、特許文献1参照)。   Conventionally, in rural areas in mountainous areas, for example, in order to fight off wild animals such as moths, deer, etc. by electric shock, a bare wire is stretched around the field and an impact voltage is applied to the bare wire. Many electric fences are used (for example, see Patent Document 1).

この電気柵は図7に示すように、田畑の周囲に打設された電気柵用支柱2に取り付けられた碍子1a、碍子1bに裸電線3a、裸電線3bを係止して、裸電線3a、裸電線3bを田畑の周囲に張設し、その裸電線3a、裸電線3bを約50mごとに裸電線からなる上下結線4で結線したものである。地表より1段目の裸電線3bは地表より約20cm程度、2段目の裸電線3aは裸電線3bの上方約20cm程度の比較的低い位置に張設されている。そして、この張設された裸電線3a、裸電線3bに衝撃電圧発生装置5より発生された衝撃電圧が印加されている。   As shown in FIG. 7, this electric fence is obtained by locking the bare wire 3a and the bare wire 3b to the insulator 1a and the insulator 1b attached to the electric fence post 2 placed around the field, and the bare wire 3a. The bare electric wire 3b is stretched around the field, and the bare electric wire 3a and the bare electric wire 3b are connected by the upper and lower connections 4 made of the bare electric wire every about 50 m. The bare electric wire 3b on the first stage from the ground surface is stretched at a relatively low position, about 20 cm above the ground surface, and about 20 cm above the bare electric wire 3b. The impact voltage generated by the impact voltage generator 5 is applied to the stretched bare wire 3a and bare wire 3b.

田畑に侵入しようとして、この張設された裸電線3aもしくは裸電線3bに接触した猪等の害獣には図7中の矢印のように衝撃電圧発生装置5の出力端子6、出力線7、裸電線3a、上下結線4、裸電線3b、猪8、地中9、アース棒10、アース線11、アース端子12の順路で衝撃電流が流れ、猪8は電気ショックにより電撃を受け、田畑へ侵入する意欲を失い、侵入をあきらめる。   As shown in the arrows in FIG. 7, an output terminal 6 of the impact voltage generator 5, an output line 7, and a harmful animal such as a moth that is in contact with the stretched bare wire 3 a or the bare wire 3 b in an attempt to enter the field. An impact current flows in the route of the bare wire 3a, the vertical connection 4, the bare wire 3b, the saddle 8, the underground 9, the ground rod 10, the ground wire 11, and the ground terminal 12, and the saddle 8 is shocked by an electric shock and goes to Tabata. Losing the will to invade and giving up.

この電気柵1における衝撃電圧発生装置5の概略の構成を図8に示す。   A schematic configuration of the impact voltage generator 5 in the electric fence 1 is shown in FIG.

衝撃電圧発生装置5は、電源部5aと、その端子30,31に接続された衝撃電圧発生部5bとから構成されている。電源部5aは、図示のものは直流電源たるDC12Vの電池50のみで構成され 衝撃電圧発生部5bは、パルストランス、半導体等で構成されている。   The impact voltage generator 5 includes a power supply unit 5a and an impact voltage generator 5b connected to its terminals 30 and 31. The power supply unit 5a is composed of only a DC 12V battery 50 as a direct current power source as shown in the figure, and the impact voltage generating unit 5b is composed of a pulse transformer, a semiconductor, and the like.

衝撃電圧発生部5bは、電池50のDC12Vを作動電源として、出力端子6に図9のようなパルス状の衝撃電圧20を発生させる。この衝撃電圧20の無負荷時の尖頭電圧値は8000V程度であり、その幅21は80マイクロ秒程度、間隔22は1秒程度であり、この衝撃電圧20が、出力端子6から出力線7を経由して電気柵の裸電線3a 3bへ印加される。なお、アース端子12はアース線11に接続され、さらにアース棒10により地中9にアースされている。   The impact voltage generator 5b generates a pulsed impact voltage 20 as shown in FIG. 9 at the output terminal 6 using DC 12V of the battery 50 as an operating power source. The peak voltage value of the shock voltage 20 at no load is about 8000 V, the width 21 is about 80 microseconds, and the interval 22 is about 1 second. The shock voltage 20 is output from the output terminal 6 to the output line 7. And applied to the bare wires 3a and 3b of the electric fence. The ground terminal 12 is connected to the ground wire 11 and further grounded to the ground 9 by the ground bar 10.

図8では、衝撃電圧発生部5bを電池50のDC12Vで作動させるようにしたが、これをAC100Vで作動させるには、衝撃電圧発生装置5の電源部5aを図10に示すような構成とする。すなわち、電源部5aの電源トランスTの1次側端子32,33にAC100Vを加え、2次巻線端子36,37に低圧の交流電圧を発生させる。そして、この低圧の交流電圧をダイオードD及びコンデンサCからなる整流回路で整流し、端子30,31間にDC12Vを発生させる。   In FIG. 8, the impact voltage generator 5b is operated by DC 12V of the battery 50. However, in order to operate it by AC 100V, the power source 5a of the impact voltage generator 5 is configured as shown in FIG. . That is, AC 100 V is applied to the primary side terminals 32 and 33 of the power transformer T of the power supply unit 5 a to generate a low-voltage AC voltage at the secondary winding terminals 36 and 37. Then, this low-voltage AC voltage is rectified by a rectifier circuit including a diode D and a capacitor C, and DC 12 V is generated between the terminals 30 and 31.

この端子30,31間のDC12Vを図11に示すように衝撃電圧発生部5bへ供給し出力端子6及びアース端子12間にパルス状の衝撃電圧を発生させ、これを電気柵1の裸電線3a,3bに印加する。このようにAC100Vを低圧の交流に変換し、そして整流し、DC12Vを発生させ、このDC12Vで、衝撃電圧発生部5bを作動させる。   DC12V between the terminals 30 and 31 is supplied to the impact voltage generator 5b as shown in FIG. 11 to generate a pulsed impact voltage between the output terminal 6 and the ground terminal 12, and this is applied to the bare wire 3a of the electric fence 1. , 3b. In this way, AC100V is converted into low-voltage alternating current and rectified to generate DC12V, and the impact voltage generator 5b is operated with this DC12V.

この場合、図11に示すように正常に裸電線3a,3bが張設され、アース端子12が確実にアースされている状態が正常な使用である。   In this case, as shown in FIG. 11, the state where the bare wires 3a and 3b are normally stretched and the ground terminal 12 is securely grounded is a normal use.

今仮に、図12に示すように裸電線3a,3bが断線等し、裸電線3a又は3bが地中9に接触した場合、出力端子6の衝撃電圧は、図12の矢印のように、出力端子6→出力線7→裸電線3a,3b→地中9→アース棒10→アース線11→アース端子12の方向へ流れる。要するに、出力端子6の衝撃電圧は、アース端子12に戻ってくる。このとき、電源部5aや衝撃電圧発生部5bへ障害を与えることなく故障はしない。   If the bare wires 3a and 3b are disconnected as shown in FIG. 12 and the bare wires 3a or 3b are in contact with the ground 9, the shock voltage at the output terminal 6 is output as shown by the arrows in FIG. It flows in the direction of terminal 6 → output line 7 → bare wires 3a and 3b → underground 9 → ground bar 10 → ground wire 11 → ground terminal 12. In short, the impact voltage at the output terminal 6 returns to the ground terminal 12. At this time, the power supply unit 5a and the impact voltage generation unit 5b are not damaged without causing a failure.

しかし、何らかの原因で図13に示すように裸電線3a,3bが図12と同様に断線等し、地中9に接触してアースされ、そして、且つアース線11が断線して、アース端子12がアースされてなかったとする。その場合、日本国内では各電力会社によりAC100Vの入力端子32又は33は、その何れかが地中9にアースされているので、出力端子6に発生した衝撃電圧は、図13の場合、矢印のように出力端子6→出力線7→裸電線3a,3b→地中9→電力会社のアース線38→電源トランスTの1次側端子33→電源トランスTの1次巻線端子35の方向へ加わる。そして、電源トランスTの2次巻線端子37とマイナス側の端子31を通ってアース端子12へ戻ろうとする。   However, for some reason, as shown in FIG. 13, the bare wires 3a, 3b are disconnected as in FIG. 12, and are grounded by contact with the ground 9, and the ground wire 11 is disconnected and the ground terminal 12 is disconnected. Is not grounded. In that case, since either one of the input terminals 32 or 33 of AC 100V is grounded in the ground 9 by each electric power company in Japan, the impact voltage generated at the output terminal 6 is indicated by the arrow in FIG. In the direction of the output terminal 6 → the output line 7 → the bare wires 3a and 3b → the underground 9 → the ground wire 38 of the power company → the primary terminal 33 of the power transformer T → the primary winding terminal 35 of the power transformer T Join. Then, it tries to return to the ground terminal 12 through the secondary winding terminal 37 and the negative terminal 31 of the power transformer T.

このように衝撃電圧は電源トランスTの1次巻線側へ回り込み、この電源トランスTの1次巻線端子35と2次巻線端子37との間に衝撃電圧が印加されることになる。この衝撃電圧は 先に図9で説明したように尖頭電圧が約8000Vであり これが約1秒間に1回の割合で繰り返し印加されることになる。すなわち、電源トランスTの1次巻線と2次巻線間に約1秒間に1回の割合で繰り返す尖頭電圧8000Vの衝撃電圧が加わることになる。   Thus, the impact voltage wraps around the primary winding side of the power transformer T, and the impact voltage is applied between the primary winding terminal 35 and the secondary winding terminal 37 of the power transformer T. As described earlier with reference to FIG. 9, the impact voltage has a peak voltage of about 8000 V, and is repeatedly applied at a rate of about once per second. That is, an impact voltage having a peak voltage of 8000 V that is repeated approximately once per second is applied between the primary winding and the secondary winding of the power transformer T.

これに対して、電源トランスTは、通常AC100Vを減圧し直流電圧を取り出すだけのものであるから、その1次巻線と2次巻線間の絶縁耐圧(耐電圧)は、通常1000〜1500V程度しかない。1秒間に1回の割合で尖頭電圧8000Vの衝撃電圧が印加され続けると、例えば1週間では何十万回と印加され続けることになる。そうすると、いつかは電源トランスTに絶縁破壊が発生し、1次巻線端子35と2次巻線端子37は短絡状態となる。すなわち、電源トランスTの1次巻線と2次巻線が短絡状態となり、この部分で発熱し故障となる。そして、AC100Vの電圧が電源トランスTの2次巻線端子37及び直流電圧のマイナス側の端子31を通してアース端子12に露出されることになり、非常に危険な状態が発生する可能性があった。   On the other hand, since the power transformer T is usually used for reducing the AC voltage of 100V and extracting the DC voltage, the withstand voltage (withstand voltage) between the primary winding and the secondary winding is usually 1000 to 1500V. There is only a degree. If an impact voltage having a peak voltage of 8000 V is continuously applied at a rate of once per second, for example, it will be applied hundreds of thousands of times in one week. Then, one day, the dielectric breakdown occurs in the power transformer T, and the primary winding terminal 35 and the secondary winding terminal 37 are short-circuited. That is, the primary winding and the secondary winding of the power transformer T are short-circuited, and heat is generated at this portion, resulting in a failure. Then, the AC 100 V voltage is exposed to the ground terminal 12 through the secondary winding terminal 37 of the power transformer T and the negative terminal 31 of the DC voltage, which may cause a very dangerous state. .

これに対して、特許文献2には、電気柵における漏電警報装置が開示されているが、上述のような電源トランスの絶縁破壊を防止する根本的な解決策とはなっていない。
特開2002−272355号公報 実公平2−1840号公報
On the other hand, Patent Document 2 discloses a leakage alarm device for an electric fence, but it is not a fundamental solution for preventing insulation breakdown of the power transformer as described above.
JP 2002-272355 A Japanese Utility Model Publication No.2-1840

本発明が解決しようとする課題は、電気柵の衝撃電圧発生装置を作動させるための交流を電源とする電源装置であって、衝撃電圧発生装置の出力端子に接続されている電気柵の裸電線が断線しその裸電線が地面に接触しアースされ、そして且つ衝撃電圧発生装置のアース端子に接続されているアース線が断線しアース端子がアースから浮いた状態になったとしても、電源装置内の電源トランスに絶縁破壊が発生することを防止して衝撃電圧発生装置の故障発生を防止し、さらに、衝撃電圧発生装置のアース端子に交流電圧が露出することを防止できる電気柵の衝撃電圧発生装置の電源装置を提供することにある。   The problem to be solved by the present invention is a power supply device using an alternating current as a power source for operating an impact voltage generator of an electric fence, and the bare wire of the electric fence connected to the output terminal of the impact voltage generator Is disconnected, the bare wire comes into contact with the ground and is grounded, and the ground wire connected to the ground terminal of the impact voltage generator is disconnected and the ground terminal floats from the ground. Electric fence impact voltage generation that prevents the breakdown of the shock voltage generator by preventing dielectric breakdown from occurring in the power transformer and prevents the AC voltage from being exposed to the ground terminal of the shock voltage generator The object is to provide a power supply for the apparatus.

本発明は、電気柵の裸電線に衝撃電圧を印加する衝撃電圧発生装置を作動させるために交流電源の交流電圧を減圧、整流して直流電圧を発生させる電気柵の衝撃電圧発生装置の電源装置であって、交流電源の交流電圧を減圧する電源トランスを備えるとともに、この電源トランスの2次巻線側に整流回路を備え、電源トランスの1次巻線と2次巻線との間に衝撃電圧吸収素子を接続したことを特徴とする。
衝撃電圧吸収素子は、電源トランスの1次巻線と2次巻線のマイナス側との間に接続することが好ましく、さらに好ましくは、電源トランスの1次巻線の両端(巻始め端と巻き終わり端)と2次巻線のマイナス側との間のそれぞれに接続する。
The present invention relates to a power supply device for an impact voltage generator for an electric fence that generates a DC voltage by reducing and rectifying the AC voltage of an AC power supply in order to operate an impact voltage generator for applying an impact voltage to a bare wire of an electric fence. A power transformer for reducing the AC voltage of the AC power supply is provided, and a rectifier circuit is provided on the secondary winding side of the power transformer, and an impact is applied between the primary winding and the secondary winding of the power transformer. A voltage absorption element is connected.
The shock voltage absorbing element is preferably connected between the primary winding of the power transformer and the negative side of the secondary winding, and more preferably, both ends (winding start end and winding) of the primary winding of the power transformer. It connects to each between the end end) and the negative side of the secondary winding.

衝撃電圧吸収素子としては、一般的にサージアブソーバと称される半導体素子を使用することができる。このサージアブソーバは、半導体各メーカーから市販されており、定められた一定電圧以上の電圧が印加されると 定められた一定電圧値に保つようになっている。この一定電圧をバリスタ電圧と称するが、本発明では、電源トランスの1次巻線、2次巻線間の耐電圧値よりも低いバリスタ電圧となるサージアブソーバを使用する。   As the impact voltage absorbing element, a semiconductor element generally called a surge absorber can be used. This surge absorber is commercially available from semiconductor manufacturers, and is kept at a fixed voltage value when a voltage higher than a fixed voltage is applied. This constant voltage is referred to as a varistor voltage. In the present invention, a surge absorber having a varistor voltage lower than the withstand voltage value between the primary winding and the secondary winding of the power transformer is used.

本発明によれば、電源トランスの1次巻線、2次巻線間に衝撃電圧吸収素子を接続したことにより、電源トランスの発熱、絶縁破壊を防止でき、電気柵の衝撃電圧発生装置の故障発生を防止できる。また、電気柵の衝撃電圧発生装置のアース端子に減圧前の交流電圧が露出することを防止でき、きわめて安全に電気柵を使用することができる。   According to the present invention, the impact voltage absorbing element is connected between the primary winding and the secondary winding of the power transformer, so that the power transformer can be prevented from being heated and broken down, and the electric fence shock voltage generator can be damaged. Occurrence can be prevented. Moreover, it is possible to prevent the AC voltage before decompression from being exposed to the ground terminal of the impact voltage generator of the electric fence, and the electric fence can be used extremely safely.

以下、図面に示す実施例に基づき本発明の実施の形態を説明する。   Embodiments of the present invention will be described below based on examples shown in the drawings.

図1は、本発明の第1実施例を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a first embodiment of the present invention.

図1において、本発明の電源装置100は、衝撃電圧発生部5bとともに衝撃電圧発生装置5を構成する。   In FIG. 1, a power supply device 100 of the present invention constitutes an impact voltage generator 5 together with an impact voltage generator 5b.

図1に示す本発明の電源装置100は電源トランスTを備え、この電源トランスTは、1次側端子32,33から入力されるAC100Vを減圧して、2次側でAC8.6Vの交流電圧を発生するものである。そして、このAC8.6Vの交流電圧をダイオードD及びコンデンサCからなる整流回路で整流し、端子30,31間に直流電圧を発生させる。AC8.6Vは実効値であるので、この発生する直流電圧の電圧値は、8.6×1.41≒12.1Vとなる。すなわち端子30,31間に直流約12Vを発生し、端子30がプラス側、端子31がマイナス側(アース側)となる。   The power supply device 100 of the present invention shown in FIG. 1 includes a power transformer T. The power transformer T depressurizes AC 100V input from the primary side terminals 32 and 33, and AC voltage of AC 8.6V on the secondary side. Is generated. Then, the AC voltage of AC 8.6 V is rectified by a rectifier circuit including a diode D and a capacitor C, and a DC voltage is generated between the terminals 30 and 31. Since AC 8.6 V is an effective value, the voltage value of the generated DC voltage is 8.6 × 1.41≈12.1 V. That is, about 12V DC is generated between the terminals 30 and 31, the terminal 30 is on the plus side, and the terminal 31 is on the minus side (ground side).

この直流12Vを衝撃電圧発生部5bへ供給し、その出力端子6,12間に、先に図9で説明したような約1秒間に1回の割合で繰り返す尖頭電圧8000Vの衝撃電圧を発生させる。そして、この衝撃電圧は、出力端子6から出力線7を介して裸電線3a,3bに印加される。   This DC 12V is supplied to the impact voltage generator 5b, and an impact voltage with a peak voltage of 8000V, which is repeated at a rate of about once per second as described above with reference to FIG. 9, is generated between the output terminals 6 and 12. Let The impact voltage is applied from the output terminal 6 to the bare wires 3a and 3b via the output line 7.

図1(a)のように出力端子6から出力線7を介して裸電線3aに接続され、裸電線3a,3bが正常に張設され、また、アース端子12にアース線11が接続され、アース棒10を正しく地中9に打ち込み使用する。このとき、電気柵の衝撃電圧発生装置5は正常に作動する。   As shown in FIG. 1 (a), the output terminal 6 is connected to the bare wire 3a through the output line 7, the bare wires 3a and 3b are normally stretched, and the earth wire 11 is connected to the earth terminal 12. The grounding rod 10 is correctly driven into the underground 9 and used. At this time, the impact voltage generator 5 of the electric fence operates normally.

しかし、図1(b)のように何らかの原因で裸電線3a,3bが断線等して、裸電線3a,3bが地中9に接触してアースされ、そして、且つアース線11が断線し、アース端子12がアースされなかったとすると、出力端子6に発生した衝撃電圧は、図1(b)の矢印のように、出力端子6→出力線7→裸電線3a,3b→地中9→電力会社のアース線38→1次側端子33→電源トランスTの1次巻線端子35の方向へ加わる。そして、電源トランスTの2次巻線端子37とマイナス側の端子31を通ってアース端子12へ戻ろうとする。   However, as shown in FIG. 1B, the bare wires 3a and 3b are disconnected for some reason, the bare wires 3a and 3b are in contact with the ground 9 and grounded, and the ground wire 11 is disconnected. If the ground terminal 12 is not grounded, the impact voltage generated at the output terminal 6 is output terminal 6 → output line 7 → bare wires 3a and 3b → ground 9 → power as shown by the arrow in FIG. It is applied in the direction of the ground wire 38 of the company → the primary side terminal 33 → the primary winding terminal 35 of the power transformer T. Then, it tries to return to the ground terminal 12 through the secondary winding terminal 37 and the negative terminal 31 of the power transformer T.

このように衝撃電圧は電源トランスTの1次巻線側へ回り込み、この電源トランスTの1次巻線端子35と2次巻線のマイナス側の端子37との間に衝撃電圧が印加されることになる。この衝撃電圧は先に説明したように、尖頭電圧が8000Vであり、電源トランスTの耐電圧(実施例では1500V)を上回るので、本発明の実施がなされていなければ、いつかは電源トランスTの絶縁破壊が発生し故障となる。   Thus, the impact voltage wraps around the primary winding side of the power transformer T, and the impact voltage is applied between the primary winding terminal 35 of the power transformer T and the negative terminal 37 of the secondary winding. It will be. As described above, the impact voltage has a peak voltage of 8000 V and exceeds the withstand voltage of the power transformer T (1500 V in the embodiment). Therefore, if the present invention is not implemented, the power transformer T Insulation breakdown occurs, resulting in failure.

そこで、本発明では、図1に示すように、電源トランスTの1次巻線端子35近傍、すなわち1次巻線の巻始め端と、2次巻線のマイナス側の端子37との間、及び、1次巻線端子34近傍、すなわち1次巻線の巻終わり端と、2次巻線のマイナス側の端子37との間に、それぞれ衝撃電圧吸収素子としてサージアブソーバZ1,Z2を接続する。   Therefore, in the present invention, as shown in FIG. 1, in the vicinity of the primary winding terminal 35 of the power transformer T, that is, between the winding start end of the primary winding and the negative side terminal 37 of the secondary winding, In addition, surge absorbers Z1 and Z2 are connected as shock voltage absorbing elements in the vicinity of the primary winding terminal 34, that is, between the winding end of the primary winding and the negative terminal 37 of the secondary winding, respectively. .

サージアブソーバZ1,Z2のバリスタ電圧は電源トランスTの耐電圧値より低い値のものが選ばれ接続される。実施例の場合、電源トランスTの耐電圧値は約1500Vであるのでバリスタ電圧1000Vのものが接続される。図2はサージアブソーバZ1,Z2の形状を示し、(a)は平面図、(b)は側面図である。サージアブソーバZ1,Z2は、円柱状の本体部分ZHとリード線ZLからなり、本実施例では、本体部分ZHの直径が12mm、厚みが9mm程度のものを使用した。   The varistor voltages of the surge absorbers Z1 and Z2 are selected and connected to a value lower than the withstand voltage value of the power transformer T. In the case of the embodiment, since the withstand voltage value of the power transformer T is about 1500V, a varistor voltage of 1000V is connected. FIG. 2 shows the shapes of the surge absorbers Z1 and Z2, wherein (a) is a plan view and (b) is a side view. The surge absorbers Z1 and Z2 are composed of a cylindrical main body portion ZH and a lead wire ZL. In this embodiment, the main body portion ZH has a diameter of about 12 mm and a thickness of about 9 mm.

このような構成において、図1(b)において出力端子6に発生した衝撃電圧は、図1(b)の矢印のように、出力端子6→出力線7→裸電線3a,3b→地中9→電力会社のアース線38→1次側端子33→電源トランスTの1次巻線端子35(1次巻線の巻始め端)→サージアブソーバZ1→2次巻線端子37→直流電圧のマイナス側の端子31→アース端子12の方向へ加わる。   In such a configuration, the impact voltage generated at the output terminal 6 in FIG. 1B is, as indicated by the arrow in FIG. 1B, the output terminal 6 → the output line 7 → the bare wires 3a and 3b → the underground 9 → Electric power company ground wire 38 → Primary terminal 33 → Power transformer T primary winding terminal 35 (primary winding start end) → Surge absorber Z1 → Secondary winding terminal 37 → DC voltage minus The terminal 31 is added in the direction of the ground terminal 12.

その結果 この衝撃電圧はサージアブソーバZ1の両端に印加されることになる。そして、衝撃電圧は、サージアブソーバZ1の作用により、そのバリスタ電圧(1000V)まで低下する。その様子を、オシロスコープで観察すると図3のようになる。このように、当初、尖頭電圧が8000Vであった衝撃電圧は、電源トランスTの耐電圧値(1500V)未満の1000Vに低下するので、電源トランスTは絶縁破壊を起こすことはない。   As a result, this impact voltage is applied to both ends of the surge absorber Z1. The impact voltage is lowered to the varistor voltage (1000 V) by the action of the surge absorber Z1. The situation is observed with an oscilloscope as shown in FIG. Thus, since the impact voltage at which the peak voltage was initially 8000 V is reduced to 1000 V which is less than the withstand voltage value (1500 V) of the power transformer T, the power transformer T does not cause dielectric breakdown.

ここで、サージアブソーバZ1の他にサージアブソーバZ2を接続するのは、次の理由による。すなわち、AC100Vの入力端子32,33は通常コンセントに差し込まれる。コンセントに差し込まれる場合は、入力端子32,33のどちらがアース側になるかわからない。図1は、入力端子33がアース側となる例で、この場合は、上述のようにサージアブソーバZ1に衝撃電圧が印加されるが、逆に、入力端子32がアース側となった場合は、サージアブソーバZ2に衝撃電圧が印加される。このように、電源トランスTの1次巻線の両端(1次巻線端子34,35)と2次巻線のマイナス側(2次巻線端子37)との間に、それぞれサージアブソーバZ1,Z2を接続することで、入力端子32,33のどちらがアース側になっても、サージアブソーバZ1又はサージアブソーバZ2に衝撃電圧が印加され、この衝撃電圧をバリスタ電圧まで低下させることができる。   Here, the reason why the surge absorber Z2 is connected in addition to the surge absorber Z1 is as follows. That is, the AC 100V input terminals 32 and 33 are normally plugged into an outlet. When plugged into an outlet, it is not known which of the input terminals 32 and 33 is on the ground side. FIG. 1 shows an example in which the input terminal 33 is on the ground side. In this case, an impact voltage is applied to the surge absorber Z1 as described above. Conversely, when the input terminal 32 is on the ground side, An impact voltage is applied to the surge absorber Z2. In this way, the surge absorbers Z1 and Z1 are respectively connected between both ends (primary winding terminals 34 and 35) of the primary winding of the power transformer T and the negative side (secondary winding terminal 37) of the secondary winding. By connecting Z2, an impact voltage is applied to the surge absorber Z1 or the surge absorber Z2 regardless of which of the input terminals 32 and 33 is on the ground side, and this impact voltage can be reduced to the varistor voltage.

以上のように、電源トランスTの1次巻線、2次巻線間に、電源トランスTの耐電圧値未満のバリスタ電圧となるサージアブソーバZ1,Z2を接続しているので、電源トランスTは絶縁破壊を起こすことはない。また、電源トランスTが絶縁破壊を起こすことがないので、衝撃電圧発生装置5のアース端子12にAC100Vの電圧が露出することもない。したがって、きわめて安定的且つ安全に電気柵を使用することができる。   As described above, since the surge absorbers Z1 and Z2 having a varistor voltage lower than the withstand voltage value of the power transformer T are connected between the primary winding and the secondary winding of the power transformer T, the power transformer T Does not cause dielectric breakdown. Further, since the power transformer T does not cause dielectric breakdown, the voltage of AC 100 V is not exposed to the ground terminal 12 of the impact voltage generator 5. Therefore, the electric fence can be used extremely stably and safely.

図4は、本発明の第2実施例を示す概略構成図である。第1実施例では衝撃電圧発生装置5の電源部5aとしての本発明の電源装置100を衝撃電圧発生部5bと一体的に構成したが、本実施例では図4(a)に示すように、本発明の電源装置100を衝撃電圧発生部5bと別体とし分離可能としたものである。   FIG. 4 is a schematic configuration diagram showing a second embodiment of the present invention. In the first embodiment, the power supply apparatus 100 of the present invention as the power supply section 5a of the shock voltage generation apparatus 5 is configured integrally with the shock voltage generation section 5b, but in this embodiment, as shown in FIG. The power supply device 100 of the present invention is separated from the impact voltage generator 5b and can be separated.

図4において、衝撃電圧発生部5bは、入力端子39,40と出力端子6及びアース端子12を備え、入力端子39,40に本発明の電源装置100の出力側の端子30,31を接続可能としている。このような構成にすることで、衝撃電圧発生部5bの入力端子39,40には、図4(b)に示すように別途に直流電池110を接続することもできる。これによって、衝撃電圧発生部5bの作動用電源を交流直流兼用とすることができる。   In FIG. 4, the impact voltage generator 5b includes input terminals 39, 40, an output terminal 6, and a ground terminal 12, and the output terminals 30, 31 of the power supply device 100 of the present invention can be connected to the input terminals 39, 40. It is said. With such a configuration, the DC battery 110 can be separately connected to the input terminals 39 and 40 of the impact voltage generator 5b as shown in FIG. 4B. As a result, the operating power supply of the impact voltage generator 5b can be used for both AC and DC.

図5は、本実施例における電源装置100の構成図である。この電源装置100の構成は、その出力側の端子30,31が衝撃電圧発生部5bの入力端子39,40と分離可能に構成されている以外は第1実施例の電源装置100と同一である。したがって、同一の構成には同一の符号を付し、その説明を省略する。   FIG. 5 is a configuration diagram of the power supply device 100 according to the present embodiment. The configuration of the power supply device 100 is the same as that of the power supply device 100 of the first embodiment, except that the output terminals 30 and 31 are separable from the input terminals 39 and 40 of the impact voltage generator 5b. . Therefore, the same components are denoted by the same reference numerals and description thereof is omitted.

なお、交流電圧から直流電圧を発生させるものとしては、この本発明の電源装置100からサージアブソーバZ1,Z2を除いたものを独立させて製作した、いわゆるACアダプターが市販されている。このACアダプターは出力電圧、許容電流、形状等より多数の種類のものがあり、例えば、パソコン、ゲーム機、携帯電話機充電器用などとして広く使用されている。   A so-called AC adapter, which is produced by independently generating the DC voltage from the AC voltage by removing the surge absorbers Z1 and Z2 from the power supply device 100 of the present invention, is commercially available. There are many types of AC adapters based on output voltage, allowable current, shape, etc., and they are widely used, for example, for personal computers, game machines, mobile phone chargers and the like.

しかし、何れも衝撃電圧を発生させ、その衝撃電圧を地上の動物に与え動物の体内を通し地中を通じて電源のアース端子に戻ってくるような使い方をするものではない。このような使い方をする電源は、非常に特殊であり、電気柵の衝撃電圧発生装置用以外にないと言っても過言ではない。   However, neither of them is used in such a way that an impact voltage is generated, the impact voltage is applied to an animal on the ground, passes through the body of the animal, and returns to the ground terminal of the power source through the ground. It is no exaggeration to say that the power supply used in this way is very special, and it is not for use only in the electric fence impact voltage generator.

すなわち、通常のACアダプターには、衝撃電圧が地中から回り込んでくることは考えなくてよいため、衝撃電圧吸収素子(サージアブソーバ)は接続されていない。このように、衝撃電圧吸収素子(サージアブソーバ)は、電気柵の衝撃電圧発生装置の電源装置だからこそ必要であり、また有用である。   That is, since it is not necessary to consider that an impact voltage wraps around from the ground to an ordinary AC adapter, an impact voltage absorbing element (surge absorber) is not connected. Thus, the impact voltage absorbing element (surge absorber) is necessary and useful because it is a power supply device for the impact voltage generator of the electric fence.

図6は、本発明の第3実施例を示す概略構成図である。   FIG. 6 is a schematic block diagram showing a third embodiment of the present invention.

通常、電気柵の衝撃電圧発生装置の電源装置は、先に図1又は図5に示した回路構成で基本的に目的を達成する。しかし、入力のAC100Vの電圧が変動したり、衝撃電圧発生部で発生させる衝撃電圧の大小によって負荷が変動したりすると、直流出力電圧が変動することがある。   Normally, the power supply device of the electric fence impact voltage generator basically achieves the object with the circuit configuration shown in FIG. 1 or FIG. However, the DC output voltage may fluctuate if the input AC 100V voltage fluctuates or the load fluctuates depending on the magnitude of the shock voltage generated by the shock voltage generator.

そこで、本実施例では、直流出力電圧を安定させるため、電源装置100の出力部に電圧安定化装置101を接続している。この電圧安定化装置101は電圧安定化半導体素子ICと抵抗RとコンデンサC2から構成されており、図示のような回路構成とすることで、直流出力電圧を安定させることができる。   Therefore, in this embodiment, the voltage stabilizing device 101 is connected to the output section of the power supply device 100 in order to stabilize the DC output voltage. The voltage stabilizing device 101 is composed of a voltage stabilizing semiconductor element IC, a resistor R, and a capacitor C2, and the DC output voltage can be stabilized by adopting a circuit configuration as shown in the figure.

本発明は、牛等の畜産動物が牧場以外への脱出を防止するため、あるいは田畑に猪、鹿等の害獣が侵入するのを防止するために、牧場あるいは田畑の周囲に設置される各種電気柵用の衝撃電圧発生装置に直流電圧を供給する電源装置のうち、交流電源を使用した電源装置として利用可能である。   In order to prevent livestock animals such as cattle from escaping outside the ranch, or to prevent the infestation of wild animals such as foxes and deer into the field, the present invention Among power supply devices that supply a DC voltage to an impact voltage generator for an electric fence, the present invention can be used as a power supply device that uses an AC power supply.

本発明の第1実施例を示す概略構成図である。It is a schematic block diagram which shows 1st Example of this invention. サージアブソーバの形状を示す図である。It is a figure which shows the shape of a surge absorber. 本発明において電源トランスの1次側と2次側に印加される衝撃パルス電圧の模式図である。It is a schematic diagram of the impact pulse voltage applied to the primary side and the secondary side of the power transformer in the present invention. 本発明の第2実施例を示す概略構成図である。It is a schematic block diagram which shows 2nd Example of this invention. 第2実施例における電源装置の構成図である。It is a block diagram of the power supply device in 2nd Example. 本発明の第3実施例を示す概略構成図である。It is a schematic block diagram which shows 3rd Example of this invention. 従来の猪撃退用の電気柵を示す構成図である。It is a block diagram which shows the conventional electric fence for repelling strikes. 従来の電気柵における衝撃電圧発生装置の概略構成図である。It is a schematic block diagram of the impact voltage generator in the conventional electric fence. 図8の衝撃電圧発生装置より発生する衝撃電圧パルスの模式図である。It is a schematic diagram of the impact voltage pulse generated from the impact voltage generator of FIG. 交流電圧から直流電圧を発生する従来の電源装置の回路構成図である。It is a circuit block diagram of the conventional power supply device which generates DC voltage from AC voltage. 図10の従来の電源装置を電気柵用電源装置として適用したときの概略構成図である。It is a schematic block diagram when the conventional power supply device of FIG. 10 is applied as a power supply device for electric fences. 図11において、電気柵の裸電線が断線したときの衝撃パルス電圧の流れを示す説明図である。In FIG. 11, it is explanatory drawing which shows the flow of the shock pulse voltage when the bare electric wire of an electric fence breaks. 図11において、電気柵の裸電線及びアース線が断線したときの衝撃パルス電圧の流れを示す説明図である。In FIG. 11, it is explanatory drawing which shows the flow of the shock pulse voltage when the bare electric wire and ground wire of an electric fence are disconnected.

符号の説明Explanation of symbols

1 電気柵
1a、1b 碍子
2 電気柵用支柱
3a、3b 裸電線
4 上下結線
5 衝撃電圧発生装置
5a 電源部
5b 衝撃電圧発生部
6 出力端子
7 出力線
8 猪
9 地中
10 アース棒
11 アース線
12 アース端子
20 衝撃電圧
21 衝撃電圧の幅
22 衝撃電圧の間隔
30,31 端子
32,33 電源トランスの1次側端子
34,35 1次巻線端子
36,37 2次巻線端子
38 アース線
39,40 衝撃電圧発生装置の入力端子
50 電池
100 本発明の電源装置
101 電圧安定化装置
110 直流電池
T 電源トランス
Z1,Z2 サージアブソーバ
D ダイオード
C,C2 コンデンサ
R 抵抗
IC 電圧安定化半導体素子
DESCRIPTION OF SYMBOLS 1 Electric fence 1a, 1b insulator 2 Electric fence support | pillar 3a, 3b Bare electric wire 4 Vertical connection 5 Impact voltage generator 5a Power supply part 5b Impact voltage generation part 6 Output terminal 7 Output line 8 9 9 Underground 10 Ground rod 11 Ground wire DESCRIPTION OF SYMBOLS 12 Ground terminal 20 Impact voltage 21 Impact voltage width 22 Impact voltage interval 30, 31 Terminal 32, 33 Primary side terminal 34, 35 of power transformer Primary winding terminal 36, 37 Secondary winding terminal 38 Ground wire 39 , 40 Input terminal of impact voltage generator 50 Battery 100 Power supply device of the present invention 101 Voltage stabilization device 110 DC battery T Power transformer Z1, Z2 Surge absorber D Diode C, C2 Capacitor R Resistance IC Voltage stabilization semiconductor element

Claims (3)

電気柵の裸電線に衝撃電圧を印加する衝撃電圧発生装置を作動させるために交流電源の交流電圧を減圧、整流して直流電圧を発生させる電気柵の衝撃電圧発生装置の電源装置であって、交流電源の交流電圧を減圧する電源トランスを備えるとともに、この電源トランスの2次巻線側に整流回路を備え、電源トランスの1次巻線と2次巻線との間に衝撃電圧吸収素子を接続したことを特徴とする電気柵の衝撃電圧発生装置の電源装置。   A power supply device for an impact voltage generator for an electric fence that generates a DC voltage by reducing and rectifying the AC voltage of the AC power source in order to operate the impact voltage generator for applying the impact voltage to the bare wire of the electric fence, A power transformer for reducing the AC voltage of the AC power source is provided, a rectifier circuit is provided on the secondary winding side of the power transformer, and an impact voltage absorbing element is provided between the primary winding and the secondary winding of the power transformer. A power supply device for an impact voltage generator for an electric fence characterized by being connected. 電源トランスの1次巻線と2次巻線のマイナス側との間に衝撃電圧吸収素子を接続した請求項1に記載の電気柵の衝撃電圧発生装置の電源装置。   2. The power supply device for an impact voltage generator for an electric fence according to claim 1, wherein an impact voltage absorbing element is connected between the primary winding and the negative side of the secondary winding of the power transformer. 電源トランスの1次巻線の両端と2次巻線のマイナス側との間に、それぞれ衝撃電圧吸収素子を接続した請求項1に記載の電気柵の衝撃電圧発生装置の電源装置。   2. The power supply device for an impact voltage generator for an electric fence according to claim 1, wherein an impact voltage absorbing element is connected between both ends of the primary winding of the power transformer and the negative side of the secondary winding.
JP2003388188A 2003-11-18 2003-11-18 Electric fence impact voltage generator power supply Expired - Fee Related JP3819897B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003388188A JP3819897B2 (en) 2003-11-18 2003-11-18 Electric fence impact voltage generator power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003388188A JP3819897B2 (en) 2003-11-18 2003-11-18 Electric fence impact voltage generator power supply

Publications (2)

Publication Number Publication Date
JP2005151748A JP2005151748A (en) 2005-06-09
JP3819897B2 true JP3819897B2 (en) 2006-09-13

Family

ID=34695337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003388188A Expired - Fee Related JP3819897B2 (en) 2003-11-18 2003-11-18 Electric fence impact voltage generator power supply

Country Status (1)

Country Link
JP (1) JP3819897B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565066B1 (en) * 2009-04-28 2010-10-20 株式会社末松電子製作所 Electric fence power supply

Also Published As

Publication number Publication date
JP2005151748A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
JP7188846B2 (en) weed deactivator
US4603505A (en) Portable electronic insect controller
US20120236614A1 (en) High voltage inverter device
JP4983523B2 (en) Power supply circuit and earth leakage circuit breaker using the power supply circuit
CN202634297U (en) Novel 18V mine explosion suppression and intrinsic safety power supply based on dual-redundancy protection circuit
US7893521B2 (en) Electric fence energiser
CA2214586C (en) Voltage and current based control and triggering for isolator surge protector
JP3819897B2 (en) Electric fence impact voltage generator power supply
KR102383935B1 (en) Hybrid Overvoltage Protection Devices and Assemblies
JP2003111270A (en) Surge protector
JP3392915B2 (en) Power supply for electronic equipment
US20100290169A1 (en) Active lightning protection
US3988594A (en) Electric fences
US10894611B2 (en) Lightning protection system for an aircraft
JP6844783B2 (en) Power supply for electric fence
CN102386609A (en) Leakage protection device
JP3574214B2 (en) Power supply
WO2017029404A1 (en) A surge arrester for a domestic robot assembly
DE1538376B2 (en) CIRCUIT ARRANGEMENT FOR THE PROTECTION OF A CONSUMER
JP3854598B2 (en) Electric shelf wire
DE19817971A1 (en) Error current protection circuit
JPH06245372A (en) Lightning surge protecting circuit
EP3229356A1 (en) Power supply comprising mosfet-based crowbar circuit
JPS61139218A (en) Leakage display for electric meadow equipment
KR20000016543U (en) Lightness protect circuit

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Ref document number: 3819897

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120623

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150623

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees