JP3817968B2 - Glass funnel for cathode ray tube and cathode ray tube - Google Patents

Glass funnel for cathode ray tube and cathode ray tube Download PDF

Info

Publication number
JP3817968B2
JP3817968B2 JP13991199A JP13991199A JP3817968B2 JP 3817968 B2 JP3817968 B2 JP 3817968B2 JP 13991199 A JP13991199 A JP 13991199A JP 13991199 A JP13991199 A JP 13991199A JP 3817968 B2 JP3817968 B2 JP 3817968B2
Authority
JP
Japan
Prior art keywords
axis
yoke
glass funnel
cathode ray
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13991199A
Other languages
Japanese (ja)
Other versions
JP2000331627A5 (en
JP2000331627A (en
Inventor
健太郎 龍腰
敏英 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP13991199A priority Critical patent/JP3817968B2/en
Publication of JP2000331627A publication Critical patent/JP2000331627A/en
Publication of JP2000331627A5 publication Critical patent/JP2000331627A5/ja
Application granted granted Critical
Publication of JP3817968B2 publication Critical patent/JP3817968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主にテレビジョン放送受信等に用いられる陰極線管のためのガラスファンネル及びこれを用いた陰極線管に関する。
【0002】
【従来の技術】
テレビジョン放送受信等に用いる陰極線管1は、図5に示すように、基本的には映像を表示する矩形状のフェースを有する略箱型のパネル部3と漏斗状のファンネル部(ガラスファンネル)2で構成されており、これらパネル部3とガラスファンネル2(以下これら両者をガラスバルブとする)は、半田ガラス等からなる封着部7で接合されている。そして、前記ファンネル部2はパネル部と接合する略矩形の開口端部を備え、偏向コイルを装着するヨーク部4、電子銃17を格納するネック部5、ヨーク部と開口端部をつなぐボディ部6から構成されている。
【0003】
図5において、8はパネルスカート部、9は映像を映し出すパネルフェース部、10は強度を保持するための防爆補強バンド、12は電子線の照射により蛍光を発する蛍光膜、13は蛍光膜での発光を前方へ反射するアルミニウム膜、14は電子線が照射する蛍光体の位置を特定するシャドウマスク、15はシャドウマスク14をパネルスカート部8の内面に固定するためのスタッドピンである。また、Aはネック部5の中心軸とパネル部3の中心を結ぶ管軸を示している。前記蛍光膜をパネル部内面に形成したスクリーンは、前記管軸において直交する長軸及び短軸にほぼ平行な4辺で構成された略矩形をなしている。
【0004】
この漏斗状のガラスファンネルのプレス成形方法としては、現在、一般的には図6に示す構造のものを使用している。すなわち、ガラスファンネルは、所定量の溶融ガラス塊(ゴブ)21を、ボトム金型22とリング金型23を組み合わせたモールド内に充填保持し、押し型(プランジャ)24を下降してプレス成形することにより得られる。このとき、図7に示すようにゴブ21は、初期の塊からプランジャ24によって力を加えられることにより、徐々にモールドキャビティ内を矢印25の方向に流動する。この現象をフィルアップと呼ぶ。そして、最終的に図8に示すようにガラスファンネル2のボディ部が形成される。その後、プランジャ24が上昇して離れ、空気冷却をボトム金型22内で受けた後、ボトム金型22から取り出され、次工程へと搬送される。
【0005】
ガラスファンネルの開放端部の形状は略矩形で、一般的にアスペクト比3:4のものと9:16のものがある。一方、ゴブの初期の形状は球状又は円柱状であり、これを前記方法で成形する場合、略矩形であるガラスファンネル形状が原因となって各軸断面におけるフィルアップのタイミングが均一になりにくい。
【0006】
フィルアップのタイミングを決定する要因としては、ゴブ形状、各軸断面でのヨーク端部から開口端部までの沿面距離、ガラスの肉厚分布による流動抵抗、金型の温度分布等が考えられるが、特に沿面距離については従来の単純漏斗状では必然的に短軸断面が最短で対角軸が最長となる。このため、実際のプレス成形作業では短軸断面のフィルアップのタイミングが早く、対角軸断面が最終になり、かかるフィルアップのタイミングのずれを原因とする金型温度の不均一分布を引き起こし、その金型温度分布がさらにフィルアップのタイミングのずれを助長させるという悪循環を生んでいる。このとき、フィルアップが遅い対角軸断面の金型温度、特にリング金型の温度が低下すると開口端部に発生するクラックが増加し、成形作業性及び生産性を著しく低下させる。
【0007】
さらに、このずれが大きくなると、対角軸断面のフィルアップが完了しないうちにプレスが終了し、形状不良で廃棄処分される製品が発生することになるため、重大な生産性低下の原因の一つになっている。また、この金型温度分布の不均一は金型の熱間形状精度にも影響を及ぼし、嵌合精度を悪化させることによるガラスのはみ出しや、製品形状の規格はずれ等の成形作業性及び生産性を低下させる原因にもなっている。
【0008】
また、従来の単純漏斗状では、陰極線管になった際にかかる真空応力に対する剛性も不十分で、バルブ全体の軽量化を進める場合に大きな障害になっている。
【0009】
【発明が解決しようとする課題】
近年、陰極線管の大型化やアスペクト比9:16の品種の増加に伴い、ガラスファンネルの成形の際、フィルアップのタイミングのずれの大きい品種が増加し、金型温度分布の悪化を原因とするガラスのはみ出し、金型自身の熱変形による寸法精度の悪化等が原因で、大きく生産性及び作業性を悪化させている。
【0010】
現状のガラスファンネル形状を調査してみると、表1に示すように、短軸断面と対角軸断面における沿面距離の比率D/Mで評価すると、アスペクト比3:4の品種で1.45程度、9:16の品種で1.60程度となっており、短軸断面と対角軸断面における直線最短距離の比率DS/MSもアスペクト比に応じこの比率とほとんど変わらない。ここで、沿面距離はボディ部外面に沿って測定するヨーク端部から開口端部までの距離、直線最短距離はボディ部外面のヨーク端部と開口端部を直線で結ぶ距離であり、以下の説明における沿面距離及び直線最短距離はすべてこの定義による。
【0011】
さらに、これら両軸における直線最短距離と沿面距離の比率(D/M)/(DS/MS)をとると、いずれも0.99程度となり、これまでのガラスファンネルでは少なくとも短軸と対角軸において、ガラスファンネルの平面的なアスペクト比3:4及び9:16の比率に応じた沿面距離差が必ず発生してしまう。
【0012】
本発明の目的は、このような沿面距離差を解消し、フィルアップのタイミングが均一で生産性が高く、かつ真空応力に対する剛性も高いガラスファンネルを提供することである。
【0013】
【課題を解決するための手段】
本発明は、前述の課題を解決すべくなされたものであり、ガラスファンネルのボディ部の形状を改良することにより、各軸断面間の沿面距離差を解消して、フィルアップのタイミングの適正化を図り、ガラスファンネルの生産性及び作業性の向上を達成し、かつバルブの真空応力に対する剛性も高めるものである。
【0014】
すなわち、本発明はパネル部と接合する略矩形の開口端部を備え、電子銃を格納するネック部と、偏向コイルを装着するヨーク部と、前記開口端部とヨーク部の間を形成するボディ部からなる陰極線管用ガラスファンネルにおいて、前記ボディ部は開口端部からヨーク部に向かって連続的に変化する漏斗状形状であり、短軸断面におけるヨーク端部から開口端部までの沿面距離をM対角軸断面におけるヨーク端部から開口端部までの沿面距離をD、短軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をMS、及び対角軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0であることを特徴とする陰極線管用ガラスファンネルを提供する。
【0015】
【発明の実施の形態】
本発明のガラスファンネルは、前記したようにパネル部と接合する略矩形の開口端部を備え、偏向コイルを装着するヨーク部、電子銃を格納するネック部、ヨーク部と開口端部をつなぐボディ部から構成される中空ガラス体で、該ボディ部は内面及び外面ともに矩形状の開口端部からヨーク部に向かって連続的に変化し、全体が漏斗状をなしている。そして、ガラスファンネルの偏平化及び開口端部の縦横比等により漏斗状の形態又は輪郭が変わることはあっても、(D/M)/(DS/MS)はファンネルの形状を示す各軸における直線最短距離で無次元化されるので、本発明による効果は同じように得られる。
【0016】
本発明は、従来形状のガラスファンネルの成形性を高めるために得られたものであり、短軸断面における沿面距離をM、対角軸断面における沿面距離をD、短軸断面における直線最短距離をMS、対角軸断面における直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0に設定することを構成要件としている。また、この設定によれば、ガラスファンネルは少なくとも短軸側のボディ部が外側に突出する比較的鋭い角部を持つ構造になり、これはファンネル自身の真空応力に対する剛性を高める作用を発揮する。
【0017】
(D/M)/(DS/MS)が0.88より大きくなると、従来のガラスファンネルと実質的に同一となり、課題の解決ができなくなる。(DS/MS)は開口端部とヨーク端部の位置が決まれば固定値となるので、(D/M)が小さくなるほど、(D/M)/(DS/MS)の値は小さくなる。しかし、Dに対してMを大きくすると(D/M)を小さくできるが、MがDより大きくなると、D/M≧1.0を満足できなくなる。つまり、D/M≧1.0を満たす範囲で、(D/M)/(DS/MS)≦0.88にすることが重要である。
【0018】
図1は、本発明のコンセプトをわかりやすくするために、各軸の断面形状を簡略化して示した図である。ここで、断面形状とは各軸の断面における外面形状を指し、31、32、33はそれぞれ短軸、対角軸、長軸の各断面における外面形状である。各断面における外面形状を、例えば短軸における外面形状を短軸断面と略称する。また、これら各軸断面におけるヨーク端部30と各軸の開口端部図34を結ぶ直線最短距離35は破線で示してある。
【0019】
これら各断面において、ヨーク端部30と開口端部34を両端とする31、32、33の長さが各軸における沿面距離である。したがって、短軸断面31の沿面距離がM、対角軸断面32の沿面距離がDとなり、短軸断面31及び対角軸断面32の直線最短距離がそれぞれMS及びSに相当する。
【0020】
短軸の断面形状31は、ボディ部を外側に突出させて従来の略円弧形状に比較して直角状にすることにより、沿面距離の増加を実現している。ここで突出の態様は特定されないが、沿面距離はこの突出の程度が大きくなるほど長くなる。図1の例では、ボディ部は最大突出部を折り曲げ点として全体的に直角状になっており、開口端部に向かってほぼ直線状に延びる側面11と、ヨーク端部に向かって延びる上面16により形成されている。そして、この沿面距離の増加は、(D/M)/(DS/MS)を0.80程度またはこれ以下にするのが最も望ましい。
【0021】
実際の形状においては、これら側面11及び上面16を必要に応じて適度に弯曲させたり、両面の結合するコーナー部及び上面とヨーク端部との結合部を円弧にすることができる。さらに、成形性の面からは側面11で例えば約12度のテーパー角度、上面16を曲率半径が10000m程度の曲面として設定すると更によい。また、他の実施態様としては短軸断面の上面16を図2に示すようにヨーク端部30を通り開口端面に平行な面sよりネック部側にした形状にすることもできる。
【0022】
一方、対角軸断面32については、沿面距離が増加してしまうと短軸との沿面距離差が解消しないので、従来と同じか又はほとんど同じにする。長軸断面33については対角軸との沿面距離差が比較的少ないため、従来形状でもよいが、短軸同様にボディ部を外側に突出させて沿面距離を増加させるように設定すると一層好ましい。
【0023】
各軸以外のボディ部の形状については詳述しないが、各軸の形状に対応してその他の部分を滑らかな円弧状に又は直線的につないで、全体として漏斗状にしている。略矩形状の開口端部を有するガラスファンネルでは、前記したように沿面距離が最短の短軸と最長の対角軸の沿面距離差によって成形時のフィルアップ差が実質的に支配されるので、これら両軸の断面形状に注目して短軸断面の沿面距離を対角軸断面の沿面距離にできるだけ近づけ、両者の差異を解消又は縮小することにより目的が達成できる。なお、ボディ部の内面は言及するまでもなく外面にほぼ相似させている。
【0024】
さらに、本発明は図3に示すようなボディ部6に複数個のヨーク部4とネック部5を具備するガラスファンネルに対しても応用できる。このタイプのガラスファンネルは、複数の電子銃と偏向ヨークコイルとによりスクリーンを複数分割した領域で電子線を走査する様式の陰極線管に用いるもので、広角化をせずにガラスファンネルを実質的に偏平化できるメリットがある。ただし、この場合はヨーク端部から開口端部までの直線最短距離及び沿面距離は、ボディ部のファンネル中心部A(矩形状の開口端部の中心を通り開口端部により形成される端面に垂直な軸がボディ部に交差する点)にヨーク部がないので、M、MS及びD、DSは次のように定義する。
【0025】
すなわち、M及びMSはそれぞれ短軸mにおける、ファンネル中心部Aから開口端部までの沿面距離及び直線最短距離とし、またD及びDSはヨーク部を無視した仮想ボディ面を設定して、同様に対角軸dにおけるファンネル中心部Aから開口端部までの沿面距離及び直線最短距離として定義する。
【0026】
【作用】
従来のガラスファンネルは、図4に示されるようにボディ部形状を、各軸ともパネル部を接合する略矩形の開口端部34から、円錐コーン又は四角錐コーンに相似するヨーク部4のヨーク端部30に向かって全体を滑らかに変化させている。この結果、表1に示すように短軸と対角軸においてはガラスファンネルの平面的なアスペクト比3:4及び9:16の比率に応じた沿面距離差が必ず発生してしまう。
【0027】
本発明においては、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0にすることによって、短軸と対角軸の沿面距離差を解消又は縮小できる形状となっているので、フィルアップタイミングの適正化及びその波及効果である金型温度の均一化を実現し、生産効率を向上させる。
【0028】
さらに、本発明のファンネル形状をとるためには、少なくとも短軸におけるボディ部を外側に突出させ、しかもこの突出部の形状は一般に円弧状の断面形状では不十分で、比較的鋭い角部を持った断面形状をとることになる。この断面形状は、バルブ全体の真空応力に対する剛性を高め、バルブ総重量の軽量化にも有効に働く。
【0029】
【実施例】
(実施例1)
表3に示すような特性を有するガラス材料を用いて、図5に示すようなカラーテレビジョン用陰極線管に使用するガラスファンネルを成形した。このガラスファンネルは、アスペクト比が9:16である32型テレビジョン用のもので、円錐コーン状のヨーク部を有し、偏向角は110度、ネック部外径は29.1(mm)、ファンネル偏向中心から開口端部までの長さは215.06(mm)である。
【0030】
表2に実施例1のガラスファンネルと従来のガラスファンネル(比較例)の各々について、対角軸、短軸及び長軸におけるヨーク端部と開口端部の沿面距離及び直線最短距離を示す。表2から明らかのように実施例1は比較例の従来品と比べて、ボディ部の短軸断面のみ異なる。すなわち、実施例1のガラスファンネルは、対角軸断面及び長軸断面における前記沿面距離と直線最短距離、及び短軸断面における直線最短距離は従来品と同じであるが、短軸断面における沿面距離は従来品が235.8(mm)であるのに対し287.0(mm)である。なお、各軸を結ぶ中間部におけるボディ部は、各軸の形状を滑らかにつないだ外面を構成している。
【0031】
これによって、従来品では(D/M)/(DS/MS)=0.99、D/M=1.61であったのに対し、実施例1では(D/M)/(DS/MS)=0.82、D/M=1.33になっている。この結果、フィルアップのタイミングの適正化が実現し、従来約100℃あった短軸断面と対角軸断面のリング金型の温度差が約40℃になり、金型温度分布の均一化、及びそれによる生産性向上が達成された。
【0032】
実施例2)
短軸断面及び対角軸断面では実施例1と全く同一の外面形状をしているが、長軸断面における沿面距離は385.6(mm)であり、実施例1のガラスファンネルより長軸部のボディ部が外側に突出して長くなっている。実施例1と比較すると、長軸断面の沿面距離と対角軸断面の沿面距離差が解消し、フィルアップのタイミングがより適正化し、実施例1より大きな生産性向上が達成された。
【0033】
【表1】

Figure 0003817968
【0034】
【表2】
Figure 0003817968
【0035】
【表3】
Figure 0003817968
【0036】
【発明の効果】
本発明は、ガラスファンネルのボディ部形状を特定することにより、すなわち、短軸断面における沿面距離をM、対角軸断面における沿面距離をD、短軸断面における直線最短距離をMS、対角軸断面における直線最短距離をDSとしたとき、(D/M)/(DS/MS)≦0.88、かつD/M≧1.0にすることによって、短軸断面と対角軸断面の沿面距離差を解消又は縮小できるので、フィルアップのタイミングの適正化及びその波及効果である金型温度の均一化を実現し、生産効率のアップを実現する効果が得られる.この効果は、アスペクト比が大きい、より横長タイプのガラスバルブになるほど大きい。
【0037】
また、1個のボディ部に複数個のヨーク部とネック部を具備し、これらに装着した偏向ヨークコイルと電子銃とによりスクリーンを複数分割した領域で電子線を走査する様式の陰極線管用ガラスファンネルにも応用でき、好ましい効果が得られる。
【0038】
さらにまた、短軸断面のボディ部を外側に突出させ短軸断面の沿面距離を大きくしたガラスファンネルは、この突出部がボディ部の剛性を高めるので、陰極線管の真空応力に対する耐圧強度が向上する。
【図面の簡単な説明】
【図1】本発明のガラスファンネルの長、短、対角軸における断面図。
【図2】本発明の他の実施例のガラスファンネルの長、短、対角軸における断面図。
【図3】本発明の他の実施例で、ネック部とヨーク部を複数個具備するガラスファンネルの平面図。
【図4】従来のガラスファンネルの長、短、対角軸における断面図。
【図5】一部を切り欠いた陰極線管の側面図。
【図6】従来のガラスファンネル製造方法におけるプレス直前の断面説明図。
【図7】従来のガラスファンネル製造方法におけるプレス中の断面説明図。
【図8】従来のガラスファンネル製造方法におけるプレス終了直前の断面説明図。
【符号の説明】
1:陰極線管
2:ガラスファンネル
3:パネル部
4:ヨーク部
5:ネック部
6:ボディ部
30:ヨーク端部
31:短軸断面形状
32:対角軸断面形状
33:長軸断面形状
34:開口端部
35:直線最短距離[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass funnel for a cathode ray tube mainly used for television broadcast reception and the like and a cathode ray tube using the same.
[0002]
[Prior art]
As shown in FIG. 5, a cathode ray tube 1 used for television broadcast reception basically has a substantially box-shaped panel portion 3 having a rectangular face for displaying an image and a funnel-shaped funnel portion (glass funnel). The panel portion 3 and the glass funnel 2 (hereinafter, both are referred to as glass bulbs) are joined by a sealing portion 7 made of solder glass or the like. The funnel portion 2 has a substantially rectangular opening end joined to the panel portion, a yoke portion 4 for mounting a deflection coil, a neck portion 5 for storing an electron gun 17, and a body portion for connecting the yoke portion and the opening end portion. It is comprised from 6.
[0003]
In FIG. 5, 8 is a panel skirt portion, 9 is a panel face portion that displays an image, 10 is an explosion-proof reinforcing band for maintaining strength, 12 is a fluorescent film that emits fluorescence when irradiated with an electron beam, and 13 is a fluorescent film. An aluminum film that reflects light emitted forward, 14 is a shadow mask that specifies the position of the phosphor irradiated by the electron beam, and 15 is a stud pin for fixing the shadow mask 14 to the inner surface of the panel skirt portion 8. A indicates a tube axis connecting the central axis of the neck portion 5 and the center of the panel portion 3. The screen on which the fluorescent film is formed on the inner surface of the panel portion has a substantially rectangular shape composed of four sides substantially parallel to the major axis and the minor axis orthogonal to the tube axis.
[0004]
As a press molding method of this funnel-shaped glass funnel, the thing of the structure shown in FIG. 6 is generally used now. That is, the glass funnel fills and holds a predetermined amount of molten glass lump (gob) 21 in a mold in which a bottom mold 22 and a ring mold 23 are combined, and lowers the pressing mold (plunger) 24 to perform press molding. Can be obtained. At this time, as shown in FIG. 7, the gob 21 gradually flows in the direction of the arrow 25 in the mold cavity by applying a force from the initial lump by the plunger 24. This phenomenon is called fill-up. Finally, the body portion of the glass funnel 2 is formed as shown in FIG. Thereafter, the plunger 24 is lifted and separated, and after receiving air cooling in the bottom mold 22, the plunger 24 is taken out from the bottom mold 22 and conveyed to the next process.
[0005]
The open end of the glass funnel has a substantially rectangular shape, and generally has an aspect ratio of 3: 4 and 9:16. On the other hand, the initial shape of the gob is spherical or cylindrical, and when it is formed by the above-described method, the fill-up timing in each axial section is difficult to be uniform due to the substantially rectangular glass funnel shape.
[0006]
Factors that determine the fill-up timing include the gob shape, the creepage distance from the yoke end to the opening end in each axial section, the flow resistance due to the glass wall thickness distribution, the temperature distribution of the mold, etc. In particular, with regard to the creepage distance, the conventional simple funnel shape inevitably has the shortest short-axis cross section and the longest diagonal axis. For this reason, in the actual press molding work, the fill-up timing of the short-axis cross section is early, the diagonal-axis cross-section is final, causing a non-uniform distribution of the mold temperature due to such a shift in the fill-up timing, The mold temperature distribution creates a vicious circle that further promotes the timing of fill-up. At this time, when the mold temperature of the diagonal axis cross-section where the fill-up is slow, particularly the temperature of the ring mold, decreases, cracks generated at the opening end portion increase, and the molding workability and productivity are remarkably lowered.
[0007]
Furthermore, if this deviation becomes large, the press will be completed before the fill-up of the diagonal cross section is completed, and a product that is discarded due to a defective shape will be generated. It is connected. In addition, this non-uniformity in the mold temperature distribution also affects the hot shape accuracy of the mold, and the molding workability and productivity such as glass protrusion due to deteriorated fitting accuracy and deviation of product shape standards. It is also a cause of lowering.
[0008]
In addition, the conventional simple funnel shape is insufficient in rigidity against the vacuum stress applied to the cathode ray tube, which is a great obstacle when the weight of the entire bulb is promoted.
[0009]
[Problems to be solved by the invention]
In recent years, with the increase in the size of cathode ray tubes and the increase in the number of products with an aspect ratio of 9:16, the number of products with a large shift in fill-up timing has increased during the molding of glass funnels, which is caused by the deterioration of mold temperature distribution. Productivity and workability are greatly deteriorated due to the protrusion of glass and deterioration of dimensional accuracy due to thermal deformation of the mold itself.
[0010]
When the current glass funnel shape is investigated, as shown in Table 1, when evaluated by the ratio D / M of the creepage distance between the short-axis cross section and the diagonal-axis cross section, it is 1.45 for the product having an aspect ratio of 3: 4. The ratio of the shortest straight-line distance DS / MS between the short-axis cross section and the diagonal-axis cross-section DS / MS is almost the same as this ratio according to the aspect ratio. Here, the creepage distance is the distance from the yoke end to the opening end measured along the outer surface of the body part, and the straight line shortest distance is the distance connecting the yoke end and the opening end of the body part outer surface with a straight line. All creepage distances and straight line shortest distances in the description are based on this definition.
[0011]
Furthermore, when the ratio of the shortest straight line distance to the creepage distance (D / M) / (DS / MS) in both axes is taken, both are about 0.99. In the conventional glass funnel, at least the short axis and the diagonal axis In this case, a creepage distance difference corresponding to the ratio of the planar aspect ratios of 3: 4 and 9:16 of the glass funnel always occurs.
[0012]
An object of the present invention is to provide a glass funnel that eliminates such a creepage distance difference, has a uniform fill-up timing, high productivity, and high rigidity against vacuum stress.
[0013]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and by improving the shape of the body part of the glass funnel, the creepage distance difference between the cross sections of each axis is eliminated, and the timing of the fill-up is optimized. In this way, the productivity and workability of the glass funnel are improved, and the rigidity of the bulb against vacuum stress is also increased.
[0014]
That is, the present invention includes a substantially rectangular opening end joined to the panel portion, a neck portion for storing an electron gun, a yoke portion for mounting a deflection coil, and a body forming a space between the opening end portion and the yoke portion. in the cathode ray tube glass funnel made of parts, the body portion is a funnel-shaped shape continuously changes toward the yoke portion from the open end, the creepage distance from the yoke end definitive in Tanjikudan surface to the open end portion yoke in the M, D creepage distance from the yoke end to open end of the diagonal axis section, a straight line shortest distance connecting the yoke end and open end definitive in Tanjikudan surface MS, and the diagonal axis section For a cathode ray tube, wherein (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0, where DS is the shortest straight line connecting the end and the open end Provide glass funnels.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the glass funnel of the present invention has a substantially rectangular opening end portion to be joined to the panel portion, a yoke portion for mounting a deflection coil, a neck portion for storing an electron gun, and a body connecting the yoke portion and the opening end portion. The hollow glass body is composed of a portion, and the body portion continuously changes from the rectangular opening end portion toward the yoke portion on both the inner surface and the outer surface, and the whole has a funnel shape. And although the funnel-like shape or contour may change due to the flattening of the glass funnel and the aspect ratio of the opening end, etc., (D / M) / (DS / MS) is in each axis indicating the funnel shape. The effect of the present invention can be obtained in the same way because it is made dimensionless at the shortest straight line distance.
[0016]
The present invention was obtained in order to improve the moldability of a conventional glass funnel. The creepage distance in the short-axis cross section is M, the creepage distance in the diagonal-axis cross-section is D, and the straight shortest distance in the short-axis cross-section is When the shortest straight line distance in the MS and diagonal axis section is DS, (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0 are set as the configuration requirements. Further, according to this setting, the glass funnel has a structure having a relatively sharp corner portion in which at least the body portion on the short axis side protrudes to the outside, and this exhibits an effect of increasing the rigidity against the vacuum stress of the funnel itself.
[0017]
When (D / M) / (DS / MS) is larger than 0.88, it becomes substantially the same as the conventional glass funnel, and the problem cannot be solved. Since (DS / MS) has a fixed value when the positions of the opening end and the yoke end are determined, the value of (D / M) / (DS / MS) decreases as (D / M) decreases. However, if M is increased with respect to D, (D / M) can be reduced, but if M is greater than D, D / M ≧ 1.0 cannot be satisfied. That is, it is important that (D / M) / (DS / MS) ≦ 0.88 within a range satisfying D / M ≧ 1.0.
[0018]
FIG. 1 is a simplified view of the cross-sectional shape of each axis in order to facilitate understanding of the concept of the present invention. Here, the cross-sectional shape indicates the outer surface shape in the cross section of each axis, and 31, 32, and 33 are the outer surface shapes in the respective cross sections of the short axis, the diagonal axis, and the long axis. The outer surface shape in each cross section, for example, the outer surface shape in the short axis is abbreviated as a short axis cross section. Further, the shortest straight line distance 35 connecting the yoke end 30 and the open end portion of each axis in FIG. 34 is shown by a broken line.
[0019]
In each of these cross sections, the lengths 31, 32, and 33 having the yoke end 30 and the open end 34 as both ends are creeping distances on the respective axes. Therefore, the creepage distance of the short-axis cross section 31 is M, the creepage distance of the diagonal-axis cross section 32 is D, and the shortest straight distances of the short-axis cross section 31 and the diagonal-axis cross section 32 correspond to MS and DS, respectively.
[0020]
The short-axis cross-sectional shape 31 realizes an increase in creepage distance by projecting the body portion outward to form a right angle as compared with the conventional substantially arc shape. Although the aspect of protrusion is not specified here, the creepage distance becomes longer as the degree of protrusion increases. In the example of FIG. 1, the body portion has a right-angle shape as a whole with the maximum projecting portion as a bending point, a side surface 11 extending substantially linearly toward the opening end portion, and an upper surface 16 extending toward the yoke end portion. It is formed by. In order to increase the creeping distance, (D / M) / (DS / MS) is most preferably about 0.80 or less.
[0021]
In the actual shape, the side surface 11 and the upper surface 16 can be appropriately bent as required, or the corner portion where both surfaces are joined and the joint portion between the upper surface and the yoke end portion can be formed into an arc. Further, the taper angle of a side 11, for example about 12 degrees from the viewpoint of moldability, better when the upper surface 16 radius of curvature is set as 1 0000 m m extent curved. As another embodiment, as shown in FIG. 2, the upper surface 16 of the short-axis cross section can be shaped so as to be closer to the neck portion side than the surface s passing through the yoke end portion 30 and parallel to the opening end surface.
[0022]
On the other hand, with respect to the diagonal axis cross section 32, if the creepage distance increases, the creepage distance difference from the short axis will not be eliminated. The long-axis cross section 33 has a relatively small creepage distance difference from the diagonal axis, and may have a conventional shape. However, like the short axis, it is more preferable that the creepage distance is increased by projecting the body portion outward.
[0023]
Although the shape of the body part other than each axis will not be described in detail, the other parts are connected in a smooth arc shape or linearly corresponding to the shape of each axis to form a funnel as a whole. In the glass funnel having a substantially rectangular opening end, as described above, the difference in fill-up during molding is substantially governed by the creepage distance difference between the shortest axis and the longest diagonal axis as described above. By paying attention to the cross-sectional shapes of these two axes, the creepage distance of the short-axis cross section is made as close as possible to the creepage distance of the diagonal-axis cross section, and the object can be achieved by eliminating or reducing the difference between the two. Note that the inner surface of the body part is almost similar to the outer surface, not to mention.
[0024]
Furthermore, the present invention can be applied to a glass funnel having a plurality of yoke portions 4 and neck portions 5 on a body portion 6 as shown in FIG. This type of glass funnel is used for a cathode ray tube that scans an electron beam in an area obtained by dividing a screen by a plurality of electron guns and deflection yoke coils. The glass funnel is substantially used without widening the angle. There is a merit that can be flattened. In this case, however, the shortest straight line distance and creepage distance from the yoke end to the opening end are the funnel center A of the body part (passing through the center of the rectangular opening end and perpendicular to the end face formed by the opening end. M, MS, D, and DS are defined as follows because there is no yoke portion at the point where the axis intersects the body portion).
[0025]
That is, M and MS are the creepage distance and the shortest straight line distance from the funnel center A to the opening end on the minor axis m, respectively, and D and DS are set to the virtual body surface ignoring the yoke part. It is defined as the creepage distance and the straight line shortest distance from the funnel center A to the opening end on the diagonal axis d.
[0026]
[Action]
The conventional glass funnel has a body part shape as shown in FIG. 4 and a yoke end of a yoke part 4 similar to a cone cone or a quadrangular pyramid cone from an approximately rectangular opening end part 34 joining the panel part to each axis. The whole is smoothly changed toward the portion 30. As a result, as shown in Table 1, there is always a creepage distance difference between the minor axis and the diagonal axis according to the planar aspect ratios of 3: 4 and 9:16 of the glass funnel.
[0027]
In the present invention, (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0 can eliminate or reduce the creepage distance difference between the minor axis and the diagonal axis. Therefore, it is possible to optimize the fill-up timing and make the mold temperature uniform, which is the ripple effect, and improve the production efficiency.
[0028]
Furthermore, in order to take the funnel shape of the present invention, at least the body portion on the short axis protrudes outward, and the shape of the protruding portion is generally insufficient with an arc-shaped cross-sectional shape, and has a relatively sharp corner portion. The cross-sectional shape will be taken. This cross-sectional shape increases the rigidity against the vacuum stress of the entire valve and effectively works to reduce the total weight of the valve.
[0029]
【Example】
Example 1
Using a glass material having the characteristics shown in Table 3, a glass funnel for use in a cathode ray tube for a color television as shown in FIG. 5 was formed. This glass funnel is for a 32-inch television having an aspect ratio of 9:16, has a conical cone-shaped yoke portion, a deflection angle of 110 degrees, a neck portion outer diameter of 29.1 (mm), The length from the funnel deflection center to the opening end is 215.06 (mm).
[0030]
Table 2 shows the creepage distance and the linear shortest distance between the yoke end and the opening end on the diagonal axis, the short axis, and the long axis for each of the glass funnel of Example 1 and the conventional glass funnel (comparative example). As apparent from Table 2, Example 1 differs from the conventional product of the comparative example only in the short-axis cross section of the body portion. That is, in the glass funnel of Example 1, the creepage distance and the straight line shortest distance in the diagonal axis cross section and the long axis cross section are the same as the conventional product, but the creepage distance in the short axis cross section is the same as the conventional product. Is 287.0 (mm) compared to 235.8 (mm) for the conventional product. In addition, the body part in the intermediate part which connects each axis | shaft comprises the outer surface which connected the shape of each axis | shaft smoothly.
[0031]
As a result, (D / M) / (DS / MS) = 0.99 and D / M = 1.61 in the conventional product, whereas (D / M) / (DS / MS) in the first embodiment. ) = 0.82 and D / M = 1.33. As a result, optimization of the fill-up timing has been realized, and the temperature difference between the short-axis cross section and the diagonal-axis cross section, which was about 100 ° C. in the past, becomes about 40 ° C., and the mold temperature distribution becomes uniform. As a result, productivity was improved.
[0032]
( Example 2)
The short-axis cross-section and the diagonal-axis cross-section have the same outer surface shape as in Example 1, but the creepage distance in the long-axis cross-section is 385.6 (mm), which is longer than the glass funnel in Example 1. The body part protrudes outward and is long. Compared with Example 1, the creeping distance difference between the long-axis cross section and the diagonal-axis cross section was eliminated, the fill-up timing was more optimized, and a greater productivity improvement than that of Example 1 was achieved.
[0033]
[Table 1]
Figure 0003817968
[0034]
[Table 2]
Figure 0003817968
[0035]
[Table 3]
Figure 0003817968
[0036]
【The invention's effect】
The present invention specifies the shape of the body part of the glass funnel, that is, the creepage distance in the minor axis section is M, the creepage distance in the diagonal axis section is D, the shortest straight line distance in the minor axis section is MS, and the diagonal axis When the shortest straight line distance in the cross section is DS, (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0, the creepage of the short-axis cross section and the diagonal-axis cross section Since the distance difference can be eliminated or reduced, it is possible to optimize the fill-up timing and make the mold temperature uniform, which is the ripple effect, and increase the production efficiency. This effect is so great that it becomes a more horizontally oriented glass bulb with a large aspect ratio.
[0037]
Further, a glass funnel for a cathode ray tube having a plurality of yoke portions and a neck portion in one body portion and scanning an electron beam in an area obtained by dividing a screen into a plurality of deflection yoke coils and an electron gun attached thereto. The present invention can be applied to the above and a preferable effect can be obtained.
[0038]
Furthermore, in the glass funnel in which the short-axis cross-section body part protrudes outward and the creepage distance of the short-axis cross-section increases, the protrusion part increases the rigidity of the body part, thereby improving the pressure resistance against the vacuum stress of the cathode ray tube. .
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along the long, short, and diagonal axes of a glass funnel of the present invention.
FIG. 2 is a cross-sectional view taken along the long, short, and diagonal axes of a glass funnel according to another embodiment of the present invention.
FIG. 3 is a plan view of a glass funnel having a plurality of neck portions and yoke portions according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a conventional glass funnel along the long, short, and diagonal axes.
FIG. 5 is a side view of a cathode ray tube with a part cut away.
FIG. 6 is a cross-sectional explanatory view immediately before pressing in a conventional glass funnel manufacturing method.
FIG. 7 is a cross-sectional explanatory view during pressing in a conventional glass funnel manufacturing method.
FIG. 8 is an explanatory cross-sectional view immediately before the end of pressing in the conventional glass funnel manufacturing method.
[Explanation of symbols]
1: Cathode ray tube 2: Glass funnel 3: Panel portion 4: Yoke portion 5: Neck portion 6: Body portion 30: Yoke end portion 31: Short-axis cross-sectional shape 32: Diagonal-axis cross-sectional shape 33: Long-axis cross-sectional shape 34: Open end 35: straightest shortest distance

Claims (3)

パネル部と接合する略矩形の開口端部を備え、電子銃を格納するネック部と、偏向コイルを装着するヨーク部と、前記開口端部とヨーク部の間を形成するボディ部からなる陰極線管用ガラスファンネルにおいて、前記ボディ部は開口端部からヨーク部に向かって連続的に変化する漏斗状形状であり
軸断面におけるヨーク端部から開口端部までの沿面距離をM対角軸断面におけるヨーク端部から開口端部までの沿面距離をD、短軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をMS、及び対角軸断面におけるヨーク端部と開口端部を結ぶ直線最短距離をDSとしたとき、
(D/M)/(DS/MS)≦0.88、かつD/M≧1.0であることを特徴とする陰極線管用ガラスファンネル。
A cathode ray tube comprising a neck portion for storing an electron gun, a yoke portion for mounting a deflection coil, and a body portion for forming the gap between the opening end portion and the yoke portion. In the glass funnel, the body portion has a funnel shape that continuously changes from the opening end toward the yoke portion ,
The creepage distance from the yoke end definitive in short Jikudan surface to the opening end portions M, D creepage distance from the yoke end to open end of the diagonal axis section, the yoke end definitive in Tanjikudan surface and the opening When the shortest straight line connecting the ends is MS and the shortest straight line connecting the yoke end and the opening end in the diagonal axis section is DS,
A glass funnel for a cathode ray tube, wherein (D / M) / (DS / MS) ≦ 0.88 and D / M ≧ 1.0.
前記ボディ部にネック部とヨーク部が複数設けられている請求項1記載の陰極線管用ガラスファンネル。  The glass funnel for a cathode ray tube according to claim 1, wherein a plurality of neck portions and yoke portions are provided in the body portion. 請求項1又は2記載の陰極線管用ガラスファンネルを用いた陰極線管。  A cathode ray tube using the glass funnel for a cathode ray tube according to claim 1 or 2.
JP13991199A 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube Expired - Fee Related JP3817968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13991199A JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13991199A JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Publications (3)

Publication Number Publication Date
JP2000331627A JP2000331627A (en) 2000-11-30
JP2000331627A5 JP2000331627A5 (en) 2005-09-22
JP3817968B2 true JP3817968B2 (en) 2006-09-06

Family

ID=15256519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13991199A Expired - Fee Related JP3817968B2 (en) 1999-05-20 1999-05-20 Glass funnel for cathode ray tube and cathode ray tube

Country Status (1)

Country Link
JP (1) JP3817968B2 (en)

Also Published As

Publication number Publication date
JP2000331627A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
KR100353185B1 (en) Glass bulb for a cathode ray tube
JP3817968B2 (en) Glass funnel for cathode ray tube and cathode ray tube
JP2000113839A (en) Glass fannel for cathode ray tube and cathode ray tube
JPH09245685A (en) Color picture tube
JP2000331627A5 (en)
US6861795B2 (en) Funnel for cathode ray tube
KR20010013730A (en) Cathode-ray tube
US6667570B2 (en) Structure of panel in flat-type CRT
JPS6140607B2 (en)
KR100291968B1 (en) Cathode ray tube and method of manufacturing the same
CN1312724C (en) Color cathode ray tube
JPH07142013A (en) Glass bulb for cathode-ray tube
KR100505944B1 (en) Flat panel for a cathode ray tube
KR100396622B1 (en) A Color Cathode Ray Tube
KR20030007132A (en) Glass funnel for cathode ray tube and cathode ray tube
KR20000066330A (en) Safety band for CRT
JP2001307661A (en) Funnel sealing body for cathode-ray tube
KR100592815B1 (en) Glass funnel for projection
JP2004165170A (en) Funnel for cathode-ray tube
KR100295452B1 (en) Deflection Yoke for Cathode-ray Tube
CN1319109C (en) Flat glass cone for CRT
US20040032228A1 (en) Deflection yoke for cathode ray tube
KR100329567B1 (en) Funnel of cathode ray tube
KR100329568B1 (en) Funnel of cathode ray tube
EP1137039B1 (en) Color display tube and color display tube device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060605

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees