JP3819795B2 - Internal intermediate pressure type multi-stage compression rotary compressor - Google Patents

Internal intermediate pressure type multi-stage compression rotary compressor Download PDF

Info

Publication number
JP3819795B2
JP3819795B2 JP2002086393A JP2002086393A JP3819795B2 JP 3819795 B2 JP3819795 B2 JP 3819795B2 JP 2002086393 A JP2002086393 A JP 2002086393A JP 2002086393 A JP2002086393 A JP 2002086393A JP 3819795 B2 JP3819795 B2 JP 3819795B2
Authority
JP
Japan
Prior art keywords
sealed container
refrigerant
refrigerant gas
rotary compression
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002086393A
Other languages
Japanese (ja)
Other versions
JP2003286983A (en
Inventor
裕之 松森
俊行 江原
孝 佐藤
大 松浦
隆泰 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002086393A priority Critical patent/JP3819795B2/en
Publication of JP2003286983A publication Critical patent/JP2003286983A/en
Application granted granted Critical
Publication of JP3819795B2 publication Critical patent/JP3819795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮する内部中間圧型多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来のこの種内部中間圧型多段圧縮式のロータリコンプレッサは例えば特開平2−294587号公報(F04C23/00)に示されている。即ち、係るロータリコンプレッサでは、下側に設けられた第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて中間圧となりシリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。
【0003】
そして、この密閉容器内の中間圧のガスは上側に設けられた第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行なわれて高温高圧のガスとなり、高圧室側より吐出ポート、吐出消音室を経て吐出され、吐出されたガスは冷媒回路の放熱器などに流入し、放熱した後、膨張弁で絞られて蒸発器で吸熱し、ロータリコンプレッサの第1の回転圧縮要素に吸入されるサイクルを繰り返す。
【0004】
また、係るロータリコンプレッサに、高低圧差の大きい冷媒、例えば二酸化炭素(CO2)を冷媒として用いた場合、吐出冷媒圧力は高圧となる第2の回転圧縮要素で12MPaGに達し、一方、低段側となる第1の回転圧縮要素で8MPaG(中間圧)となる(第1の回転圧縮要素の吸込圧力は4MPaG)。
【0005】
ここで、第1の回転圧縮要素を下側に、第2の回転圧縮要素を上側に配置した場合、第1の回転圧縮要素の吐出消音室から下部支持部材、第1の回転圧縮要素のシリンダ、中間仕切板、第2の回転圧縮要素のシリンダ及び上部支持部材を貫通する連通路が形成されると共に、上部支持部材に前記連通路に接続された中間吐出管が立設される。そして、第1の回転圧縮要素で圧縮された冷媒は連通路を経て中間吐出管から密閉容器内の電動要素側に吐出される。
【0006】
係る中間吐出管周辺の従来の構造を図5に示す。従来では第2の回転圧縮要素のシリンダ214を閉塞する上部支持部材266に立設された中間吐出管221は上方に開口している(図5)。また、密閉容器212の側面には、冷媒導入管292が設けられており、この冷媒導入管292は密閉容器212内面において開口している。そして、電動要素の駆動により第1の回転圧縮要素で圧縮された中間圧の冷媒は、この中間吐出管221から密閉容器212内に吐出される。密閉容器212内に吐出された冷媒は、密閉容器212の側面に溶接固定された冷媒導入管292に入り、密閉容器212外を通って第2の回転圧縮要素のシリンダ214に吸い込まれる。
【0007】
【発明が解決しようとする課題】
ここで、密閉容器212内に吐出された冷媒にはオイル288が溶け込んでおり、冷媒に溶け込んだオイル288は密閉容器212内で冷媒ガスと分離してオイル288だけが密閉容器212の内面を伝わり、密閉容器212の底部のオイル溜めに帰還するものであるが、単に密閉容器212内の空間を利用してオイル分離を行う方式であったため、密閉容器212の内面に付着したオイル288の多くが冷媒導入管292に流入し、第2の回転圧縮要素から外部に吐出されてしまう。
【0008】
そのため、冷媒回路内で悪影響を及ぼすと共に、コンプレッサ自体のオイルレベルが低下して潤滑性能も悪化する問題が生じていた。
【0009】
本発明は、係る従来の技術的課題を解決するために成されたものであり、密閉容器内に吐出された冷媒ガスからオイルを効果的に分離できる内部中間圧型多段圧縮式ロータリコンプレッサを提供することを目的とする。
【0010】
【課題を解決するための手段】
即ち、請求項1の発明では、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出する中間吐出管を備え、この中間吐出管は電動要素の回転方向に向けて冷媒ガスを吐出するようにしたので、電動要素の回転を阻害すること無く、密閉容器内に吐出された冷媒ガスに渦流を発生させることが可能となる。
【0011】
これにより、冷媒ガスに溶け込んだオイルは遠心力で円滑に冷媒ガスから分離し、密閉容器内面に付着しオイル溜めに帰還するようになるので、第2の回転圧縮要素に入るオイル量を低減させてロータリコンプレッサの性能低下等を未然に回避することができるようになるものである。
【0012】
請求項2の発明の内部中間圧型多段圧縮式ロータリコンプレッサは、請求項1に記載の発明において密閉容器外を通って当該密閉容器内の冷媒ガスを第2の回転圧縮要素に流入するための冷媒導入管を備え、この冷媒導入管の入口側を密閉容器内に突出して開口させたので、密閉容器内に吐出されて冷媒ガスから分離し、密閉容器内面に付着したオイルが冷媒導入管内に入り難くなる。
【0013】
これにより、冷媒導入管内に流入し、第2の回転圧縮要素に吸い込まれて外部に吐出されるオイル量を著しく減少させることができるようになる。
【0014】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明を適用した実施例の内部中間圧型多段圧縮式ロータリコンプレッサ10の縦断側面図である。
【0015】
この図において、10は二酸化炭素(CO2)を冷媒として使用する内部中間圧型多段圧縮式のロータリコンプレッサで、このロータリコンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0016】
密閉容器12は底部をオイル溜め58とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成され、且つ、このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。
【0017】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる前記回転軸16に固定されている。
【0018】
ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを埋設して構成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が狭持されている。即ち、回転圧縮機構部18の第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上側のシリンダ38、下側のシリンダ40と、180度の位相差を有して回転軸16に設けられた上下の偏心部42、44に嵌合されて上下のシリンダ38、40内を偏心回転する上下のローラ46、48と、コイルバネ76、77と背圧により付勢されて先端をこれら上下のローラ46、48にそれぞれ当接させ、上下のシリンダ38、40内をそれぞれ低圧室側LRと高圧室側HR(図2)に区画する上下のベーン50、52と、シリンダ38の上側の開口面及びシリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0020】
一方、上部支持部材54及び下部支持部材56には、吸込ポート55(図2。上部支持部材54は図示せず)にて上下のシリンダ38、40の内部とそれぞれ連通する吸込通路60(上部支持部材54は図示せず)と、一部を凹陥させ、この凹陥部を上カバー66、下カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0021】
この吐出消音室64と密閉容器12内とは、上下のシリンダ38、40や中間仕切板36及び上下の支持部材54、56を貫通する図示しない連通路にて連通されており、この連通路の上端となる上部支持部材54にはこの連通路に連通接続された中間吐出管121が立設されている。そして、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスは、この中間吐出管121から電動要素14下側の密閉容器12内に吐出される。
【0022】
このとき、密閉容器12内に吐出され冷媒ガスには第1の回転圧縮要素32内を潤滑したオイルが溶け込んでいるが、このオイルは後述する如く冷媒ガスから分離して密閉容器12の内面に付着した後、密閉容器12の内面を伝わって底部のオイル溜め58に帰還することとなる。
【0023】
この中間吐出管121は上部支持部材54より少許上方に延在した箇所で略90度折曲(エルボ形状)されている(図3、図4)。そして、折曲されて略水平となった中間吐出管121の先端部は、密閉容器12の内面に所定の角度で交わる方向に指向されている(図3)。また、中間吐出管121は電動要素14の回転方向(図中矢印方向)に向けて延在され、その先端開口から電動要素14の回転方向であって、密閉容器12の内面と所定の浅い角度で交わる方向に冷媒ガスを吐出するように構成されている。尚、図4では中間吐出管121をエルボ形状に折曲されているが、吐出した冷媒ガスを密閉容器12の内面に浅い角度で交わるように吐出できれば螺旋形状であっても差し支えない。
【0024】
これにより、第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスは、中間吐出管121から密閉容器12の内面に浅い角度で衝突する方向に吐出される。これによって、密閉容器12の内面に沿って図中矢印方向(電動要素14の回転方向)に巻く渦流が発生するので、冷媒ガス中に溶け込んだオイルは、冷媒ガスより密度が大きいために遠心力で冷媒から円滑に分離し、密閉容器12の内面に付着(オイルを33で示す)するようになる。
【0025】
この場合、冷媒としては地球環境にやさしく、可燃性及び毒性等を考慮して自然冷媒である前述した二酸化炭素(CO2)を使用し、オイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。
【0026】
密閉容器12の容器本体12Aの側面には、上部支持部材54と下部支持部材56の吸込通路60(上側は図示せず)、吐出消音室62、上カバー66の上側(電動要素14の下端に略対応する位置)に対応する位置に、スリーブ141、142、143及び144がそれぞれ溶接固定されている。そして、スリーブ141内にはシリンダ38に冷媒ガスを流入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端はシリンダ38の図示しない吸込通路と連通する。
【0027】
この冷媒導入管92は密閉容器12外の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されて上カバー66の上側(電動要素14の下端に略対応する位置)における密閉容器12内に連通する。このとき、冷媒導入管92の冷媒入口側となる他端は密閉容器12内に所定寸法突出させて差し込まれ、開口している。それによって、密閉容器12の内面に付着したオイル88が冷媒導入管92に入り難くなるように構成している(図3)。
【0028】
また、シリンダ40の側面に位置する密閉容器12にはスリーブ142が溶接固定されている。このスリーブ142内にはシリンダ40に冷媒ガスを導入するための冷媒導入管94の一端が挿入接続され、この冷媒導入管94の一端はシリンダ40の吸込通路60と連通する。この冷媒導入管94の他端は図示しないアキュムレータに接続される。また、スリーブ143内には冷媒吐出管96が挿入接続され、この冷媒吐出管96の一端は吐出消音室62と連通する。
【0029】
ここで、図2を参照しながら上記第1の回転圧縮要素32の動作について説明する。シリンダ36には前記吐出消音室64と図示しない吐出弁を介して連通する吐出ポート70と前述した吸込ポート55が形成されており、これらの間に位置してシリンダ36には半径方向に延在する案内溝71が形成されている。そして、この案内溝71内に前記ベーン52は摺動自在に収納されている。
【0030】
ベーン52は前述した如くその先端をローラ44に当接させてシリンダ36内を低圧室側LRと高圧室側HRとに区画する。そして、吸込ポート55はこの低圧室側LRに開口し、吐出ポート70は高圧室側HRに開口している。
【0031】
案内溝71の外側(密閉容器12側)には当該案内溝71に連通して収納部78がシリンダ36内に形成されている。前記コイルバネ77は収納部78内に収納され、コイルバネ77の後側には抜け止め80が収納部78に挿入され固定される。このコイルバネ77の付勢力によって、ベーン52の先端は常時ローラ44側に付勢される。
【0032】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下の偏心部42、44に嵌合された上下のローラ46、48が上下のシリンダ38、40内を偏心回転する。
【0033】
これにより、冷媒導入管94及び下部支持部材56に形成された吸込通路60を経由して吸込ポート55からシリンダ40の低圧室側LRに吸入された低圧の冷媒は、ローラ48とベーン52の動作により圧縮されて中間圧となりシリンダ40の高圧室側HRより吐出消音室64、前記連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0034】
ここで、前述の如く中間吐出管121は、上部支持部材54上で略90度折曲され、電動要素14の回転方向であって密閉容器12と浅く交わる方向に向けて開口しているので、密閉容器12内に吐出された冷媒ガスは、密閉容器12の内面に浅い角度で衝突するように吹き付けられ、密閉容器12内を電動要素14の回転する方向に巻く渦流となる。
【0035】
これによって、密度の大きいオイルは遠心力で密閉容器12側に移動し、密閉容器12の内面に近いところで密となり、回転軸16に近いところでオイルと冷媒の比率は冷媒の方が大きくなる。このように、冷媒ガス中のオイルは渦流の遠心力で冷媒ガスと円滑に分離され、密閉容器12の内面に付着する(図3中88で示す)。
【0036】
また、冷媒導入管92は密閉容器12内に吐出して開口されているので、密閉容器12の内面に付着したオイルは冷媒導入管92内に入り難くなっている。これらにより、密閉容器12の内面に付着した多くのオイル88は冷媒導入管92に流出すること無く、密閉容器12の内面を伝わって底部のオイル溜め58に帰還できる。
【0037】
このようにオイルが分離された密閉容器12内の中間圧の冷媒ガスは、スリーブ144から出て冷媒導入管92及び上部支持部材54に形成された図示しない吸込通路を経由してこれも図示しない吸込ポートからシリンダ38の低圧室側に吸入される。
【0038】
低圧室側に吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温・高圧の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り、上部支持部材54に形成された吐出消音室62、冷媒吐出管96を経由して外部の図示しないガスクーラなどに流入する。このガスクーラで冷媒は放熱した後、図示しない減圧装置などで減圧され、これも図示しないエバポレータに流入する。
【0039】
そこで冷媒が蒸発し、その後、前記アキュムレータを経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0040】
このように、第1の回転圧縮要素32で圧縮された冷媒ガスを密閉容器12内に吐出する中間吐出管121により、電動要素14の回転方向に向けて冷媒ガスを吐出するようにしたことにより、電動要素14の回転を阻害すること無く、冷媒に渦流を発生させることが可能となる。これにより、遠心力で吐出ガス内に溶け込んだオイルを密閉容器12内面に円滑に付着させ底部のオイル溜め58に帰還させることができる。
【0041】
また、密閉容器12外を通ってこの密閉容器12内の冷媒ガスを第2の回転圧縮要素34に導入するための冷媒導入管92の入口側を密閉容器12内に突出して開口させたことにより、密閉容器12内面に付着したオイル88が冷媒導入管92に流入してしまうのを防止することが可能となる。これにより、冷媒導入管92内に流入し、第2の回転圧縮要素34に吸い込まれて外部に吐出されるオイル量を著しく減少させ、冷媒回路において支障が生じること及びロータリコンプレッサ10のオイルレベルが低下する不都合が解消される。
【0042】
尚、実施例では2段圧縮式のロータリコンプレッサ10に本発明を適用したが、それに限らず、更に多段のロータリコンプレッサにおいても本発明は有効である。
【0043】
また、実施例では中間吐出管121により冷媒ガスを電動要素14の回転方向に向けて吐出し、且つ、冷媒導入管92の入口側を密閉容器12内に突出させたが、オイル吐出を減少させるためには、何れか一方のみでも効果がある。
【0044】
【発明の効果】
以上詳述した如く請求項1の発明によれば、密閉容器内に電動要素と、この電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、第1の回転圧縮要素で圧縮された冷媒ガスを密閉容器内に吐出する中間吐出管を備え、この中間吐出管は電動要素の回転方向に向けて冷媒ガスを吐出するようにしたので、電動要素の回転を阻害すること無く、密閉容器内に吐出された冷媒ガスに渦流を発生させることが可能となる。
【0045】
これにより、冷媒ガスに溶け込んだオイルは遠心力で円滑に冷媒ガスから分離し、密閉容器内面に付着しオイル溜めに帰還するようになるので、第2の回転圧縮要素に入るオイル量を低減させてロータリコンプレッサの性能低下等を未然に回避することができるようになるものである。
【0046】
請求項2の発明によれば、内部中間圧型多段圧縮式ロータリコンプレッサは、請求項1に記載の発明において密閉容器外を通って当該密閉容器内の冷媒ガスを第2の回転圧縮要素に流入するための冷媒導入管を備え、この冷媒導入管の入口側を密閉容器内に突出して開口させたので、密閉容器内に吐出されて冷媒ガスから分離し、密閉容器内面に付着したオイルが冷媒導入管内に入り難くなる。
【0047】
これにより、冷媒導入管内に流入し、第2の回転圧縮要素に吸い込まれて外部に吐出されるオイル量を著しく減少させることができるようになる。
【図面の簡単な説明】
【図1】 本発明の内部中間圧型多段圧縮式ロータリコンプレッサの一実施例の縦断面図である。
【図2】 第1の回転圧縮要素のシリンダの平面図である。
【図3】 密閉容器内部の中間吐出管及び冷媒導入管を示す密閉容器の平断面図である。
【図4】 図3の中間吐出管の側面図である。
【図5】 従来のロータリコンプレッサの平断面図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
14 電動要素
16 回転軸
24 ロータ
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38 シリンダ
40 シリンダ
54 上部支持部材
88 オイル
92 冷媒導入管
121 中間吐出管
[0001]
BACKGROUND OF THE INVENTION
The present invention includes an electric element in a sealed container and first and second rotary compression elements driven by the electric element, and discharges refrigerant gas compressed by the first rotary compression element into the sealed container. Further, the present invention relates to an internal intermediate pressure type multistage compression rotary compressor that compresses the discharged intermediate pressure refrigerant gas by a second rotary compression element.
[0002]
[Prior art]
A conventional internal intermediate pressure type multi-stage compression type rotary compressor is disclosed in, for example, Japanese Patent Laid-Open No. 2-294857 (F04C23 / 00). That is, in such a rotary compressor, the refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element provided on the lower side, is compressed by the operation of the roller and the vane, becomes an intermediate pressure, and becomes the high pressure of the cylinder. It is discharged from the chamber side into the sealed container through the discharge port and the discharge silencer chamber.
[0003]
The intermediate-pressure gas in the sealed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element provided on the upper side, and the second-stage compression is performed by the operation of the roller and the vane. It becomes a high-temperature and high-pressure gas, and is discharged from the high-pressure chamber side through the discharge port and discharge silencer chamber.The discharged gas flows into the radiator of the refrigerant circuit, etc. The cycle of absorbing heat and being drawn into the first rotary compression element of the rotary compressor is repeated.
[0004]
Further, when a refrigerant having a large high-low pressure difference, such as carbon dioxide (CO 2 ), is used for the rotary compressor, the discharged refrigerant pressure reaches 12 MPaG by the second rotary compression element having a high pressure, while the low-stage side The first rotary compression element becomes 8 MPaG (intermediate pressure) (the suction pressure of the first rotary compression element is 4 MPaG).
[0005]
Here, when the first rotary compression element is disposed on the lower side and the second rotary compression element is disposed on the upper side, the lower support member, the cylinder of the first rotary compression element, from the discharge silencing chamber of the first rotary compression element A communication passage that penetrates the intermediate partition plate, the cylinder of the second rotary compression element, and the upper support member is formed, and an intermediate discharge pipe connected to the communication passage is erected on the upper support member. Then, the refrigerant compressed by the first rotary compression element is discharged from the intermediate discharge pipe to the electric element side in the sealed container through the communication path.
[0006]
FIG. 5 shows a conventional structure around the intermediate discharge pipe. Conventionally, the intermediate discharge pipe 221 erected on the upper support member 266 that closes the cylinder 214 of the second rotary compression element is open upward (FIG. 5). Further, a refrigerant introduction pipe 292 is provided on the side surface of the sealed container 212, and the refrigerant introduction pipe 292 is open on the inner surface of the sealed container 212. The intermediate-pressure refrigerant compressed by the first rotary compression element by driving the electric element is discharged from the intermediate discharge pipe 221 into the sealed container 212. The refrigerant discharged into the sealed container 212 enters the refrigerant introduction pipe 292 that is welded and fixed to the side surface of the sealed container 212, passes through the outside of the sealed container 212, and is sucked into the cylinder 214 of the second rotary compression element.
[0007]
[Problems to be solved by the invention]
Here, the oil 288 is dissolved in the refrigerant discharged into the sealed container 212, and the oil 288 dissolved in the refrigerant is separated from the refrigerant gas in the sealed container 212, and only the oil 288 is transmitted through the inner surface of the sealed container 212. The oil is returned to the oil sump at the bottom of the sealed container 212. However, since the oil separation is performed simply using the space in the sealed container 212, much of the oil 288 attached to the inner surface of the sealed container 212 is obtained. The refrigerant flows into the refrigerant introduction pipe 292 and is discharged to the outside from the second rotary compression element.
[0008]
Therefore, there is a problem that the refrigerant circuit is adversely affected and the oil level of the compressor itself is lowered to deteriorate the lubrication performance.
[0009]
The present invention has been made to solve the conventional technical problem, and provides an internal intermediate pressure type multistage compression rotary compressor capable of effectively separating oil from refrigerant gas discharged into a sealed container. For the purpose.
[0010]
[Means for Solving the Problems]
That is, according to the first aspect of the present invention, an electric element and first and second rotary compression elements driven by the electric element are provided in the sealed container, and the refrigerant gas compressed by the first rotary compression element is supplied. In a rotary compressor that discharges the refrigerant gas at the intermediate pressure and compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element, the refrigerant gas compressed by the first rotary compression element is discharged into the sealed container. An intermediate discharge pipe is provided, and this intermediate discharge pipe discharges the refrigerant gas in the direction of rotation of the electric element, so that the refrigerant gas discharged into the sealed container is swirled without impeding the rotation of the electric element. Can be generated.
[0011]
As a result, the oil dissolved in the refrigerant gas is smoothly separated from the refrigerant gas by the centrifugal force, adheres to the inner surface of the sealed container and returns to the oil reservoir, thereby reducing the amount of oil entering the second rotary compression element. Thus, it is possible to avoid a decrease in performance of the rotary compressor.
[0012]
An internal intermediate pressure multistage compression rotary compressor according to a second aspect of the present invention is the refrigerant for flowing the refrigerant gas in the sealed container into the second rotary compression element through the outside of the sealed container in the first aspect of the invention. Since an inlet pipe is provided and the inlet side of the refrigerant inlet pipe protrudes and opens into the sealed container, the oil discharged into the sealed container and separated from the refrigerant gas, and the oil adhering to the inner surface of the sealed container enters the refrigerant inlet pipe. It becomes difficult.
[0013]
As a result, the amount of oil that flows into the refrigerant introduction pipe, is sucked into the second rotary compression element, and is discharged to the outside can be significantly reduced.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional side view of an internal intermediate pressure type multi-stage compression rotary compressor 10 according to an embodiment to which the present invention is applied.
[0015]
In this figure, reference numeral 10 denotes an internal intermediate pressure type multistage compression rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The rotary compressor 10 includes a cylindrical sealed container 12 made of a steel plate, and an interior of the sealed container 12. The electric element 14 arranged and housed on the upper side of the space, and the first rotary compression element 32 (first stage) and the second electric element 14 arranged below the electric element 14 and driven by the rotating shaft 16 of the electric element 14. The rotary compression mechanism section 18 is composed of a rotary compression element 34 (second stage).
[0016]
The sealed container 12 has an oil reservoir 58 at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18, and a generally bowl-shaped end cap (lid body) 12B that closes the upper opening of the container body 12A. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is formed in the mounting hole 12D. It is attached.
[0017]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and installed inside the stator 22 with a slight gap. The rotor 24 is fixed to the rotating shaft 16 that passes through the center and extends in the vertical direction.
[0018]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Similarly to the stator 22, the rotor 24 is also formed of a laminated body 30 of electromagnetic steel plates, and a permanent magnet MG is embedded in the laminated body 30.
[0019]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 of the rotary compression mechanism section 18 include an intermediate partition plate 36, an upper cylinder 38 disposed above and below the intermediate partition plate 36, and a lower side A cylinder 40 and upper and lower rollers 46 and 48 which are fitted in upper and lower eccentric parts 42 and 44 provided on the rotary shaft 16 with a phase difference of 180 degrees and rotate eccentrically in the upper and lower cylinders 38 and 40; The front ends of the coil springs 76 and 77 are urged by the back pressure and the upper and lower rollers 46 and 48 are brought into contact with the upper and lower cylinders 38 and 40, respectively, so that the low pressure chamber side LR and the high pressure chamber side HR are shown in FIG. The upper and lower vanes 50 and 52, and the upper support member 54 and the lower support as support members that also serve as bearings for the rotary shaft 16 by closing the upper opening surface of the cylinder 38 and the lower opening surface of the cylinder 40. Member 56 It is configured Te.
[0020]
On the other hand, the upper support member 54 and the lower support member 56 have a suction passage 60 (upper support) communicating with the inside of the upper and lower cylinders 38 and 40 through a suction port 55 (FIG. 2, upper support member 54 not shown). The member 54 is not shown), and a discharge silencing chamber 62, 64 formed by recessing part of the member 54 and closing the recess with an upper cover 66 and a lower cover 68 is provided.
[0021]
The discharge silencing chamber 64 and the inside of the sealed container 12 are communicated by a communication path (not shown) that passes through the upper and lower cylinders 38 and 40, the intermediate partition plate 36, and the upper and lower support members 54 and 56. An intermediate discharge pipe 121 connected to the communication path is provided upright on the upper support member 54 at the upper end. The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 into the sealed container 12 below the electric element 14.
[0022]
At this time, the oil that has been lubricated in the first rotary compression element 32 is dissolved in the refrigerant gas discharged into the hermetic container 12, but this oil is separated from the refrigerant gas as described later and is applied to the inner surface of the hermetic container 12. After adhering, it will travel along the inner surface of the sealed container 12 and return to the oil sump 58 at the bottom.
[0023]
The intermediate discharge pipe 121 is bent at approximately 90 degrees (elbow shape) at a portion extending slightly above the upper support member 54 (FIGS. 3 and 4). And the front-end | tip part of the intermediate | middle discharge pipe 121 bent and became substantially horizontal is orient | assigned to the direction which cross | intersects the inner surface of the airtight container 12 at a predetermined angle (FIG. 3). The intermediate discharge pipe 121 extends in the direction of rotation of the electric element 14 (in the direction of the arrow in the figure). The intermediate discharge pipe 121 is in the direction of rotation of the electric element 14 from the opening at the tip of the intermediate discharge pipe 121. It is comprised so that refrigerant gas may be discharged in the direction which crosses. In FIG. 4, the intermediate discharge pipe 121 is bent in an elbow shape, but it may be a spiral shape as long as the discharged refrigerant gas can be discharged so as to intersect the inner surface of the sealed container 12 at a shallow angle.
[0024]
As a result, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 in a direction that collides with the inner surface of the sealed container 12 at a shallow angle. As a result, a vortex flow is generated along the inner surface of the hermetic container 12 in the direction of the arrow in the figure (the direction of rotation of the electric element 14), so that the oil dissolved in the refrigerant gas has a higher density than the refrigerant gas, so So that it is smoothly separated from the refrigerant and adheres to the inner surface of the sealed container 12 (oil is indicated by 33).
[0025]
In this case, the aforementioned carbon dioxide (CO 2 ), which is a natural refrigerant in consideration of flammability and toxicity, is used as the refrigerant, and the oil is, for example, mineral oil (mineral oil), alkylbenzene oil. Existing oils such as ether oil, ester oil, PAG (polyalkyl glycol) are used.
[0026]
On the side surface of the container main body 12A of the sealed container 12, the suction passage 60 (upper side is not shown) of the upper support member 54 and the lower support member 56, the discharge silencer chamber 62, the upper side of the upper cover 66 (on the lower end of the electric element 14). Sleeves 141, 142, 143, and 144 are welded and fixed at positions corresponding to (substantially corresponding positions). One end of a refrigerant introduction pipe 92 for allowing refrigerant gas to flow into the cylinder 38 is inserted and connected into the sleeve 141, and one end of the refrigerant introduction pipe 92 communicates with a suction passage (not shown) of the cylinder 38.
[0027]
The refrigerant introduction pipe 92 passes through the upper side outside the sealed container 12 and reaches the sleeve 144, and the other end is inserted and connected into the sleeve 144, and is located above the upper cover 66 (a position substantially corresponding to the lower end of the electric element 14). It communicates in the sealed container 12. At this time, the other end on the refrigerant inlet side of the refrigerant introduction pipe 92 is inserted into the sealed container 12 with a predetermined dimension and opened. Thus, the oil 88 attached to the inner surface of the sealed container 12 is configured to be difficult to enter the refrigerant introduction pipe 92 (FIG. 3).
[0028]
A sleeve 142 is welded and fixed to the sealed container 12 located on the side surface of the cylinder 40. One end of a refrigerant introduction pipe 94 for introducing refrigerant gas into the cylinder 40 is inserted and connected into the sleeve 142, and one end of the refrigerant introduction pipe 94 communicates with the suction passage 60 of the cylinder 40. The other end of the refrigerant introduction pipe 94 is connected to an accumulator (not shown). In addition, a refrigerant discharge pipe 96 is inserted and connected into the sleeve 143, and one end of the refrigerant discharge pipe 96 communicates with the discharge silencer chamber 62.
[0029]
Here, the operation of the first rotary compression element 32 will be described with reference to FIG. The cylinder 36 is formed with a discharge port 70 communicating with the discharge silencer chamber 64 via a discharge valve (not shown) and the suction port 55 described above, and is located between these ports and extends radially in the cylinder 36. A guide groove 71 is formed. The vane 52 is slidably accommodated in the guide groove 71.
[0030]
As described above, the vane 52 has its tip abutted against the roller 44 to divide the inside of the cylinder 36 into a low pressure chamber side LR and a high pressure chamber side HR. The suction port 55 opens to the low pressure chamber side LR, and the discharge port 70 opens to the high pressure chamber side HR.
[0031]
A storage portion 78 is formed in the cylinder 36 in communication with the guide groove 71 outside the guide groove 71 (on the closed container 12 side). The coil spring 77 is housed in the housing portion 78, and a retaining member 80 is inserted into the housing portion 78 and fixed to the rear side of the coil spring 77. By the biasing force of the coil spring 77, the tip of the vane 52 is constantly biased toward the roller 44.
[0032]
Next, the operation of the above configuration will be described. When the stator coil 28 of the electric element 14 is energized through the terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric parts 42 and 44 provided integrally with the rotary shaft 16 eccentrically rotate in the upper and lower cylinders 38 and 40.
[0033]
As a result, the low-pressure refrigerant sucked into the low-pressure chamber side LR of the cylinder 40 from the suction port 55 via the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56 is operated by the rollers 48 and the vanes 52. Is compressed into the intermediate pressure and discharged from the high pressure chamber side HR of the cylinder 40 into the sealed container 12 through the discharge silencer chamber 64 and the communication passage through the intermediate discharge pipe 121. Thereby, the inside of the sealed container 12 becomes an intermediate pressure.
[0034]
Here, as described above, the intermediate discharge pipe 121 is bent by approximately 90 degrees on the upper support member 54, and opens toward the direction in which the electric element 14 rotates and shallowly intersects the sealed container 12, The refrigerant gas discharged into the hermetic container 12 is blown so as to collide with the inner surface of the hermetic container 12 at a shallow angle, and becomes a vortex that winds in the hermetic container 12 in the direction in which the electric element 14 rotates.
[0035]
As a result, the oil having a high density moves toward the sealed container 12 by centrifugal force, becomes dense near the inner surface of the sealed container 12, and the ratio of the oil and the refrigerant becomes larger in the refrigerant near the rotating shaft 16. As described above, the oil in the refrigerant gas is smoothly separated from the refrigerant gas by the centrifugal force of the vortex and adheres to the inner surface of the sealed container 12 (indicated by 88 in FIG. 3).
[0036]
Further, since the refrigerant introduction pipe 92 is opened by being discharged into the sealed container 12, the oil adhering to the inner surface of the sealed container 12 is difficult to enter the refrigerant introduction pipe 92. Accordingly, a large amount of oil 88 attached to the inner surface of the sealed container 12 can be returned to the bottom oil reservoir 58 through the inner surface of the sealed container 12 without flowing out to the refrigerant introduction pipe 92.
[0037]
The refrigerant gas of intermediate pressure in the sealed container 12 from which the oil has been separated in this way is not shown through the suction passage (not shown) formed in the refrigerant introduction pipe 92 and the upper support member 54 through the sleeve 144. The air is sucked into the low pressure chamber side of the cylinder 38 from the suction port.
[0038]
The intermediate-pressure refrigerant gas sucked into the low-pressure chamber side is compressed at the second stage by the operation of the roller 46 and the vane 50 to become a high-temperature / high-pressure refrigerant gas, and passes through a discharge port (not shown) from the high-pressure chamber side. The gas flows into an external gas cooler (not shown) or the like via a discharge muffler chamber 62 and a refrigerant discharge pipe 96 formed in the upper support member 54. The refrigerant dissipates heat in the gas cooler, and then the pressure is reduced by a decompression device (not shown) or the like, which also flows into an evaporator (not shown).
[0039]
Then, the refrigerant evaporates, and thereafter, a cycle in which the refrigerant is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator is repeated.
[0040]
As described above, the refrigerant gas is discharged toward the rotation direction of the electric element 14 by the intermediate discharge pipe 121 that discharges the refrigerant gas compressed by the first rotary compression element 32 into the sealed container 12. Thus, it is possible to generate a vortex in the refrigerant without hindering the rotation of the electric element 14. Thereby, the oil dissolved in the discharge gas by the centrifugal force can be smoothly adhered to the inner surface of the sealed container 12 and returned to the oil reservoir 58 at the bottom.
[0041]
Further, the inlet side of the refrigerant introduction pipe 92 for introducing the refrigerant gas in the hermetic container 12 through the outside of the hermetic container 12 into the second rotary compression element 34 protrudes into the hermetic container 12 and opens. In addition, it is possible to prevent the oil 88 attached to the inner surface of the sealed container 12 from flowing into the refrigerant introduction pipe 92. As a result, the amount of oil that flows into the refrigerant introduction pipe 92 and is sucked into the second rotary compression element 34 and discharged to the outside is remarkably reduced, causing trouble in the refrigerant circuit and the oil level of the rotary compressor 10. The inconvenience of lowering is eliminated.
[0042]
In the embodiment, the present invention is applied to the two-stage compression rotary compressor 10. However, the present invention is not limited to this, and the present invention is also effective in a multi-stage rotary compressor.
[0043]
Further, in the embodiment, the refrigerant gas is discharged in the rotation direction of the electric element 14 by the intermediate discharge pipe 121 and the inlet side of the refrigerant introduction pipe 92 is protruded into the sealed container 12, but the oil discharge is reduced. Therefore, only one of them is effective.
[0044]
【The invention's effect】
As described above in detail, according to the first aspect of the present invention, the hermetic container includes the electric element and the first and second rotary compression elements driven by the electric element, and is compressed by the first rotary compression element. In the rotary compressor that discharges the discharged refrigerant gas into the sealed container and further compresses the discharged intermediate-pressure refrigerant gas by the second rotary compression element, the refrigerant gas compressed by the first rotary compression element is sealed. An intermediate discharge pipe for discharging into the container is provided, and this intermediate discharge pipe discharges the refrigerant gas in the direction of rotation of the electric element, so that it is discharged into the sealed container without hindering the rotation of the electric element. It becomes possible to generate a vortex in the refrigerant gas.
[0045]
As a result, the oil dissolved in the refrigerant gas is smoothly separated from the refrigerant gas by the centrifugal force, adheres to the inner surface of the sealed container and returns to the oil reservoir, thereby reducing the amount of oil entering the second rotary compression element. Thus, it is possible to avoid a decrease in performance of the rotary compressor.
[0046]
According to the invention of claim 2, the internal intermediate pressure type multistage compression type rotary compressor passes the outside of the sealed container in the invention of claim 1 and flows the refrigerant gas in the sealed container into the second rotary compression element. Since the inlet side of the refrigerant inlet tube protrudes and opens into the sealed container, the oil discharged into the sealed container and separated from the refrigerant gas, and the oil attached to the inner surface of the sealed container introduces the refrigerant It becomes difficult to enter the pipe.
[0047]
As a result, the amount of oil that flows into the refrigerant introduction pipe, is sucked into the second rotary compression element, and is discharged to the outside can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an embodiment of an internal intermediate pressure multistage compression rotary compressor according to the present invention.
FIG. 2 is a plan view of a cylinder of a first rotary compression element.
FIG. 3 is a plan sectional view of a sealed container showing an intermediate discharge pipe and a refrigerant introduction pipe inside the sealed container.
4 is a side view of the intermediate discharge pipe of FIG. 3;
FIG. 5 is a plan sectional view of a conventional rotary compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Multistage compression rotary compressor 12 Airtight container 14 Electric element 16 Rotating shaft 24 Rotor 32 1st rotation compression element 34 2nd rotation compression element 36 Intermediate partition plate 38 Cylinder 40 Cylinder 54 Upper support member 88 Oil 92 Refrigerant introduction pipe 121 Intermediate discharge pipe

Claims (2)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮するロータリコンプレッサにおいて、
前記第1の回転圧縮要素で圧縮された冷媒ガスを前記密閉容器内に吐出する中間吐出管を備え、該中間吐出管は前記電動要素の回転方向に向けて冷媒ガスを吐出することを特徴とする内部中間圧型多段圧縮式ロータリコンプレッサ。
An electric element in the sealed container, and first and second rotary compression elements driven by the electric element, and discharging the refrigerant gas compressed by the first rotary compression element into the sealed container; Further, in the rotary compressor for compressing the discharged intermediate pressure refrigerant gas by the second rotary compression element,
An intermediate discharge pipe for discharging the refrigerant gas compressed by the first rotary compression element into the sealed container, wherein the intermediate discharge pipe discharges the refrigerant gas toward the rotation direction of the electric element. Internal intermediate pressure type multistage compression rotary compressor.
前記密閉容器外を通って当該密閉容器内の冷媒ガスを前記第2の回転圧縮要素に導入するための冷媒導入管を備え、該冷媒導入管の入口側を前記密閉容器内に突出して開口させたことを特徴とする請求項1の内部中間圧型多段圧縮式ロータリコンプレッサ。A refrigerant introduction pipe for introducing the refrigerant gas in the sealed container into the second rotary compression element through the outside of the sealed container, and the inlet side of the refrigerant introduction pipe projects into the sealed container and is opened; The internal intermediate pressure type multi-stage compression rotary compressor according to claim 1.
JP2002086393A 2002-03-26 2002-03-26 Internal intermediate pressure type multi-stage compression rotary compressor Expired - Fee Related JP3819795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002086393A JP3819795B2 (en) 2002-03-26 2002-03-26 Internal intermediate pressure type multi-stage compression rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002086393A JP3819795B2 (en) 2002-03-26 2002-03-26 Internal intermediate pressure type multi-stage compression rotary compressor

Publications (2)

Publication Number Publication Date
JP2003286983A JP2003286983A (en) 2003-10-10
JP3819795B2 true JP3819795B2 (en) 2006-09-13

Family

ID=29233009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002086393A Expired - Fee Related JP3819795B2 (en) 2002-03-26 2002-03-26 Internal intermediate pressure type multi-stage compression rotary compressor

Country Status (1)

Country Link
JP (1) JP3819795B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112412798A (en) * 2020-11-30 2021-02-26 安徽美芝精密制造有限公司 Partition plate assembly, compressor and heat pump equipment

Also Published As

Publication number Publication date
JP2003286983A (en) 2003-10-10

Similar Documents

Publication Publication Date Title
EP1520990B1 (en) Rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP3762693B2 (en) Multi-stage rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP3819795B2 (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2004308968A (en) Heat exchanger
JP3895976B2 (en) Multistage rotary compressor
JP2001153076A (en) Two-stage compression rotary compressor
JP4107926B2 (en) Transcritical refrigerant cycle equipment
JP3896020B2 (en) Rotary compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP2004092469A (en) Rotary compressor
WO2007114020A1 (en) Compressor
JP4263047B2 (en) Horizontal type compressor
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP3863799B2 (en) Multi-stage rotary compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP2003286984A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP4100969B2 (en) Rotary compressor
JP4169620B2 (en) Refrigerant cycle equipment
JP2004293330A (en) Rotary compressor
JP2005036741A (en) Horizontal compressor
JP3370041B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees