JP3817013B2 - Gas-solid separator - Google Patents

Gas-solid separator Download PDF

Info

Publication number
JP3817013B2
JP3817013B2 JP08237097A JP8237097A JP3817013B2 JP 3817013 B2 JP3817013 B2 JP 3817013B2 JP 08237097 A JP08237097 A JP 08237097A JP 8237097 A JP8237097 A JP 8237097A JP 3817013 B2 JP3817013 B2 JP 3817013B2
Authority
JP
Japan
Prior art keywords
gas
separation
solid
mixture
solid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08237097A
Other languages
Japanese (ja)
Other versions
JPH10249121A (en
Inventor
昭三 (にしだ しょうぞう) 西田
優一郎 (ふじやま ゆういちろう) 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Eneos Corp
Original Assignee
Petroleum Energy Center PEC
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Nippon Oil Corp filed Critical Petroleum Energy Center PEC
Priority to JP08237097A priority Critical patent/JP3817013B2/en
Publication of JPH10249121A publication Critical patent/JPH10249121A/en
Application granted granted Critical
Publication of JP3817013B2 publication Critical patent/JP3817013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体と気体の混合物を夫々に分離するための分離器に関し、更に詳しくは特に化学反応に伴い生じた気体生成物と触媒等の混合物のように混合物から固体を迅速に分離することにより短反応時間を達成することが望まれる場合等に用いて好適な高速気固分離器に関する。
【0002】
【従来の技術】
高速移動層反応器においては生成物気体と粒子状固体触媒の混合物が反応器出口から流出するが、短接触時間反応が要求されるこの種の装置では混合物から粒子状固体触媒をいかに迅速に分離できるかが重要な課題であり分離器の性能が重要となる。この課題に対処するため、最近の重質油等を原料油としてガソリンを製造している流動接触分解装置ではUS5,552,120 或いはUS5,538,623 等に見られるようにライザー出口の直近にサイクロンを置くクローズドサイクロンと呼ばれる分離方式が使用され始めている。
【0003】
この気固分離を迅速に行うという点は接触時間が0.1〜1.5秒程度の反応条件で軽質オレフィン製造を指向するような炭化水素油の流動接触分解装置ではさらに重要になる。なぜなら反応時間が0.1〜1.5秒程度になるとサイクロンのような既存の分離器では反応器内の気体の滞留時間に対して分離器内の気体の滞留時間が相対的に大きくなり、分離器内で気体の少なくとも一部が触媒、または熱媒体である粉粒体と接触することにより、製品の品質劣化、コーク析出、収率低下をもたらすためである。
【0004】
もっとも、短接触時間反応に分離器を用いる方法のほかに、触媒の分離によらず反応器出口で生成物と触媒の混合物を急冷することで反応を停止する方法も可能である。しかし、重質油等を原料油としてガソリンを製造する流動接触分解装置では、触媒を高温で再生し再び反応に用いることにより触媒を熱媒体として利用しているため、触媒を分離する前に該混合物を急冷することは熱効率上好ましくない。
【0005】
同様にして粉粒体状の固体を熱媒体として用いる反応でも気固分離前の急冷は好ましくない。従って、反応器出口で迅速に固体の大部分を該混合物から除去することが有効である。この一段目の分離で固体の一部が気体とともに同伴されたとしても固体の量が小さくなるため反応への寄与は小さくなり残った固体をサイクロン等の既存の分離器で時間をかけて分離しても前述した不都合はおこらない。また一段目の分離で気体に同伴した固体の引き起こす反応が無視できない場合は一段目の分離後にその気固混合物を急冷することが可能である。この場合、装置内を循環する固体の量に比べて急冷される固体の量が小さいため熱効率にそれほど悪影響を及ぼさない。
【0006】
従来の反応器出口の混合物を急速分離する方法としては、例えばUS3,074,878 があげられる。この中では下降流の管状反応器の中に方向偏向板を設けることにより混合物の流れを反応器の片側に寄せ、その反対側から横向きに気体を抜き出す方法を採用している。然しながら、この方法は気体の方向転換角度が90度以上とれないために分離効率が低い。その上、方向偏向板は直接混合物の衝撃を受けるため磨耗が激しいという欠点も有している。
【0007】
また、同様の急速分離方法の例として特公昭60-18447があげられる。これは下降流型または上昇流型反応器に対して水平に長方形のチャンバーを設けている。混合物はこのチャンバーの一方の端から流入し、90度方向転換した後、チャンバーの反対側の端から触媒は下方に、気体は上方に抜き出している。この場合にはチャンバー内での混合物の流れの乱れが激しく、分離触媒がスムーズに触媒抜き出し口に流れず、上方に巻き上げられるために分離効率が低く、その傾向は固体供給量あるいは混合比が大きくなるに伴い顕著となる。これは主に固体がチャンバーの水平部分を固体抜き出し口まで水平に移動しなくてはならないため、固体供給量が増加すると固体抜き出しが間に合わなくなるからである。
【0008】
なお、本明細書でいう分離効率とは分離器に供給された固体の内、分離器で除去された固体、すなわち固体抜き出し口から抜き出された固体の割合であり、百分率で表したものをいい下式で表される。
分離効率(単位:%)=(固体抜き出し口から抜き出された固体の重量)/(分離器に供給された触媒の重量)
【0009】
また本発明でいう混合比とは供給された気固混合物の中の固体の重量を気体の重量で除した数値であり下式で表される。
混合比=(固体重量)/(気体重量)
【0010】
【発明が解決しようとする課題】
短接触時間で好ましい生成物の選択性を上げることをねらいとするプロセスでは接触時間をなるべく短くするとともに高転化率を維持するために高混合比を用いることが多く、そのような背景からさらに気体の滞留時間が短く分離効率の高い高速分離器が求められていた。
本発明の目的は従前のものに比してより分離装置内の気体の滞留時間が短く、固体の除去率の高い気固分離器を提供することにある。
【0011】
【課題を解決するための手段】
水平方向断面矩形の鉛直に延びる分離用空間部(S) を備え一対の対面壁のみが下方で順次狭幅に接近して対向斜面(A1,A2) を形成し残る一対の対面壁は一定間隔を保った対向鉛直面(B,B) を形成するとともに上方に前記分離用空間部(S) を閉塞する天板(8) を有した角筒部(1) と、この角筒部(1) の下端に連続する筒状一定断面積の固体抜出管(4) と、同じ角筒部(1) の上端で一方の対向斜面(A1)に寄って前記天板(8) 一端近傍で開口し前記分離用空間部(S) に連通する混合物導入管(2) と、残る対向斜面(A2)に寄って前記天板(8) 他端近傍で開口し前記分離用空間部(S) に連通する気体抜出管(3) と、前記分離用空間部(S) 内部に高さ方向略中央部で前記混合物導入管(2) 下方に略水平に固設された分離板(5) とにより気固分離器を構成する。
【0012】
〔作用〕本発明の分離器において気固混合物は分離容器の上部の一端に接続された混合物導入管から分離容器内に導入され、分離容器内で180度旋回する。その過程で固体は遠心力により分離され、分離板の下面を通って分離容器下部に接続された固体抜き出し管から分離器外へ排出される。一方気体は分離板の上面を通り、分離容器上部の混合物導入管とは逆の一端に接続された気体抜き出し管より分離器外に排出される。
【0013】
【発明の実施の形態】
〔実施例〕以下では、実施例を挙げ図面を用いて本発明を詳細に説明する。
図1(a) 、(b) は本発明の気固分離器の一実施例を示すもので、図1(a) は正面断面図、図1(b) は側面図である。また、図2はこの気固分離器の正面断面図である。
【0014】
この気固分離器の本体となる分離容器(角筒部(1) )は図1(a) でわかるように正面から見ると長方形の下の2端を切り落としてできる六角形の形状をしており、内部は水平方向断面矩形の鉛直に延びる分離用空間(S) となっている。換言すると、一対の対面壁のみが下方で順次狭幅に接近して対向斜面(A1,A2) を形成し残る一対の対面壁は一定間隔を保った対向鉛直面(B,B) を形成するとともに上方に前記分離用空間部(S) を閉塞する天板(8) を接合することで角筒部(1) が構成されている。
【0015】
図1(b) の側面図に顕れているように角筒部(1) は前後方向に厚さ(幅)Lを持つ箱形の容器である。この角筒部(1) の上端で一方の対向斜面(A1)に寄って前記天板(8) の端部近傍で開口し前記分離用空間部(S) に連通する混合物導入管(2) が接続されており、前記天板(8) の他端近傍には他方の対向斜面(A2)に寄って開口し前記分離用空間部(S) に連通する気体抜出管(3) が接続されている。また、角筒部(1) の下面には筒状一定断面積の固体抜出管(4) が接続されている。このように角筒部(1) は底面の固体抜出管(4) の端縁部に向かって傾斜をなしている。
【0016】
前記分離用空間部(S) 内部で気体抜出管(3) の下方には高さ方向略中央部には分離板(5) が略水平に固設されている。即ち、分離板(5) の一端の辺部は角筒部(1) 気体抜き出し管(3) 側の対向斜面(側壁)に接しており、側壁からの突出長さはW2となっている。角筒部(1) はこの分離板(5) によって中程まで上下に区画され、混合物導入管側には内部の分離用空間部(S) 上下を結ぶ連通路(7) が形成されている。この連通路の幅は(W−W2)となる。
【0017】
混合物導入管(2) から系内すなわち分離用空間部(S) へと導入された気固混合物は混合物導入管(2) 、角筒部(1) の上半部分、気体抜出管(3) によって形成されるU字型の通路を方向を変えながら通過するときに遠心力によって気体と固体の分離が行われる。遠心力により分離された固体は前述した連通路(7) を通って角筒部の下部へと落下して、固体抜出管(4) から系外に排出される。
【0018】
この場合の遠心力による気固の分離速度は混合物の線速度によって変化する。線速度が大きければ分離が速く、分離器がなす通路での180度の旋回の初期に分離が終わってしまう。この場合は分離板(5) の長さLを大きくした方が分離効率が高い。これは固体への遠心力が強く混合物導入管から分離容器に入った混合物中の固体がほとんど旋回せずに直進するため連通路(7) を狭くしても大部分の固体が通路を通ることができるからであり、かつ分離板が長いことにより分離容器下部からの固体の巻き上げが防止できるからである。
【0019】
逆に混合物の線速度が小さいときは分離速度が遅く、180度の旋回の後期にならないと分離が終了しない。この場合はW2を小さくした方が良い。これは分離板(5) が長すぎると分離が間に合わない固体が分離板(5) の上部に入り込んでしまうためである。分離板(5) が短いと通路が大きくなってしまうが、気体の線速度が小さいため角筒部(1) 下部からの固体の巻き上げは問題とならない。
【0020】
分離板(5) の長さW2は具体的にはWを基準として下式に準じて決定されることが好ましい。
W2/W=−0.0004V2 +0.0201V+0.4437;
V:混合物あるいは気体の線速度(m/s)
【0021】
混合物導入管の直径Dmは該分離器に供給される混合物の流量から、混合物の線速度を適当な値にするべく決定される。具体的には混合物線速度が3〜40m/s、好ましくは5〜20m/sとなるよう調整される。混合物線速度が3m/sより小さいときは分離容器内での混合物の旋回速度が小さすぎて十分な分離が行われない。一方混合物線速度が40m/sより大きいと分離器の磨耗が激しくなって好ましくない。
【0022】
前記気体抜出管の直径Dgは混合物導入管の直径Dmとほぼ等しいことが望ましい。これは混合比が大きいときでも体積比で見ると気体の量に比べて固体の量が非常に小さいため、DmがDgと等しければ混合物あるいは気体の線速度が一定となりスムーズに分離が行われるからである。ただし混合比が20以上のときはDgをDmの80%まで小さくしても差し支えない。
【0023】
固体抜抜出管の直径DsはDmの1〜1.5倍、好ましくは1.2〜1.3倍であることが好ましい。1倍より小さい場合は固体の抜き出し速度が遅くなり好ましくない。1.5倍より大きいときは気体の存在しうる空間が大きくなりすぎ結果的に分離器内の気体の滞留時間が無駄に大きくなるため好ましくない。
【0024】
混合物導入管(2) 、気体抜出管(3) 、固体抜出管(4) は必ずしも円筒である必要はなく、断面の等しい四角柱型の管であっても良い。角柱体の幅WはDmの2.5〜3.5倍、好ましくは3倍であることが好ましい。2.5倍より小さいと混合物導入管(2) と気体抜出管(3) の距離が狭くなりすぎて製造が困難となる。また3.5より大きいと混合物導入管(2) 、角筒部(1) の上部と気体抜出管(3) で形成する流路がU字型を成しえなくなり、遠心力がうまく働かず分離効率が低下する。
【0025】
分離容器としての角筒部(1) の奥行きLはDsと等しいことが望ましい。Dsより小さいときは各導入管、抜き出し管を角筒部(1) に接続できなるからであり、Dsより大きいと分離に関係のない無駄な空間を作ることになり、分離器内の気体の滞留時間が大きくなるため好ましくない。
【0026】
また、角筒部(1) の高さHはDmの2〜3倍であることが望ましい。2より小さいと分離板(5) で仕切られた角筒部(1) 上部の空間が小さくなりすぎ圧力損失が大きくなるため好ましくない。値が3より大きいと分離容器内の気体の滞留時間が大きくなるため好ましくない。
【0027】
前記分離板(5) が挿入される位置は該角筒部(1) と分離板(5) の距離がDmの1〜1.5倍となるよう決められることが望ましい。1より小さいと分離板(5) で仕切られた角筒部(1) 上部の空間が小さくなりすぎ圧力損失が大きくなるため好ましくない。1.5より大きいと分離容器内の気体の滞留時間が大きくなるため好ましくない。
【0028】
角筒部(1) の底面がなす斜面(6) の水平面との角度θは使用する固体の安息角θ’より5〜10度大きいことが好ましい。θが小さすぎると固体の固体抜き出し管への流れが妨げられ好ましくない。θが大きすぎると結果的にHが大きくなり気体の滞留時間が大きくなるため好ましくない。
【0029】
斜面(6) の形成方法としては、図2にて示すように角筒部(1) の底面は水平面に製造し、そこに三角形の耐浸食性のあるライニング材を固設することで達成しても良い。特にこの手法は混合物導入管側の斜面(6) 部分は稼働時に固体の衝突が多いから浸食を防ぐ意味でも好ましい。
【0030】
以下、本発明を適用した実施例で実際に得られた実験結果を挙げる。
各例においては第1図に示す好ましい形態のものであって各部の寸法が下記第1表に示すような数値である分離器群を使用した。固体には重質油からガソリンを製造する流動接触分解装置に使用されている触媒を用いた。この触媒の平均粒径は63ミクロン、カサ比重は0.85g/cm3 である。また、気体には常温の空気を用いた。混合比は20であった。
【0031】
【表1】

Figure 0003817013
【0032】
〔実施例1〕;
表1に示した各部寸法の分離器で得られた結果は、上記条件下で気体の線速度4、10、20m/sに対して分離効率は夫々90、88、86%であった。また分離器内の気体の滞留時間は夫々0.07、0.022、0.011秒であった。
【0033】
〔実施例2〕;
分離板の長さW2を70mmとした他は全て実施例1と同様な条件で実験を行った。このとき気体の線速度4、10、20m/sに対して分離効率は91、89、85%であった。また分離器内の気体の滞留時間は0.07、0.025、0.013秒であった。
【0034】
〔実施例3〕;
分離板の長さW2を60mmとした他は全て実施例1と同様な条件で実験を行った。このとき気体の線速度4、10、20m/sに対して分離効率は93、86、79%であった。また分離器内の気体の滞留時間は0.08、0.03、0.015秒であった。
【0035】
〔比較例1〕;
実施例1と各部の寸法が同一で容器1の底面が水平な分離器を使用した。この例では分離容器1の底面には固体が堆積し、静止床を形成した。この部分からの固体の巻き上げが増加したため分離効率は低下し、70%に留まった。
【0036】
以上説明した本発明による分離器は粉粒体状の固体を触媒または熱媒体として気体または液滴と接触させて反応を行わせる装置において、反応により生じた固体と気体生成物の混合物から固体を迅速に分離することにより短反応時間を達成することが望まれる場合に好ましく用いられる。特に固体供給量が多いか、または混合比が高い場合により好ましく用いられるもので、例として重質油の流動接触分解によるガソリンの製造装置(FCC)やFCCよりさらに高温、短接触時間で軽質オレフィンを製造する装置などがあげられる。
【0037】
本発明の主な利点は気固混合物を180度旋回させることにより迅速に固体の除去を行う点にある。このため分離器内の気体の滞留時間が非常に短い。
また固体抜き出し口が分離容器の下部中央に接続されており、分離容器底面に水平部分が無く固体抜き出し口に向かって傾斜しているため、固体の抜き出しが非常にスムーズである点も本発明の大きな特徴である。このため固体の供給量あるいは混合比が大きくなっても分離効率が低下しない。
【0038】
さらに分離容器中央に分離板を設けたことに対応して、分離容器下部から気体抜き出し口に向かっての固体のまきあげを防止できる。なお、固体の衝突による磨耗は混合物導入口直下の分離容器底面で激しいが、この部分を図2で示したのように水平の分離容器底面と三角形の防護材で形成することにより磨耗による障害を回避できる。また、分離板の磨耗も同様に激しいが、分離板自体の厚さを必要に応じて大きくできるので問題とならない。
【0039】
【発明の効果】
以上説明した如く本発明の気固分離器は、水平方向断面矩形の鉛直に延びる分離用空間部(S) を備え一対の対面壁のみが下方で順次狭幅に接近して対向斜面(A1,A2) を形成し残る一対の対面壁は一定間隔を保った対向鉛直面(B,B) を形成するとともに上方に前記分離用空間部(S) を閉塞する天板(8) を有した角筒部(1) と、この角筒部(1) の下端に連続する筒状一定断面積の固体抜出管(4) と、同じ角筒部(1) の上端で一方の対向斜面(A1)に寄って前記天板(8) 一端近傍で開口し前記分離用空間部(S) に連通する混合物導入管(2) と、残る対向斜面(A2)に寄って前記天板(8) 他端近傍で開口し前記分離用空間部(S) に連通する気体抜出管(3) と、前記分離用空間部(S) 内部に高さ方向略中央部で前記混合物導入管(2) 下方に略水平に固設された分離板(5) とにより構成されており、結果、処理対象が高混合比の場合にも対応でき従前のものに比して装置内の気体の滞留時間がより短く、固体の除去率も高い気固分離器が得られる。
【図面の簡単な説明】
【図1】両図は本発明の気固分離器の一実施例を示しており、(a) は分離器の正面断面図、(b) は側面図である。
【図2】本発明気固分離器の他の実施例を示す正面断面図である。
【符号の説明】
(1) …角筒部、
(2) …混合物導入管、
(3) …気体抜出管、
(4) …固体抜出管、
(5) …分離板、
(8) …天板、
(A1,A2) …対向斜面、
(B,B) …対向鉛直面、
(S) …分離用空間部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a separator for separating a mixture of a solid and a gas, and more particularly, by rapidly separating a solid from a mixture, such as a mixture of a gas product and a catalyst generated by a chemical reaction. The present invention relates to a high-speed gas-solid separator suitable for use when it is desired to achieve a short reaction time.
[0002]
[Prior art]
In fast moving bed reactors, a mixture of product gas and particulate solid catalyst flows out of the reactor outlet, but in this type of equipment where a short contact time reaction is required, how quickly the particulate solid catalyst is separated from the mixture. Whether it can be done is an important issue, and the performance of the separator is important. In order to cope with this problem, closed fluidic crackers that produce gasoline using heavy oil as a feedstock are closed with a cyclone in the immediate vicinity of the riser outlet as seen in US5,552,120 or US5,538,623. A separation system called a cyclone has begun to be used.
[0003]
The point of rapidly performing this gas-solid separation becomes even more important in a fluid catalytic cracking apparatus for hydrocarbon oil that is directed to light olefin production under reaction conditions of a contact time of about 0.1 to 1.5 seconds. Because, when the reaction time is about 0.1 to 1.5 seconds, in the existing separator such as a cyclone, the residence time of the gas in the separator becomes relatively larger than the residence time of the gas in the reactor, This is because at least a part of the gas in the separator comes into contact with the catalyst or the granular material which is a heat medium, resulting in product quality deterioration, coke deposition, and yield reduction.
[0004]
However, in addition to the method of using a separator for the short contact time reaction, a method of stopping the reaction by quenching the mixture of the product and the catalyst at the outlet of the reactor is possible regardless of the separation of the catalyst. However, in a fluid catalytic cracking apparatus that produces gasoline using heavy oil or the like as raw material oil, the catalyst is used as a heat medium by regenerating the catalyst at a high temperature and using it again for the reaction. Quenching the mixture is not preferable in terms of thermal efficiency.
[0005]
Similarly, rapid cooling before gas-solid separation is not preferable even in a reaction using a granular solid as a heat medium. It is therefore effective to remove most of the solid from the mixture quickly at the reactor outlet. Even if a part of the solid is entrained with the gas in this first stage separation, the amount of the solid is reduced, so the contribution to the reaction is reduced, and the remaining solid is separated over time with an existing separator such as a cyclone. However, the inconvenience described above does not occur. Further, when the reaction caused by the solid accompanying the gas cannot be ignored in the first stage separation, the gas-solid mixture can be rapidly cooled after the first stage separation. In this case, since the amount of solid that is rapidly cooled is smaller than the amount of solid circulating in the apparatus, the thermal efficiency is not adversely affected.
[0006]
As a conventional method for rapidly separating the mixture at the outlet of the reactor, for example, US Pat. Among these, a method is adopted in which a flow of the mixture is brought to one side of the reactor by providing a directional deflecting plate in the downflow tubular reactor, and gas is drawn laterally from the opposite side. However, this method has a low separation efficiency because the gas turning angle cannot be more than 90 degrees. In addition, the directional deflector plate is also subject to severe wear due to direct impact of the mixture.
[0007]
Another example of a rapid separation method is Japanese Patent Publication No. 60-18447. This provides a rectangular chamber horizontally to the downflow or upflow reactor. The mixture flows in from one end of the chamber and turns 90 degrees, after which the catalyst is withdrawn downward and the gas is withdrawn upward from the opposite end of the chamber. In this case, the flow of the mixture in the chamber is very turbulent, and the separation catalyst does not flow smoothly to the catalyst outlet and is wound upward, so that the separation efficiency is low, and the tendency is that the solid supply amount or the mixing ratio is large. As it becomes, it becomes remarkable. This is mainly because the solid must move horizontally through the horizontal portion of the chamber to the solid extraction port, so that the solid extraction cannot be made in time as the solid supply rate increases.
[0008]
The separation efficiency referred to in this specification is the ratio of the solids supplied to the separator, the solids removed by the separator, that is, the solids extracted from the solid outlet, expressed as a percentage. It is expressed by the following formula.
Separation efficiency (unit:%) = (weight of solid extracted from solid outlet) / (weight of catalyst supplied to separator)
[0009]
The mixing ratio in the present invention is a numerical value obtained by dividing the weight of the solid in the supplied gas-solid mixture by the weight of the gas, and is represented by the following formula.
Mixing ratio = (solid weight) / (gas weight)
[0010]
[Problems to be solved by the invention]
Processes aimed at increasing the selectivity of the preferred product with a short contact time often use high mixing ratios to keep the contact time as short as possible and maintain high conversion. Therefore, a high-speed separator with a short residence time and high separation efficiency has been demanded.
An object of the present invention is to provide a gas-solid separator having a shorter solid residence time and a higher solid removal rate than the conventional one.
[0011]
[Means for Solving the Problems]
A pair of facing walls (S) with a vertically extending separation space (S) that has a rectangular horizontal cross section, and only a pair of facing walls are gradually approaching a narrow width downward to form opposing slopes (A1, A2). And a rectangular tube portion (1) having a top plate (8) that forms an opposed vertical surface (B, B) that holds the separation and closes the separation space (S) above, and the rectangular tube portion (1 ) And a solid extraction pipe (4) with a constant cylindrical cross-sectional area continuous to the lower end of the top plate (8) near the one end of the top plate (8) The mixture introduction pipe (2) that opens and communicates with the separation space (S), and opens on the top plate (8) near the other opposing slope (A2) and near the other end, and the separation space (S) A gas extraction pipe (3) communicating with the separator, and a separation plate (5) fixed substantially horizontally below the mixture introduction pipe (2) at a substantially central portion in the height direction inside the separation space (S) A gas-solid separator is constituted by the above.
[0012]
[Operation] In the separator of the present invention, the gas-solid mixture is introduced into the separation container from the mixture introduction pipe connected to one end of the upper part of the separation container, and swivels 180 degrees in the separation container. In the process, the solid is separated by centrifugal force, and is discharged out of the separator through the solid extraction pipe connected to the lower part of the separation container through the lower surface of the separation plate. On the other hand, the gas passes through the upper surface of the separation plate, and is discharged out of the separator through a gas extraction pipe connected to one end opposite to the mixture introduction pipe at the upper part of the separation container.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiments] The present invention will be described in detail below with reference to the drawings.
1 (a) and 1 (b) show an embodiment of the gas-solid separator of the present invention. FIG. 1 (a) is a front sectional view and FIG. 1 (b) is a side view. FIG. 2 is a front sectional view of the gas-solid separator.
[0014]
As can be seen in Fig. 1 (a), the separation container (rectangular tube (1)), which is the main body of this gas-solid separator, has a hexagonal shape that can be cut off at the bottom two corners when viewed from the front. The interior is a separation space (S) extending vertically in a rectangular section in the horizontal direction. In other words, only the pair of facing walls are gradually approaching a narrow width downward to form the opposing slopes (A1, A2), and the remaining pair of facing walls forms the opposing vertical surfaces (B, B) with a constant spacing. At the same time, a rectangular tube portion (1) is formed by joining a top plate (8) for closing the separation space portion (S) upward.
[0015]
As shown in the side view of FIG. 1 (b), the rectangular tube portion (1) is a box-shaped container having a thickness (width) L in the front-rear direction. At the upper end of the rectangular tube portion (1), the mixture introduction pipe (2) is opened near one of the opposite inclined surfaces (A1) and near the end portion of the top plate (8) and communicates with the separation space portion (S). Connected to the other end of the top plate (8) is a gas extraction pipe (3) that opens toward the other facing slope (A2) and communicates with the separation space (S). Has been. In addition, a solid extraction pipe (4) having a cylindrical constant cross-sectional area is connected to the lower surface of the rectangular tube portion (1). Thus, the rectangular tube portion (1) is inclined toward the edge of the bottom solid extraction tube (4).
[0016]
Inside the separation space (S), a separation plate (5) is fixed substantially horizontally at a substantially central portion in the height direction below the gas extraction pipe (3). That is, the side of one end of the separation plate (5) is in contact with the opposing inclined surface (side wall) on the side of the square tube (1) gas extraction pipe (3), and the protruding length from the side wall is W2. The rectangular tube portion (1) is partitioned up and down to the middle by the separation plate (5), and a communication passage (7) is formed on the mixture introduction tube side to connect the upper and lower separation space portions (S). . The width of this communication path is (W−W2).
[0017]
The gas-solid mixture introduced from the mixture introduction pipe (2) into the system, i.e., the separation space (S), is mixed with the mixture introduction pipe (2), the upper half of the rectangular tube section (1), and the gas extraction pipe (3 The gas and the solid are separated by centrifugal force when passing through the U-shaped passage formed by) while changing the direction. The solid separated by the centrifugal force falls to the lower part of the rectangular tube portion through the communication passage (7) described above, and is discharged out of the system from the solid extraction pipe (4).
[0018]
In this case, the gas-solid separation speed due to the centrifugal force varies depending on the linear velocity of the mixture. If the linear velocity is high, the separation is fast, and the separation ends at the beginning of the 180-degree turn in the passage made by the separator. In this case, the separation efficiency is higher when the length L of the separation plate (5) is increased. This is because the solids in the mixture that entered the separation vessel from the mixture introduction tube go straight without any swirling because the centrifugal force to the solid is strong, so that most of the solid passes through the passage even if the communication passage (7) is narrowed. This is because the separation plate is long and the winding of the solid from the lower portion of the separation container can be prevented.
[0019]
On the other hand, when the linear velocity of the mixture is small, the separation speed is low, and the separation is not finished unless it is later in the 180 degree turn. In this case, it is better to reduce W2. This is because if the separation plate (5) is too long, solids that cannot be separated in time will enter the upper portion of the separation plate (5). If the separating plate (5) is short, the passage becomes large, but since the linear velocity of the gas is small, the winding of the solid from the lower part of the rectangular tube (1) does not pose a problem.
[0020]
Specifically, the length W2 of the separating plate (5) is preferably determined according to the following formula with W as a reference.
W2 / W = −0.0004V 2 + 0.0201V + 0.4437;
V: Linear velocity of the mixture or gas (m / s)
[0021]
The diameter Dm of the mixture introduction tube is determined from the flow rate of the mixture supplied to the separator so that the linear velocity of the mixture becomes an appropriate value. Specifically, the linear velocity of the mixture is adjusted to 3 to 40 m / s, preferably 5 to 20 m / s. When the linear velocity of the mixture is less than 3 m / s, the swirling speed of the mixture in the separation container is too low to perform sufficient separation. On the other hand, if the linear velocity of the mixture is higher than 40 m / s, the wear of the separator becomes severe, which is not preferable.
[0022]
It is desirable that the diameter Dg of the gas extraction pipe is substantially equal to the diameter Dm of the mixture introduction pipe. This is because even when the mixing ratio is large, the amount of solid is very small compared to the amount of gas when viewed in volume ratio, so if Dm is equal to Dg, the linear velocity of the mixture or gas will be constant and separation will be performed smoothly. It is. However, when the mixing ratio is 20 or more, Dg may be reduced to 80% of Dm.
[0023]
The diameter Ds of the solid extraction tube is 1 to 1.5 times, preferably 1.2 to 1.3 times Dm. If it is smaller than 1 time, the solid extraction speed is undesirably slowed. If it is larger than 1.5 times, the space in which the gas can exist becomes too large. As a result, the residence time of the gas in the separator becomes unnecessarily large, which is not preferable.
[0024]
The mixture introduction pipe (2), the gas extraction pipe (3), and the solid extraction pipe (4) are not necessarily cylindrical, and may be quadrangular columnar pipes having the same cross section. The width W of the prismatic body is preferably 2.5 to 3.5 times, more preferably 3 times Dm. If it is less than 2.5 times, the distance between the mixture introduction pipe (2) and the gas extraction pipe (3) becomes too narrow, making production difficult. On the other hand, if the ratio is larger than 3.5, the flow path formed by the mixture inlet tube (2), the upper part of the rectangular tube (1) and the gas outlet tube (3) cannot be U-shaped, and the centrifugal force works well. The separation efficiency is reduced.
[0025]
The depth L of the rectangular tube portion (1) as the separation container is preferably equal to Ds. If it is smaller than Ds, it is possible to connect each introduction tube and extraction tube to the square tube portion (1). If it is larger than Ds, a wasteful space unrelated to separation will be created, and the gas in the separator will be lost. Since the residence time becomes long, it is not preferable.
[0026]
Further, the height H of the rectangular tube portion (1) is preferably 2 to 3 times Dm. If it is smaller than 2, the space above the rectangular tube portion (1) partitioned by the separating plate (5) becomes too small, and the pressure loss becomes large, which is not preferable. A value greater than 3 is not preferable because the residence time of the gas in the separation container increases.
[0027]
The position where the separating plate (5) is inserted is preferably determined so that the distance between the square tube portion (1) and the separating plate (5) is 1 to 1.5 times Dm. If it is smaller than 1, the space above the rectangular tube part (1) partitioned by the separating plate (5) becomes too small, which is not preferable because the pressure loss increases. When the ratio is larger than 1.5, the residence time of the gas in the separation container is increased, which is not preferable.
[0028]
The angle θ of the inclined surface (6) formed by the bottom surface of the rectangular tube portion (1) with the horizontal plane is preferably 5 to 10 degrees larger than the angle of repose θ ′ of the solid used. If θ is too small, the flow of solid to the solid extraction pipe is hindered, which is not preferable. If θ is too large, H is increased as a result, and the residence time of the gas is increased.
[0029]
As shown in Fig. 2, the slope (6) can be formed by manufacturing the bottom of the square tube (1) in a horizontal plane and fixing a triangular lining material with erosion resistance. May be. In particular, this method is preferable in terms of preventing erosion because the slope (6) portion on the mixture introduction tube side has many solid collisions during operation.
[0030]
Hereinafter, experimental results actually obtained in Examples to which the present invention is applied will be described.
In each example, a separator group having a preferable form shown in FIG. 1 and having dimensions of each part as shown in Table 1 below was used. As the solid, a catalyst used in a fluid catalytic cracking apparatus for producing gasoline from heavy oil was used. This catalyst has an average particle size of 63 microns and a specific gravity of 0.85 g / cm 3 . Moreover, normal temperature air was used for the gas. The mixing ratio was 20.
[0031]
[Table 1]
Figure 0003817013
[0032]
[Example 1];
The results obtained with the separators having the dimensions shown in Table 1 indicated that the separation efficiencies were 90, 88, and 86% for gas linear velocities of 4, 10, and 20 m / s, respectively. The residence time of the gas in the separator was 0.07, 0.022, and 0.011 seconds, respectively.
[0033]
[Example 2];
The experiment was performed under the same conditions as in Example 1 except that the length W2 of the separation plate was set to 70 mm. At this time, the separation efficiencies were 91, 89, and 85% for gas linear velocities of 4, 10, and 20 m / s. The residence time of the gas in the separator was 0.07, 0.025, 0.013 seconds.
[0034]
[Example 3];
The experiment was performed under the same conditions as in Example 1 except that the length W2 of the separation plate was 60 mm. At this time, the separation efficiencies were 93, 86, and 79% for the linear velocity of gas of 4, 10, and 20 m / s. The residence time of the gas in the separator was 0.08, 0.03, and 0.015 seconds.
[0035]
[Comparative Example 1];
A separator having the same dimensions as those in Example 1 and a horizontal bottom of the container 1 was used. In this example, solids were deposited on the bottom surface of the separation container 1 to form a stationary bed. Since the winding of the solid from this portion increased, the separation efficiency decreased and remained at 70%.
[0036]
The separator according to the present invention described above is a device in which a granular solid is brought into contact with a gas or liquid droplets as a catalyst or a heat medium to carry out the reaction, and the solid is obtained from the mixture of the solid produced by the reaction and the gas product. It is preferably used when it is desired to achieve a short reaction time by rapid separation. Especially, it is more preferably used when the amount of solids supplied is large or the mixing ratio is high. For example, a light olefin at a higher temperature and shorter contact time than gasoline production equipment (FCC) or FCC by fluid catalytic cracking of heavy oil And the like.
[0037]
The main advantage of the present invention is the rapid removal of solids by swirling the gas-solid mixture 180 degrees. For this reason, the residence time of the gas in a separator is very short.
Further, since the solid extraction port is connected to the lower center of the separation container, and there is no horizontal portion on the bottom surface of the separation container and it is inclined toward the solid extraction port, the solid extraction is also very smooth. It is a big feature. For this reason, the separation efficiency does not decrease even if the solid supply amount or the mixing ratio increases.
[0038]
Further, corresponding to the provision of the separation plate at the center of the separation container, it is possible to prevent the solid from being rolled up from the lower part of the separation container toward the gas extraction port. In addition, the wear due to the collision of the solid is intense at the bottom surface of the separation container just below the mixture inlet. However, as shown in FIG. Can be avoided. In addition, the wear of the separation plate is also intense, but there is no problem because the thickness of the separation plate itself can be increased as necessary.
[0039]
【The invention's effect】
As described above, the gas-solid separator according to the present invention includes a vertically separating space portion (S) having a horizontal cross-sectional rectangle, and only a pair of facing walls sequentially approach a narrow width in the lower direction and face an inclined surface (A1, A pair of facing walls that form A2) form opposite vertical surfaces (B, B) that are spaced apart and have a top plate (8) that closes the separation space (S) above. A cylindrical part (1), a solid extraction pipe (4) with a cylindrical constant cross-sectional area continuous to the lower end of this square cylindrical part (1), and one opposing slope (A1 at the upper end of the same rectangular cylindrical part (1) ) Near the top plate (8) and open to the separation space (S) and communicate with the separation space (S), the remaining opposing slope (A2) near the top plate (8), etc. A gas extraction pipe (3) that opens near the end and communicates with the separation space (S), and the mixture introduction pipe (2) below the separation space (S) at a substantially central portion in the height direction. And a separation plate (5) fixed substantially horizontally. Cage, a result, the processing target is the corresponding able residence time of the gas in the apparatus as compared with that of conventional is shorter in the case of high mixing ratio, solids removal rate is high gas-solid separator is obtained.
[Brief description of the drawings]
[1] Both figures illustrate an embodiment of a gas-solid matter away device of the invention, (a) is a front sectional view of the separator, (b) is a side view.
2 is a front sectional view showing another embodiment of the present invention a gas-solid matter away unit.
[Explanation of symbols]
(1)… Square tube,
(2)… mixture introduction pipe,
(3)… gas extraction pipe,
(4)… Solid extraction pipe,
(5)… separation plate,
(8)… top plate,
(A1, A2)… opposite slope,
(B, B)… opposed vertical surface,
(S) ... space for separation.

Claims (9)

粒子径1〜500μm の固体粒子と気体の混合物から粒子を迅速に分離することを目的として設計され、
水平方向断面矩形の鉛直に延びる分離用空間部(S) を備え一対の対面壁のみが下方で順次狭幅に接近して対向斜面(A1,A2) を形成し残る一対の対面壁は一定間隔を保った対向鉛直面(B,B) を形成するとともに上方に前記分離用空間部(S) を閉塞する天板(8) を有した角筒部(1) と、この角筒部(1) の下端に連続する筒状一定断面積の固体抜出管(4) と、同じ角筒部(1) の上端で一方の対向斜面(A1)に寄って前記天板(8) 一端近傍で開口し前記分離用空間部(S) に連通する混合物導入管(2) と、残る対向斜面(A2)に寄って前記天板(8) 他端近傍で開口し前記分離用空間部(S) に連通する気体抜出管(3) と、前記分離用空間部(S) 内部に高さ方向略中央部で前記混合物導入管(2) 下方に略水平に固設された分離板(5) とを具備したことを特徴とする気固分離器。
Designed to quickly separate particles from a mixture of solid particles and gas with a particle size of 1 to 500 μm,
A pair of facing walls (S) with a vertically extending separation space (S) with a rectangular cross section in the horizontal direction, and only the pair of facing walls approaching a narrow width in the lower part to form opposing slopes (A1, A2). And a rectangular tube portion (1) having a top plate (8) that forms an opposed vertical surface (B, B) that holds the separation and closes the separation space (S) above, and the rectangular tube portion (1 ) And a solid extraction pipe (4) with a constant cylindrical cross-section continuous to the lower end of the top plate (8) near the one end of the top plate (8) near the opposite inclined surface (A1) at the upper end of the same rectangular tube section (1). The mixture introduction pipe (2) that opens and communicates with the separation space (S), and opens on the top plate (8) near the other opposing slope (A2) and near the other end, and the separation space (S) A gas extraction pipe (3) communicating with the separator, and a separation plate (5) fixed substantially horizontally below the mixture introduction pipe (2) at a substantially central portion in the height direction inside the separation space (S) A gas-solid separator characterized by comprising:
前記混合物導入管(2) が円筒状であり、前記分離板(5) はその一端が気体抜出管側の対向斜面に接しており、且つ(W:該分離容器の幅、Dm:該混合物導入管の直径)である時にその延出長さが(W/2)〜(W−Dm)である請求項1に記載の気固分離器。The mixture introduction pipe (2) is cylindrical, and one end of the separation plate (5) is in contact with the opposite inclined surface on the gas extraction pipe side, and (W: width of the separation container, Dm: the mixture The gas-solid separator according to claim 1, wherein the extension length is (W / 2) to (W-Dm). 導入される混合物の流量Qに基づいて混合物導入管の直径Dmが次式、
V=4Q/(Dm2 π) , 3m/s≦V≦40m/s
ただしDmの単位はm、Qの単位はm3 /s
なる関係を満たすように直径Dmが決められている請求項2に記載の気固分離器。
Based on the flow rate Q of the mixture to be introduced, the diameter Dm of the mixture introduction pipe is expressed by the following equation:
V = 4Q / (Dm 2 π), 3 m / s ≦ V ≦ 40 m / s
However, the unit of Dm is m, and the unit of Q is m 3 / s
The gas-solid separator according to claim 2, wherein the diameter Dm is determined so as to satisfy the following relationship.
前記気体抜出管の直径Dgを、
Dg=Dm
とした請求項2に記載の気固分離器。
The diameter Dg of the gas extraction pipe is
Dg = Dm
The gas-solid separator according to claim 2.
該分離容器の高さHが、
H=Dm×C 2≦C≦3
なる関係を満たす請求項2に記載の気固分離器。
The height H of the separation container is
H = Dm × C 2 ≦ C ≦ 3
The gas-solid separator according to claim 2 satisfying the following relationship.
前記分離用空間の幅Wが、
W=Dm×B、(但し、2.5≦B≦3.5)
なる関係を満たす請求項2に記載の気固分離器。
The width W of the separation space is
W = Dm × B, (2.5 ≦ B ≦ 3.5)
The gas-solid separator according to claim 2 satisfying the following relationship.
分離板の長さW2がWを基準として下式;
W2/W=−0.0004V2 +0.0201V+0.4437
ただしVは混合物あるいは気体の線速度(m/s)
を満たすよう決められている請求項6に記載の気固分離器。
The length W2 of the separator plate is based on the following formula:
W2 / W = −0.0004V 2 + 0.0201V + 0.4437
Where V is the linear velocity of the mixture or gas (m / s)
The gas-solid separator according to claim 6, which is determined to satisfy
前記固体抜き出し管の直径Dsが、
Ds=Dm×A 1≦A≦1.5
なる関係を満たす請求項2に記載の気固分離器。
The diameter Ds of the solid extraction tube is
Ds = Dm × A 1 ≦ A ≦ 1.5
The gas-solid separator according to claim 2 satisfying the following relationship.
該分離容器の奥行きLが、
L=Ds
なる関係を満たす請求項8に記載の気固分離器。
The depth L of the separation container is
L = Ds
The gas-solid separator according to claim 8, which satisfies the following relationship.
JP08237097A 1997-03-14 1997-03-14 Gas-solid separator Expired - Fee Related JP3817013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08237097A JP3817013B2 (en) 1997-03-14 1997-03-14 Gas-solid separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08237097A JP3817013B2 (en) 1997-03-14 1997-03-14 Gas-solid separator

Publications (2)

Publication Number Publication Date
JPH10249121A JPH10249121A (en) 1998-09-22
JP3817013B2 true JP3817013B2 (en) 2006-08-30

Family

ID=13772713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08237097A Expired - Fee Related JP3817013B2 (en) 1997-03-14 1997-03-14 Gas-solid separator

Country Status (1)

Country Link
JP (1) JP3817013B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4852365B2 (en) * 2006-07-12 2012-01-11 財団法人 国際石油交流センター Gas-solid separator
JP4852366B2 (en) 2006-07-12 2012-01-11 財団法人 国際石油交流センター Gas-solid separator design method
JP4852364B2 (en) 2006-07-12 2012-01-11 財団法人 国際石油交流センター Gas-solid separator
JP4854408B2 (en) 2006-07-12 2012-01-18 財団法人 国際石油交流センター Gas-solid separator design method

Also Published As

Publication number Publication date
JPH10249121A (en) 1998-09-22

Similar Documents

Publication Publication Date Title
EP0023769B1 (en) An apparatus and method for separating particulate solids from a mixed-phase solids-gas stream
JP5768146B2 (en) Flexible reactor assembly for olefin polymerization.
JP3933745B2 (en) Gas-solid separator
US9011696B2 (en) Magnetic separation combined with dynamic settling for fischer-tropsch processes
JP3507919B2 (en) Method and apparatus for heat exchange of solid particles for double regeneration in catalytic cracking
JP2014511416A (en) High throughput reactor assembly for olefin polymerization.
US4433984A (en) Low residence time solid-gas separation device and system
US2888096A (en) Horizontal centrifugal separator
US20060177357A1 (en) Riser termination device
US4348364A (en) Thermal regenerative cracking apparatus and separation system therefor
US6692552B2 (en) Riser termination device
CA2634025C (en) Dynamic settler
US5837129A (en) Process and apparatus for separating fluidized cracking catalysts from hydrocarbon vapor
US4756886A (en) Rough cut solids separator
JP6840079B2 (en) Particle Separation Catalyst Chemical Reactor and Particle Separator
JP3817013B2 (en) Gas-solid separator
JP2002510246A (en) Process for producing liquid and optionally gaseous products from gaseous reactants
US5264645A (en) Process and apparatus for the catalytic conversion of a charge containing an oxygen compound comprising the quenching and simultaneous separation of the products formed and the catalyst
JP2001503080A (en) Descending contact cracking method and apparatus using injection of charge at an appropriate angle to the conditioning catalyst
US4556541A (en) Low residence time solid-gas separation device and system
CN111790319A (en) Slurry bed reactor, system and application thereof and Fischer-Tropsch synthesis method
CA1171800A (en) Low residence time solid-gas separation device and system
JPH0572439B2 (en)
JP4309568B2 (en) Regeneration of catalyst in continuous fluid catalytic cracking of hydrocarbons
KR830001384B1 (en) Solid-gas separator with short residence time

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060609

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees