JP3819474B2 - Fixing heating element, fixing device, and image forming apparatus - Google Patents

Fixing heating element, fixing device, and image forming apparatus Download PDF

Info

Publication number
JP3819474B2
JP3819474B2 JP10343396A JP10343396A JP3819474B2 JP 3819474 B2 JP3819474 B2 JP 3819474B2 JP 10343396 A JP10343396 A JP 10343396A JP 10343396 A JP10343396 A JP 10343396A JP 3819474 B2 JP3819474 B2 JP 3819474B2
Authority
JP
Japan
Prior art keywords
fixing
temperature
heating element
substrate
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10343396A
Other languages
Japanese (ja)
Other versions
JPH0973974A (en
Inventor
幾恵 笹木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP10343396A priority Critical patent/JP3819474B2/en
Publication of JPH0973974A publication Critical patent/JPH0973974A/en
Application granted granted Critical
Publication of JP3819474B2 publication Critical patent/JP3819474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トナーを定着させるのに好適な定着用加熱体、定着装置および画像形成装置に関する。
【0002】
【従来の技術】
従来、複写機、プリンタまたはファクシミリなどの画像形成装置において、トナーを定着させるための定着用加熱体としては、例えば特開平6−202510号公報に記載されるような定着用加熱体(従来技術1)が知られている。この定着用加熱体は、セラミックス製の基板の一面に厚膜抵抗体を形成して発熱体とし、基板の他面に定着用加熱体の温度を検出する感熱抵抗体とこれに通電を行うための導電層を薄膜で形成した構成である。
【0003】
また、同様の定着用加熱体として、特開平5−173439号公報に記載されるような定着用加熱体(従来技術2)が知られている。この定着用加熱体は、従来技術1の定着用加熱体と基本的に同じ構造であるが、感温抵抗体が抵抗発熱体の全長に沿って蛇行して形成されており、また印刷によって厚膜で形成されている。
【0004】
さらに、定着用加熱体ではないが、上記感温抵抗体のように膜状の抵抗体と導電層を有する温度検出素子として特開平6−61013号公報に記載されるサーミスタ(従来技術3)が知られている。このサーミスタは、銀・パラジウム系材料を印刷かつ焼成して形成した一対の電極と、この電極を跨いで電気的な接続を行うように銅および/またはルテニウム系の材料を印刷かつ焼成して形成した厚膜正特性サーミスタ体とを有する。
【0005】
【発明が解決しようとする課題】
従来技術1の定着用加熱体は、定着用加熱体の温度を検出する感温抵抗体とこれに通電を行うための導電層が薄膜で形成されているので、高価な製造設備が必要になるとともに製造時間も多く必要とし製造コストが高くなるという問題がある。
【0006】
また、従来技術1の定着用加熱体の感温抵抗体および導体層部を、従来技術3に記載のサーミスタのように厚膜でサーミスタ体(感温抵抗体)と電極(導電層)を形成した場合には次のような問題がある。すなわち、製造工程における厚膜サーミスタ体の焼成時に、その温度変化に対する抵抗値特性に変化を生じさせるおそれがある。この抵抗値特性の変化とは、抵抗値の変動やいわゆるB定数の変動である。この変化をさらに詳述すると、サーミスタ体と電極との接触部において、前記の焼成時にそれぞれの材料が混じり合う反応が生じるが、この反応は温度検出体の表面まで達しさらに反応が進行すると基板面と平行な方向へも進行してサーミスタ体の抵抗値特性を大きく変化させる。従来技術3のように感温抵抗体が正特性の抵抗材料で形成されている場合はともかく負特性サーミスタの材料として用いられる従来周知の金属の中で、ニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも一種を含むサーミスタ材料では、上記抵抗値特性に非常に大きな変化を発生させ所望の抵抗特性を得ることが非常に困難である。
【0007】
また、従来技術3に記載されるようにサーミスタ体を保護層で被覆した場合には、保護層の材料によっては、焼成後のサーミスタ体に経時的な抵抗値特性の変化を発生させるおそれがある。さらに、サーミスタ体を一切被覆しない場合にもサーミスタ体の経時的な抵抗値特性の変化は発生する。
【0008】
従来技術2の定着用加熱体は、感温抵抗体が抵抗発熱体の全長に沿って蛇行して形成されているので、非常に多量の抵抗材料を必要とするとともに、抵抗発熱体の全長よりも大分小さい被定着体にトナーを定着させるために使用した場合には、被定着体が表面を搬送されない部分の抵抗発熱体上は、定着動作の有無に係わらず温度がほぼ一定であるため、定着動作によって変動する抵抗発熱体の温度変化に対応した正確な温度検出が行えないという問題がある。
【0009】
本発明は、感温抵抗体すなわち温度検出体に係わる改良を行うことにより、上記の問題点を回避し得る定着用加熱体、定着装置および画像形成装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
請求項1の発明の定着用加熱体は、電気絶縁性の細長平板状の基板と;前記基板の一面に被着された抵抗発熱体と;前記基板の他面に厚膜で形成され一部を互いに近接させた一対の検出パターンと;前記抵抗発熱体に対向して形成され、前記一対の検出パターンの近接部と直接的に接触させて電気的に接続した厚さ寸法が12μmより大きく、前記検出パターンの近接部間の幅寸法が抵抗発熱体の幅寸法より小さい、ニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも1種まれた厚膜で形成した温度変化に対して電気抵抗値が変化する温度検出体と;を具備していることを特徴とする。
【0011】
本発明および以下の各発明において、基板は少なくとも抵抗発熱体、検出パターンおよび温度検出体が形成される部分の表面が電気絶縁性を有していればよい。具体的には、アルミナセラミックスをドクターブレード法などを用いて板状に形成したものや、アルミニウムなどの金属板の表面にガラスなどの耐熱性の絶縁層を形成したものでもよい。また基板の形状は印刷・焼成により検出パターンおよび温度検出体を形成できればどのようなものであってもよい。
【0012】
抵抗発熱体は、特に材料や形態は問わないが、最も好適であるのは、銀/パラジウム合金を主成分とする導電ペーストをスクリーン印刷法によって印刷・焼成することによって形成したものである。この抵抗発熱体によればトナーを良好に定着させ得る所要の発熱温度が得られる抵抗値に設定しやすい。
【0013】
検出パターンは、特に材料が限定されるものではないが、銀/パラジウム合金を主成分とする導電ペーストをスクリーン印刷法によって印刷・焼成することによって形成したものが、形成のしやすさの点から最も好適である。
【0014】
温度検出体の厚さ寸法とは、焼成された後の最終状態において測定するものとする。また、この寸法は温度検出体の平面における中央部において測定するものとする。そして、温度検出体の厚さの測定は、例えば表面粗さ計を使用したり、温度検出体の部分で抵抗発熱体を割って断面を電子顕微鏡等を用いて測定すればよい。前記の2つの方法のうち精度の良い測定を行うのには後者の方がより好ましいと思われる。
【0015】
温度検出体は、定着用加熱体上を通常用いられるいかなるサイズの用紙すなわち被定着体を搬送した場合でも、被定着体の通過領域内に温度検出体の全体を位置させることが可能で、かつ定着用加熱体を定着のための所要温度に発熱させたときに定着用加熱体の最も温度が高い部分にだけに温度検出体の全体を位置させることが可能なように、抵抗発熱体に対向し、かつ幅寸法が抵抗発熱体の幅寸法より小さい
【0016】
また、温度検出体は、ニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも1種を含み焼成によりその抵抗値特性が大きく変化しやすい抵抗体である。
【0017】
一対の検出パターンの近接部は、この部分において前述のような大きさの温度検出体によって両パターンを接触して電気的に接続できる間隔であればよい。
【0018】
また、検出パターンおよび温度検出体は基板上に直接形成される必要はなく、例えば、ガラスコート層を介して抵抗発熱体と重ねて形成してもよい。
【0019】
発明において、温度検出体の厚さ寸法を12μm以上とした理由は次のとおりである。すなわち、温度検出体が上記のようにニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも一種を含むサーミスタ材料では、上記抵抗値特性に非常に大きな変化を発生させ所望の抵抗特性を得ることが非常に困難であるが、後でも説明を行う図9および図10に示されるように、厚さ寸法が10μmの温度検出体よりも厚さ寸法が12μmの温度検出体の方が繰り返し焼成を行っても電気抵抗値およびB定数の変化が著しく小さい。よって少なくとも温度検出体の厚さ寸法を12μm以上にすれば、これと同じ程度に上記抵抗値特性の変化が小さくなると考えられるからである。
【0020】
本発明において、厚膜とは基板上に金属微粉末およびガラスを主成分とするインク状のペーストなどを塗布、スプレイまたは印刷した後焼成などによって得られる膜のことを意味する。
【0021】
検出パターンおよび温度検出体は、通常重ね合わせることによって接触させるが、これらの基板に対する上下の位置関係は問はない。
【0022】
温度検出体は、露出させた状態でもよいが、例えばガラスコートや樹脂等で被覆してもよい。
【0023】
次に作用について説明する。本発明の検出パターンおよび温度検出体は、例えば検出パターンを印刷によって基板に塗布し、その後にこの検出パターンに一部を重ねて温度検出体を印刷し、両方を同時に焼成することにより形成される。この焼成の際、検出パターンおよび温度検出体の接触部ではそれぞれの材料が混じり合う反応が生じるが、この接触部を含み温度検出体の厚さ寸法は12μm以上と十分に大きいので、接触部における温度検出体の表面まで前記反応が達しにくく、よって基板面と平行な方向への反応の進行も起こりにくい。また、温度検出体の厚さが大きい分その体積も大きく、温度検出体の体積が反応部分の体積よりも十分に大きくなって、抵抗値特性における前記反応の影響が必要十分に抑制される。そして、このことは検出パターンまたは温度検出体のどちらか一方を先に焼成した場合であっても同様である。さらに、検出パターンの温度検出体の基板に対する上下関係が逆の場合でも同様である。
【0024】
なお、温度検出体の厚さ寸法を必要以上に厚くすることは、抵抗材料に無駄になるだけであり、本発明者らが調べた範囲では、15μmとしたときに少なくとも上記の作用が得られることを確認している。
【0025】
請求項の発明の定着用加熱体は、請求項1記載の定着用加熱体において、温度検出体を覆って基板上に固着させた鉛ガラスを主成分とするガラスコート層を具備していることを特徴とする。
【0026】
本発明において、ガラスコート層は検出パターンとの接触部までを含んで温度検出体の全体を覆って形成されるのが好ましいいが、温度検出体の少なくとも一部を覆っていればよい。また、ガラス材料はガラス単体でも他の材料が含まれていてもよい。形成方法はスクリーン印刷法を用いるのが所定の形状かつ所定の厚さに確実かつ容易に形成できる点で適当であるが、他の方法であってもよい。
【0027】
本発明の定着用加熱体は、ガラスコート層鉛ガラスを主成分としているので、温度検出体の経時的な抵抗値特性の変化の低減作用が確実に得られる。
【0028】
請求項の発明の定着装置は、請求項1または2記載の定着用加熱体と;定着用加熱体と圧接関係を有して配設された加圧用ローラと;を具備していることを特徴とする。
【0029】
本発明において、定着用加熱体と加圧用ローラとは直接接触させる必要はなく、例えば加圧用ローラの回転に伴って連続的に移動する搬送用シートを定着用加熱体と加圧用ローラとの間に設けてもよい。また、同様に定着用加熱体は被定着体と直接接触する必要はなく搬送用シートなどを介して被定着体を加熱してもよい。
【0030】
本発明によれば、定着用加熱体は温度検出体が所要の抵抗値特性を有しているため、定着用加熱体をトナーを定着させる所要の温度に精度良く発熱させることが可能となり、良好な定着を行い得る。
【0031】
請求項の発明の画像形成装置は、媒体に形成された静電潜像にトナーを付着させて反転画像を形成し、この反転画像を被定着体に転写して所定の画像を形成する画像形成手段と;請求項記載の定着装置と;温度検出体の抵抗値に基づいて抵抗発熱体に所定の電圧を印加する温度制御手段と;を具備していることを特徴とする。
【0032】
本発明において、この画像形成装置は例えば複写機、プリンタまたはファクシミリ等である。
【0033】
画像形成手段とは、例えばイオンを放射するなどして媒体を帯電させて静電潜像を形成する手段と、トナーをこの媒体に付着させる手段とを含んでいればよい。
【0034】
温度制御手段は、温度検出体の抵抗値を測定する周知の手段と、例えばこの抵抗値と予め設定した所定抵抗値とを比較した結果に基づいて抵抗発熱体への印加電圧を適宜設定する手段とを含んでいればよい。
【0035】
本発明によれば、請求項の発明の定着装置によりトナーの良好な定着を行えるので、鮮明な画像の形成を行い得る。
【0036】
【発明の実施の形態】
以下、本願発明の実施の形態を図1〜8を参照して説明する。
【0037】
図1は本願発明の定着用加熱体の第1の実施形態を示す一部切欠正面図である。図2は同じく一部切欠背面図である。図3は図1におけるX−X線に沿う断面図である。図4は図3の定着用加熱体の要部を示す一部断面図である。なお、図3および図4は定着用加熱体の各部分が説明しやすいように厚さ方向に拡大して描かれており各部分の寸法比は実物と異なっている。
【0038】
図において、1はアルミナセラミックを細長平板状に形成した電気絶縁性を有する基板である。2はこの基板1の一面1aにその長手方向に沿い銀/パラジウム合金を主成分とする導電性ペーストを印刷・焼成することによって形成された抵抗発熱体である。3aは抵抗発熱体2の一端部に重ねて抵抗発熱体2よりもの幅寸法を大きくして形成された端子部である。4は抵抗発熱体1の一側部に所定の間隔を介してその長手方向に沿って形成され端部が抵抗発熱体の他端部に重ねて形成された通電パターンである。前記端子部および通電パターンは、例えば、銀を主成分とする導電ペーストを印刷・焼成することによって形成されている。通電パターンの他方の端部は、スルーホール5を介して基板1の他面1bに設けた端子部3bと電気的に接続されている。また、基板1の一面1aには、抵抗発熱体2および通電パターン4を覆うようにして、耐熱樹脂製あるいはガラス製の保護層6が形成されている。
【0039】
7a、7bは基板1の他面1bの他端近傍に基板1の長手方向に沿って形成された一対の検出パターンである。検出パターン7a、7bは、通電パターン4と同様に、例えばスクリーン印刷法により銀系の導電ペーストを印刷した後に焼成して形成されている。各検出パターン7a、7bの一端部は、それぞれスルーホール8a、8bを介して基板1の一面1aに設けた温度検出端子9a、9bと電気接続されている。基板1の他面1bにおける検出パターン7a、7b他端部の各検出パターン7a、7bの近接部には、基板1の長手方向と交差する方向で各パターン同士を橋絡するように温度検出体10が形成されている。この温度検出体10はニッケル、モリブデン、マンガン、およびコバルトの内の少なくとも1を含んだ半導体などの抵抗ペーストを、例えばスクリーン印刷法で基板1上に印刷した後に焼成して形成したものである。そして、温度検出体10はその一部を検出パターン7a、7bに直接的に重ねて形成され各パターンに電気的に接続されている。
【0040】
また、図4に示すとおり、温度検出体10は、基板1を介して抵抗発熱体2に対向して形成されているとともに、温度検出体10の幅寸法L1すなわち各検出パターン7a、7b間の間隔は、抵抗発熱体2の幅L2よりも小さく形成されている。さらに、温度検出体の厚さ寸法Aは、温度検出体の平面における中央部分で約12μmに形成されている。
【0041】
以上のような定着用加熱体は、各端子部7a、7b間に所定の電圧を印加することにより抵抗発熱体2が発熱する。そして、各温度検出端子9a、9bを図示しない抵抗発熱体への印加電圧制御回路に接続し、抵抗発熱体2の温度変化に伴った温度検出体10の抵抗値変化を検出し、この温度変化量に基づいて、抵抗発熱体2への印加電圧を制御して抵抗発熱体2の温度制御が行える。
【0042】
本実施形態の定着用加熱体では、温度検出体10は基板1に直接的に形成されているので、非常にすばやく抵抗発熱体の温度を検出することができる。
【0043】
また、本実施形態の定着用加熱体では、温度検出体の厚さは従来のものよりも大きくなるが、基板と接触する面積は大きくならないので、定着用加熱体における温度を検出したい部分のみに熱的に結合させることができ、温度の検出精度はよい。
【0044】
また、温度検出体10の幅寸法LIは、抵抗発熱体2の幅寸法L2より小さくしたので、温度検出体10は抵抗発熱体2の温度変化すなわち定着用加熱体の最も温度が高い部分における温度変化を検出できる。
【0045】
図5は本発明の定着用加熱体の温度検出体の焼成回数と抵抗値との関係を示すグラフである。このグラフは、上記実施形態と同じ材料かつ同じ大きさに形成した温度検出体を、上記検出パターンと同じ材料で形成した一対のパターン上に形成し、これらを同じ回数づつ繰り返し焼成した場合の温度検出体の抵抗値変化を示している。このグラフは、厚さ寸法が10μmと12μmの2種類の温度検出体について示されており、グラフから明らかなように厚さ寸法が12μmの温度検出体すなわち本実施形態の温度検出体の方が繰り返し焼成しても抵抗値の変化が少ないことがわかる。
【0046】
図6は本発明の定着用加熱体の温度検出体の焼成回数とB定数との関係を示すグラフである。このグラフは、上記実施形態と同じ材料かつ同じ大きさに形成した温度検出体を、上記検出パターンと同じ材料で形成した一対のパターン上に形成し、これらを同じ回数づつ繰り返し焼成した場合の温度検出体のB定数の変化を示している。このグラフも図6に示すグラフと同様に、厚さ寸法が10μmと12μmの2種類の温度検出体について示されており、グラフから明らかなように厚さ寸法が12μmの温度検出体すなわち本実施形態の温度検出体の方が繰り返し焼成してもB定数の変化が少ないことがわかる。
【0047】
図7は本願発明の定着用加熱体の第2の実施形態を示す一部切欠背面図である。図8は図7におけるY−Y線に沿う断面図である。なお、図8は定着用加熱体の各部分が説明しやすいように厚さ方向に拡大して描かれており各部分の寸法比は実物と異なっている。
【0048】
この定着法加熱体は、基本的に第1の実施形態の定着用加熱体と同じ構造なので、相違点のみを説明する。図において、71a、71bは一対の検出パターンである。72は検出パターン71a、71bの近接部に基板73の長手方向と交差する方向で各パターン同士を橋絡するように形成された温度検出体である。検出パターン71a、71bと温度検出体72は、第1の実施形態の定着用加熱体と同様に形成されている。74は温度検出体72と検出パターン71a、71bを被覆して基板73に形成されたガラスコート層である。このガラスコート層74は、例えば鉛ガラスを主成分とするガラスペーストをスクリーン印刷法などにより塗布し乾燥させた後に焼成して形成されている。
【0049】
図9は本発明の定着装置の一実施形態を示す断面図である。図において91は例えば上記実施形態の定着用加熱体である。92は、定着用加熱体を保持する樹脂製のホルダーである。93は定着用加熱体91に対向すると共に定着用加熱体と圧接関係を有して配設された加圧用ローラである。この加圧用ローラ93は図示しない電動機によって回転駆動される。94はホルダー92を包むように設けられ加圧用ローラ93の回転に伴って搬送されるポリイミド樹脂製の搬送用シートである。そして、これらの部品は金属製の定着装置本体95内に納められている。
【0050】
この定着装置は、トナー96が転写された用紙97を搬送用シート94を介して定着用加熱体91によって加熱して、トナー96に含まれるマイクロカプセルを溶解し用紙97に定着させる。
【0051】
図10は本発明の画像形成装置の一実施形態を示す概略断面図である。この画像形成装置は複写機である。
【0052】
図において101は画像形成部である。この画像形成部101は、感光ドラム102と、この感光ドラム102の周面に沿って順次配置された、図示しない光学系、現像装置103、転写コロトロン104、クリーナ105、除電ランプ106、および図示しない帯電コロトロンなどを備えている。そして、この画像形成装置101では、帯電コロトロンにより帯電された感光ドラム102に、光学系により所定の画像の静電潜像を形成し、この静電潜像に現像装置103によりトナーを付着させてトナー像を形成する。次いで、転写コロトロン104により感光ドラム102上のトナー像を搬送される用紙107上に転写する。この後、感光ドラム102はクリーナ105により清掃され、除電ランプ106により除去される。また、図において108は例えば上記実施形態の定着装置であり、上記画像形成部で用紙107上に付着したトナーを定着させる。
【0053】
また、この画像形成装置は、定着用加熱体の温度制御を行うための図示しない温度制御部を備えている。この温度制御部は、定着用加熱体の温度検出体の抵抗値を測定する回路と、測定した抵抗値と予め設定した所定抵抗値とを比較しその結果に基づいて抵抗発熱体への印加電圧を設定する回路を備えている。
【0054】
【発明の効果】
請求項1の発明によれば、温度検出体が細長平板状の基板の一対の検出パターンの近接部と直接的に接触させて電気的に接続した厚さ寸法が12μmより大きく、前記検出パターンの近接部間の幅寸法が抵抗発熱体の幅寸法より小さい、ニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも1種まれた厚膜で形成されているので、これらの接触部において温度検出体の表面まで焼成に伴う反応が達しにくく、基板面と平行な方向への反応の進行も起こりにくい。また、温度検出体の厚さが大きいので温度検出体の体積が反応部分の体積よりも十分に大きくなって、抵抗値特性における前記反応の影響が必要十分に抑制される。よって所要の抵抗値特性を得やすい温度検出体を具備した精度の良い発熱温度制御が可能な定着用加熱体を提供できる。
【0055】
請求項の発明によれば、温度検出体を覆って基板上に固着させた鉛ガラスを主成分とするガラスコート層を具備しているので、温度検出体の経時的な抵抗値特性の変化の低減作用が確実になる定着用加熱体を提供できる。
【0056】
請求項の発明によれば、請求項1および2の効果を有する定着装置を提供できる。
【0057】
請求項の発明によれば、請求項1および2の効果を有する画像形成装置を提供できる。
【図面の簡単な説明】
【図1】本願発明の定着用加熱体の第1の実施形態を示す一部切欠正面図である。
【図2】同じく一部切欠背面図である。
【図3】図1におけるX−X線に沿う断面図である。
【図4】図3の定着用加熱体の要部を示す一部断面図である。
【図5】本発明の定着用加熱体の温度検出体の焼成回数と抵抗値との関係を示すグラフである。
【図6】本発明の定着用加熱体の温度検出体の焼成回数とB定数との関係を示すグラフである。
【図7】本願発明の定着用加熱体の第2の実施形態を示す一部切欠背面図である。
【図8】図7におけるY−Y線に沿う断面図である。
【図9】本発明の定着装置の一実施形態を示す断面図である。
【図10】本発明の画像形成装置の一実施形態を示す概略断面図である。
【符号の説明】
1、73・・・基板、2・・・抵抗発熱体、7a、7b、71a、71b・・・検出パターン、10、72・・・温度検出体、74・・・ガラスコート層、91・・・定着用加熱体、93・・・加圧用ローラ、101・・・画像形成部、108・・・定着装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fixing heating body, a fixing device, and an image forming apparatus suitable for fixing toner.
[0002]
[Prior art]
Conventionally, as a fixing heating body for fixing toner in an image forming apparatus such as a copying machine, a printer, or a facsimile, a fixing heating body as disclosed in, for example, Japanese Patent Laid-Open No. 6-202510 (prior art 1). )It has been known. The fixing heating element is a heating element formed by forming a thick film resistor on one surface of a ceramic substrate, and a thermal resistor for detecting the temperature of the fixing heating element on the other surface of the substrate and for energizing the heating resistor. The conductive layer is formed of a thin film.
[0003]
As a similar fixing heating body, a fixing heating body (prior art 2) as described in JP-A-5-173439 is known. This fixing heating element has basically the same structure as the fixing heating element of the prior art 1, but the temperature sensitive resistor is formed to meander along the entire length of the resistance heating element and is thickened by printing. It is formed of a film.
[0004]
Further, a thermistor (prior art 3) described in Japanese Patent Laid-Open No. 6-61013 is used as a temperature detecting element which is not a fixing heating body but has a film-like resistor and a conductive layer like the above-described temperature sensitive resistor. Are known. This thermistor is formed by printing and firing a pair of electrodes formed by printing and firing a silver / palladium-based material and copper and / or ruthenium-based material so as to make electrical connection across the electrodes. A thick film positive temperature coefficient thermistor body.
[0005]
[Problems to be solved by the invention]
The fixing heating body according to the prior art 1 includes a temperature-sensitive resistor for detecting the temperature of the fixing heating body and a conductive layer for energizing the temperature-sensitive resistor, so that an expensive manufacturing facility is required. In addition, there is a problem that a lot of manufacturing time is required and the manufacturing cost becomes high.
[0006]
Further, the thermistor body (temperature-sensitive resistor) and the electrode (conductive layer) are formed with a thick film like the thermistor described in the prior art 3 with the thermosensitive resistor and the conductor layer portion of the fixing heating body of the prior art 1. If you do, there are the following problems. That is, when the thick film thermistor body is fired in the manufacturing process, there is a risk of causing a change in the resistance value characteristic with respect to the temperature change. The change in resistance value characteristic is a change in resistance value or a so-called B constant. This change will be described in more detail. At the contact portion between the thermistor body and the electrode, a reaction occurs in which the respective materials are mixed at the time of firing, but this reaction reaches the surface of the temperature detection body and further proceeds as the substrate surface. The resistance value characteristic of the thermistor body is greatly changed by proceeding in the direction parallel to the thermistor. Among the conventionally known metals used as the material of the negative characteristic thermistor, when the temperature sensitive resistor is formed of a positive resistance material as in the prior art 3, among nickel, molybdenum, manganese, and cobalt In the thermistor material containing at least one of the above, it is very difficult to obtain a desired resistance characteristic by causing a very large change in the resistance value characteristic.
[0007]
Further, when the thermistor body is covered with a protective layer as described in the prior art 3, depending on the material of the protective layer, a change in resistance value characteristics with time may occur in the fired thermistor body. . Furthermore, even when the thermistor body is not covered at all, the resistance value characteristic of the thermistor body changes over time.
[0008]
In the fixing heating body of the prior art 2, since the temperature sensitive resistor is formed to meander along the entire length of the resistance heating element, a very large amount of resistance material is required, and more than the total length of the resistance heating element. However, when the toner is used to fix the toner to a much smaller fixed body, the temperature is almost constant regardless of whether the fixing operation is performed on the resistance heating element where the fixing body is not transported on the surface. There is a problem that accurate temperature detection corresponding to the temperature change of the resistance heating element that varies depending on the fixing operation cannot be performed.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to provide a fixing heating body, a fixing device, and an image forming apparatus that can avoid the above-mentioned problems by making improvements related to a temperature sensitive resistor, that is, a temperature detecting body.
[0010]
[Means for Solving the Problems]
Fixing the heating element of the first aspect of the present invention, an elongated flat substrate of electrically insulating; resistive heating element which is deposited on one surface of the substrate and; partially formed by a thick film on the other surface of the substrate a pair of detection pattern and which is moved close to each other; are formed opposite to the resistance heating element, the thickness of the electrically connected directly to the contacted with the proximal part of the pair of detection pattern is larger than 12 [mu] m, the detection pattern width smaller than the width dimension between adjacent portions of the resistance heating element, nickel, the electrical resistance of molybdenum, manganese, and a temperature change of at least one is formed by containing Mareta thick film of cobalt And a temperature detector whose value changes.
[0011]
In the present invention and each of the following inventions, at least the surface of the portion where the resistance heating element, the detection pattern, and the temperature detection body are formed should have electrical insulation. Specifically, alumina ceramics formed into a plate shape using a doctor blade method or the like, or a heat-resistant insulating layer such as glass formed on the surface of a metal plate such as aluminum may be used. The substrate may have any shape as long as the detection pattern and the temperature detection body can be formed by printing and baking.
[0012]
The resistance heating element is not particularly limited in material and form, but is most preferably formed by printing and baking a conductive paste mainly composed of a silver / palladium alloy by a screen printing method. According to this resistance heating element, it is easy to set a resistance value at which a required heat generation temperature capable of satisfactorily fixing the toner is obtained.
[0013]
The material of the detection pattern is not particularly limited, but the detection pattern is formed by printing and baking a conductive paste mainly composed of silver / palladium alloy by a screen printing method from the viewpoint of ease of formation. Most preferred.
[0014]
The thickness dimension of the temperature detector is measured in the final state after firing. In addition, this dimension is measured at the center of the plane of the temperature detector. The thickness of the temperature detector may be measured, for example, by using a surface roughness meter, or by dividing the resistance heating element at the temperature detector and measuring the cross section using an electron microscope or the like. Of the above two methods, the latter seems to be more preferable for performing accurate measurement.
[0015]
The temperature detection body can position the entire temperature detection body within the passing area of the fixing body, even when a sheet of any size normally used on the heating body for fixing, that is, the fixing body is transported, and When the heating element for fixing is heated to the required temperature for fixing, it faces the resistance heating element so that the entire temperature detector can be positioned only at the highest temperature part of the fixing heater. And the width dimension is smaller than the width dimension of the resistance heating element .
[0016]
Further, the temperature detector is a resistor that includes at least one of nickel, molybdenum, manganese, and cobalt, and whose resistance value characteristics are likely to change greatly by firing.
[0017]
The proximity part of a pair of detection patterns should just be the space | interval which can contact both patterns by the temperature detection body of the magnitude | size as mentioned above in this part, and can connect electrically.
[0018]
Further, the detection pattern and the temperature detection body do not need to be directly formed on the substrate, and may be formed, for example, so as to overlap the resistance heating element via a glass coat layer.
[0019]
In the present invention, the reason why the thickness of the temperature detector is set to 12 μm or more is as follows. That is, in the thermistor material in which the temperature detector includes at least one of nickel, molybdenum, manganese, and cobalt as described above, it is extremely possible to obtain a desired resistance characteristic by generating a very large change in the resistance value characteristic. Although it is difficult, as shown in FIGS. 9 and 10 which will be described later, the temperature detection body having a thickness dimension of 12 μm is repeatedly fired than the temperature detection body having a thickness dimension of 10 μm. Also, the change of the electric resistance value and the B constant is remarkably small. Therefore, if at least the thickness dimension of the temperature detection body is set to 12 μm or more, it is considered that the change in the resistance value characteristic is reduced to the same extent as this.
[0020]
In the present invention, the thick film means a film obtained by applying, spraying or printing an ink-like paste mainly composed of fine metal powder and glass on a substrate and then baking.
[0021]
The detection pattern and the temperature detection body are usually brought into contact with each other by being overlapped, but there is no problem with the vertical positional relationship with respect to these substrates.
[0022]
The temperature detector may be in an exposed state, but may be covered with, for example, a glass coat or a resin.
[0023]
Next, the operation will be described. The detection pattern and the temperature detection body of the present invention are formed, for example, by applying the detection pattern to a substrate by printing, then printing the temperature detection body with a part superimposed on the detection pattern, and firing both at the same time. . During the firing, a reaction occurs in which the respective materials are mixed in the contact portion of the detection pattern and the temperature detection body, but the thickness dimension of the temperature detection body including this contact portion is sufficiently large as 12 μm or more. The reaction does not easily reach the surface of the temperature detector, and therefore the reaction does not easily progress in a direction parallel to the substrate surface. Further, the volume of the temperature detection body is increased as the thickness of the temperature detection body is increased, and the volume of the temperature detection body is sufficiently larger than the volume of the reaction portion, so that the influence of the reaction on the resistance characteristic is sufficiently and sufficiently suppressed. This also applies to the case where either the detection pattern or the temperature detection body is fired first. Further, the same applies to the case where the vertical relationship of the detection pattern with respect to the substrate of the temperature detector is reversed.
[0024]
It should be noted that increasing the thickness of the temperature detector more than necessary only wastes the resistance material, and within the range investigated by the present inventors, at least the above-described effect can be obtained when the thickness is 15 μm. I have confirmed that.
[0025]
According to a second aspect of the present invention, there is provided a fixing heating body according to the first aspect, wherein the fixing heating body according to the first aspect includes a glass coat layer mainly composed of lead glass that covers the temperature detection body and is fixed on the substrate. It is characterized by that.
[0026]
In the present invention, the glass coating layer, bur is preferably formed over the entire temperature detector comprise up contact portion with the detection pattern, it is sufficient to cover at least a portion of the temperature detector . Further, the glass material may be a single glass or other materials. As the forming method, it is appropriate to use a screen printing method in that it can be reliably and easily formed into a predetermined shape and a predetermined thickness, but other methods may be used.
[0027]
Fixing heater of the present invention, the glass coating layer is mainly composed of lead glass, reducing the action of the change over time in the resistance characteristic of the temperature detecting element can be surely obtained.
[0028]
According to a third aspect of the present invention, there is provided a fixing device comprising: the fixing heating body according to the first or second aspect; and a pressing roller disposed in pressure contact with the fixing heating body. Features.
[0029]
In the present invention, the fixing heating body and the pressure roller do not need to be in direct contact. For example, a conveying sheet that continuously moves as the pressure roller rotates is disposed between the fixing heating body and the pressure roller. May be provided. Similarly, the fixing heating body does not need to be in direct contact with the fixing body, and the fixing body may be heated via a conveyance sheet or the like.
[0030]
According to the present invention, since the temperature detection body has a required resistance value characteristic, the fixing heating body can accurately generate heat to the required temperature for fixing the toner, and is excellent. Fixing can be performed.
[0031]
According to a fourth aspect of the present invention, there is provided an image forming apparatus in which toner is attached to an electrostatic latent image formed on a medium to form a reverse image, and the reverse image is transferred to a fixing member to form a predetermined image. a forming means; characterized in that it comprises a; and fixing device according to claim 3, wherein; the temperature control means for applying a predetermined voltage to the resistance heating body based on the resistance value of the temperature detector.
[0032]
In the present invention, the image forming apparatus is, for example, a copying machine, a printer, or a facsimile.
[0033]
The image forming means only needs to include means for charging the medium to form an electrostatic latent image by, for example, radiating ions, and means for attaching the toner to the medium.
[0034]
The temperature control means is a means for appropriately setting a voltage applied to the resistance heating element based on a result of comparing, for example, a known value for measuring the resistance value of the temperature detector and a predetermined resistance value set in advance. As long as it contains.
[0035]
According to the present invention, since the toner can be satisfactorily fixed by the fixing device according to the third aspect of the present invention, a clear image can be formed.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to FIGS.
[0037]
FIG. 1 is a partially cutaway front view showing a first embodiment of a fixing heater according to the present invention. FIG. 2 is also a partially cutaway rear view. 3 is a cross-sectional view taken along line XX in FIG. FIG. 4 is a partial cross-sectional view showing a main part of the fixing heating body of FIG. 3 and 4 are enlarged and drawn in the thickness direction so that each part of the fixing heating body can be easily explained, and the dimensional ratio of each part is different from the actual one.
[0038]
In the figure, reference numeral 1 denotes an electrically insulating substrate in which an alumina ceramic is formed in an elongated flat plate shape. Reference numeral 2 denotes a resistance heating element formed by printing and baking a conductive paste mainly composed of a silver / palladium alloy along the longitudinal direction on one surface 1a of the substrate 1. Reference numeral 3 a denotes a terminal portion formed so as to overlap with one end portion of the resistance heating element 2 and to have a width dimension larger than that of the resistance heating element 2. Reference numeral 4 denotes an energization pattern formed on one side of the resistance heating element 1 along a longitudinal direction thereof with a predetermined interval, and having an end overlapped with the other end of the resistance heating element. The terminal portion and the energization pattern are formed, for example, by printing and baking a conductive paste mainly composed of silver. The other end portion of the energization pattern is electrically connected to a terminal portion 3 b provided on the other surface 1 b of the substrate 1 through the through hole 5. A protective layer 6 made of heat-resistant resin or glass is formed on one surface 1 a of the substrate 1 so as to cover the resistance heating element 2 and the energization pattern 4.
[0039]
7 a and 7 b are a pair of detection patterns formed along the longitudinal direction of the substrate 1 in the vicinity of the other end 1 b of the other surface 1 b of the substrate 1. Similarly to the energization pattern 4, the detection patterns 7a and 7b are formed by, for example, printing a silver-based conductive paste by a screen printing method and then baking it. One end portions of the detection patterns 7a and 7b are electrically connected to temperature detection terminals 9a and 9b provided on one surface 1a of the substrate 1 through through holes 8a and 8b, respectively. A temperature detector is provided so that each pattern is bridged in the direction intersecting with the longitudinal direction of the substrate 1 in the vicinity of the detection patterns 7a and 7b on the other surface 1b of the substrate 1 at the other end of the detection pattern 7a and 7b. 10 is formed. The temperature detector 10 is formed by printing a resistance paste such as a semiconductor containing at least one of nickel, molybdenum, manganese, and cobalt on the substrate 1 by, for example, a screen printing method and then baking it. A part of the temperature detection body 10 is directly overlapped with the detection patterns 7a and 7b, and is electrically connected to each pattern.
[0040]
Further, as shown in FIG. 4, the temperature detector 10 is formed to face the resistance heating element 2 with the substrate 1 interposed therebetween, and the width L1 of the temperature detector 10, that is, between the detection patterns 7a and 7b. The interval is formed smaller than the width L2 of the resistance heating element 2. Further, the thickness A of the temperature detection body is formed to be about 12 μm at the central portion in the plane of the temperature detection body.
[0041]
In the fixing heating body as described above, the resistance heating element 2 generates heat when a predetermined voltage is applied between the terminal portions 7a and 7b. Then, each temperature detection terminal 9a, 9b is connected to a voltage control circuit applied to the resistance heating element (not shown) to detect a change in the resistance value of the temperature detection body 10 accompanying the temperature change of the resistance heating element 2, and this temperature change Based on the amount, the temperature applied to the resistance heating element 2 can be controlled by controlling the voltage applied to the resistance heating element 2.
[0042]
In the fixing heating body of the present embodiment, the temperature detection body 10 is directly formed on the substrate 1, so that the temperature of the resistance heating element can be detected very quickly.
[0043]
Further, in the fixing heating body of the present embodiment, the thickness of the temperature detection body is larger than that of the conventional one, but since the area in contact with the substrate does not increase, only the portion where the temperature in the fixing heating body is desired to be detected. It can be thermally coupled, and the temperature detection accuracy is good.
[0044]
Further, since the width dimension LI of the temperature detection element 10 is smaller than the width dimension L2 of the resistance heating element 2, the temperature detection element 10 changes the temperature of the resistance heating element 2, that is, the temperature at the highest temperature portion of the fixing heating element. Change can be detected.
[0045]
FIG. 5 is a graph showing the relationship between the number of firings and the resistance value of the temperature detection body of the fixing heating body of the present invention. This graph shows the temperature when a temperature detection body formed with the same material and size as the above embodiment is formed on a pair of patterns formed with the same material as the detection pattern, and these are repeatedly fired the same number of times. The resistance value change of the detection body is shown. This graph shows two types of temperature detectors having a thickness dimension of 10 μm and 12 μm. As is apparent from the graph, the temperature detector having a thickness dimension of 12 μm, that is, the temperature detector of the present embodiment is better. It can be seen that there is little change in resistance value even after repeated firing.
[0046]
FIG. 6 is a graph showing the relationship between the number of firings of the temperature detector of the fixing heater of the present invention and the B constant. This graph shows the temperature when a temperature detection body formed with the same material and size as the above embodiment is formed on a pair of patterns formed with the same material as the detection pattern, and these are repeatedly fired the same number of times. The change of the B constant of a detection body is shown. Similarly to the graph shown in FIG. 6, this graph also shows two types of temperature detectors having a thickness dimension of 10 μm and 12 μm. As is apparent from the graph, the temperature detector having a thickness dimension of 12 μm, that is, the present embodiment. It can be seen that the temperature sensor in the form has less change in the B constant even when repeatedly fired.
[0047]
FIG. 7 is a partially cutaway rear view showing a second embodiment of the fixing heating body of the present invention. FIG. 8 is a sectional view taken along line YY in FIG. Note that FIG. 8 is drawn in an enlarged manner in the thickness direction so that each part of the fixing heater is easy to explain, and the dimensional ratio of each part is different from the actual one.
[0048]
Since this fixing method heating body is basically the same structure as the fixing heating body of the first embodiment, only the differences will be described. In the figure, 71a and 71b are a pair of detection patterns. Reference numeral 72 denotes a temperature detector formed so as to bridge each pattern in the direction intersecting the longitudinal direction of the substrate 73 in the vicinity of the detection patterns 71a and 71b. The detection patterns 71a and 71b and the temperature detection body 72 are formed in the same manner as the fixing heating body of the first embodiment. Reference numeral 74 denotes a glass coat layer formed on the substrate 73 so as to cover the temperature detector 72 and the detection patterns 71a and 71b. The glass coat layer 74 is formed by, for example, applying a glass paste containing lead glass as a main component by screen printing or the like and drying it, followed by baking.
[0049]
FIG. 9 is a cross-sectional view showing an embodiment of the fixing device of the present invention. In the figure, for example, 91 is the fixing heating body of the above embodiment. A resin holder 92 holds the fixing heating body. Reference numeral 93 denotes a pressure roller which faces the fixing heating body 91 and is disposed in pressure contact with the fixing heating body. The pressure roller 93 is rotationally driven by an electric motor (not shown). Reference numeral 94 denotes a polyimide resin carrying sheet which is provided so as to enclose the holder 92 and is carried along with the rotation of the pressure roller 93. These components are housed in a metal fixing device main body 95.
[0050]
In this fixing device, the sheet 97 on which the toner 96 is transferred is heated by the fixing heating body 91 via the conveying sheet 94, and the microcapsules contained in the toner 96 are dissolved and fixed on the sheet 97.
[0051]
FIG. 10 is a schematic sectional view showing an embodiment of the image forming apparatus of the present invention. This image forming apparatus is a copying machine.
[0052]
In the figure, reference numeral 101 denotes an image forming unit. The image forming unit 101 includes a photosensitive drum 102, an optical system (not shown), a developing device 103, a transfer corotron 104, a cleaner 105, a static elimination lamp 106, and a static elimination lamp 106, which are sequentially arranged along the circumferential surface of the photosensitive drum 102. It has a charged corotron. In the image forming apparatus 101, an electrostatic latent image of a predetermined image is formed on the photosensitive drum 102 charged by the charging corotron by an optical system, and toner is attached to the electrostatic latent image by the developing device 103. A toner image is formed. Next, the toner image on the photosensitive drum 102 is transferred onto the conveyed paper 107 by the transfer corotron 104. Thereafter, the photosensitive drum 102 is cleaned by a cleaner 105 and removed by a static elimination lamp 106. In the figure, reference numeral 108 denotes the fixing device of the above-described embodiment, for example, which fixes the toner attached on the paper 107 by the image forming unit.
[0053]
The image forming apparatus also includes a temperature control unit (not shown) for controlling the temperature of the fixing heating body. This temperature control unit compares the resistance value of the temperature detection body of the fixing heating body with the measured resistance value and a predetermined resistance value set in advance, and based on the result, the applied voltage to the resistance heating element A circuit for setting is provided.
[0054]
【The invention's effect】
According to the first aspect of the present invention, the thickness dimension in which the temperature detector is in direct contact with and electrically connected to the adjacent portions of the pair of detection patterns of the elongated flat plate-like substrate is greater than 12 μm, width between adjacent portions is smaller than the width of the resistance heating element, nickel, molybdenum, since manganese, and at least one of cobalt is formed by including Mareta thick film, the temperature detected in these contact portions The reaction accompanying the firing hardly reaches the surface of the body, and the reaction does not easily progress in the direction parallel to the substrate surface. Moreover, since the thickness of the temperature detection body is large , the volume of the temperature detection body is sufficiently larger than the volume of the reaction portion, and the influence of the reaction on the resistance characteristic is sufficiently and sufficiently suppressed. Therefore, it is possible to provide a fixing heating body capable of accurate heat generation temperature control provided with a temperature detection body that easily obtains a required resistance value characteristic.
[0055]
According to the second aspect of the present invention, since the glass coating layer mainly composed of lead glass covering the temperature detection body and fixed on the substrate is provided, the change in resistance value characteristics of the temperature detection body over time It is possible to provide a fixing heating body in which the effect of reducing the temperature is sure .
[0056]
According to the invention of claim 3 , it is possible to provide a fixing device having the effects of claims 1 and 2 .
[0057]
According to invention of Claim 4, the image forming apparatus which has the effect of Claim 1 and 2 can be provided.
[Brief description of the drawings]
FIG. 1 is a partially cutaway front view showing a first embodiment of a fixing heater according to the present invention.
FIG. 2 is a partially cutaway rear view.
FIG. 3 is a cross-sectional view taken along line XX in FIG.
4 is a partial cross-sectional view illustrating a main part of the fixing heating body in FIG. 3;
FIG. 5 is a graph showing the relationship between the number of firings and the resistance value of the temperature detection body of the fixing heating body of the present invention.
FIG. 6 is a graph showing the relationship between the number of firings of the temperature detecting body of the fixing heating body of the present invention and the B constant.
FIG. 7 is a partially cutaway rear view showing a second embodiment of the fixing heating body of the present invention.
8 is a cross-sectional view taken along line YY in FIG.
FIG. 9 is a cross-sectional view showing an embodiment of a fixing device of the present invention.
FIG. 10 is a schematic cross-sectional view showing an embodiment of an image forming apparatus of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 73 ... Board | substrate, 2 ... Resistance heating element, 7a, 7b, 71a, 71b ... Detection pattern 10, 72 ... Temperature detection body, 74 ... Glass coat layer, 91 ...・ Fixing heater, 93... Pressing roller, 101... Image forming unit, 108.

Claims (4)

電気絶縁性の細長平板状の基板と;
前記基板の一面に被着された抵抗発熱体と;
前記基板の他面に厚膜で形成され一部を互いに近接させた一対の検出パターンと;
前記抵抗発熱体に対向して形成され、前記一対の検出パターンの近接部と直接的に接触させて電気的に接続した厚さ寸法が12μmより大きく、前記検出パターンの近接部間の幅寸法が抵抗発熱体の幅寸法より小さい、ニッケル、モリブデン、マンガン、およびコバルトのうちの少なくとも1種まれた厚膜で形成した温度変化に対して電気抵抗値が変化する温度検出体と;
を具備していることを特徴とする定着用加熱体。
An electrically insulating elongated flat substrate;
A resistance heating element which is deposited on a surface of the substrate;
A pair of detection patterns were close to each other partially formed by a thick film on the other surface of the substrate;
The formed opposite to the resistance heating element, the thickness dimension that is electrically connected in direct contact and thereby the proximal part of the pair of detection pattern is larger than 12 [mu] m, the width dimension between adjacent portions of the detection pattern smaller width of the resistance heating element, nickel, molybdenum, manganese, and a temperature detector which electrical resistance varies with temperature changes at least one is formed by containing Mareta thick film of cobalt;
A heating element for fixing, comprising:
温度検出体を覆って基板上に固着させた鉛ガラスを主成分とするガラスコート層を具備していることを特徴とする定着用加熱体。A fixing heating body comprising a glass coat layer mainly composed of lead glass which covers a temperature detection body and is fixed on a substrate . 請求項1または2記載の定着用加熱体と;
定着用加熱対と圧接関係を有して配設された加圧用ローラと;
を具備していることを特徴とする定着装置。
The fixing heating body according to claim 1 or 2 ;
A pressure roller disposed in pressure contact with the fixing heating pair;
A fixing device.
媒体に形成された静電潜像にトナーを付着させて反転画像を形成し、この反転画像を被定着体に転写して所定の画像を形成する画像形成手段と;
請求項記載の定着装置と;
温度検出体の抵抗値変化量に基づいて抵抗発熱体に所定の電圧を印加する温度制御手段と;
を具備していることを特徴とする画像形成装置。
Image forming means for forming a reverse image by attaching toner to an electrostatic latent image formed on a medium, and transferring the reverse image to a fixed body;
A fixing device according to claim 3 ;
Temperature control means for applying a predetermined voltage to the resistance heating element based on the resistance value change amount of the temperature detection element;
An image forming apparatus comprising:
JP10343396A 1995-06-30 1996-03-28 Fixing heating element, fixing device, and image forming apparatus Expired - Fee Related JP3819474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10343396A JP3819474B2 (en) 1995-06-30 1996-03-28 Fixing heating element, fixing device, and image forming apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP16670295 1995-06-30
JP7-166702 1995-06-30
JP10343396A JP3819474B2 (en) 1995-06-30 1996-03-28 Fixing heating element, fixing device, and image forming apparatus

Publications (2)

Publication Number Publication Date
JPH0973974A JPH0973974A (en) 1997-03-18
JP3819474B2 true JP3819474B2 (en) 2006-09-06

Family

ID=26444068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10343396A Expired - Fee Related JP3819474B2 (en) 1995-06-30 1996-03-28 Fixing heating element, fixing device, and image forming apparatus

Country Status (1)

Country Link
JP (1) JP3819474B2 (en)

Also Published As

Publication number Publication date
JPH0973974A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US6734397B2 (en) Heater having at least one cycle path resistor and image heating apparatus therein
EP1166186B1 (en) Heater for use in electrophotographic image fixing device
JP5819533B2 (en) Heater, fixing device including the same, image forming apparatus, and heating apparatus
JPH0794260A (en) Heater and fixing device
JP3819474B2 (en) Fixing heating element, fixing device, and image forming apparatus
JPH0855674A (en) Heater device, fixing device, and image forming device
JP3923644B2 (en) Heating element, fixing device and image forming apparatus
JP3482000B2 (en) Heater and fixing device and fixing device built-in device
JP2862465B2 (en) Heating roller for fixing toner
JPH09266058A (en) Roll heater, fixing device, and image forming device
JP3811199B2 (en) Heater for fixing toner, fixing device, and image forming apparatus
JPH05265350A (en) Fixing device for image forming device
JPH10104977A (en) Fixing heater, fixing device and image forming device
JPH11162618A (en) Heater device and fixing device
JP2001244055A (en) Plate heater, fixing unit and image forming device
JPH096161A (en) Heater, heating device and image forming device
JPH0855671A (en) Heater device, fixing device, and image forming device
JPH05273880A (en) Heating device
JPH09307207A (en) Wiring base, heater, fixing apparatus and image forming apparatus
JP2000077168A (en) Heating body, fixing device, and image forming device
JP2001209264A (en) Fixation heater, fixing device, and image forming device
JP2009009017A (en) Plate-like heater, heating apparatus and image forming apparatus
JPH09251256A (en) Fixing heater and fixing device and image forming device
JPH11272101A (en) Fixing heater, fixing device and image forming device
JPH1165338A (en) Heating body, heating device and image forming device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees