JP3813746B2 - Refrigeration system using hydrogen storage alloy - Google Patents

Refrigeration system using hydrogen storage alloy Download PDF

Info

Publication number
JP3813746B2
JP3813746B2 JP27131498A JP27131498A JP3813746B2 JP 3813746 B2 JP3813746 B2 JP 3813746B2 JP 27131498 A JP27131498 A JP 27131498A JP 27131498 A JP27131498 A JP 27131498A JP 3813746 B2 JP3813746 B2 JP 3813746B2
Authority
JP
Japan
Prior art keywords
temperature
hydrogen storage
storage alloy
hydrogen
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27131498A
Other languages
Japanese (ja)
Other versions
JP2000097514A (en
Inventor
卓哉 橋本
靖彦 伊藤
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27131498A priority Critical patent/JP3813746B2/en
Publication of JP2000097514A publication Critical patent/JP2000097514A/en
Application granted granted Critical
Publication of JP3813746B2 publication Critical patent/JP3813746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Sorption Type Refrigeration Machines (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素吸蔵合金を用いた冷凍システムに関し、特に、太陽熱や産業廃熱等の熱源を利用して−20℃以下の冷熱を発生することが可能な冷凍システムに関するものである。
【0002】
【従来の技術】
近年のエネルギー事情や環境問題から、これまでは放置されていた無尽蔵の太陽熱や産業廃熱を有効に利用することは、産業面における大きな課題であると同時に社会的な要請である。このような状況において、水素吸蔵合金を用いた様々な冷凍システム(ヒートポンプ)が提案されている。
【0003】
図4は、平衡水素圧力の高い低温用水素吸蔵合金MH2と平衡水素圧力の低い高温用水素吸蔵合金MH1とを用いた冷凍システムにおける基本的な冷凍サイクル(▲4▼→▲1▼→▲2▼→▲3▼→▲4▼)を表わしている。先ず、熱源によって高温用水素吸蔵合金MH1を状態▲4▼から状態▲1▼まで加熱して、水素を放出させる。放出された水素は、状態▲2▼の低温用水素吸蔵合金MH2に吸収され、これによって発生する熱は、冷媒によって外部へ放出される。次に、高温用水素吸蔵合金MH1を状態▲4▼の温度に設定すると共に、低温用水素吸蔵合金MH2を状態▲3▼の温度に設定すると、低温用水素吸蔵合金MH2の圧力が高温用水素吸蔵合金MH1の圧力よりも高くなり、低温用水素吸蔵合金MH2は、吸収していた水素を放出して冷却され(状態▲3▼)、放出された水素は、状態▲4▼の高温用水素吸蔵合金MH1に吸収される。
この様に、▲4▼→▲1▼→▲2▼の再生過程と▲2▼→▲3▼→▲4▼の冷凍過程とを交互に繰り返すことによって、連続的に冷熱を発生させる冷凍サイクルが構成される。
【0004】
例えば、特公昭62−1188号公報には、室内の冷暖房に利用可能な冷暖房装置が提案されている。特許第2652456号公報には、水冷式熱交換器を使用して冷凍温度域(−20℃以下)の出熱を行なう熱利用システムが提案されている。又、特開平5−157398号公報には、3種類の水素吸蔵合金を用いて2重の熱サイクルを構成し、冷凍温度域(−20℃以下)の出熱を行なう冷熱発生装置が提案されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特公昭62−1188号公報の冷暖房装置は、冷凍温度域(−20℃以下)の冷熱を発生することは出来ない。これに対し、特許第2652456号公報の熱利用システムは冷凍温度域(−20℃以下)の冷熱発生は可能であるが、水や電気等が必要なため、立地条件に制約が生じる問題がある。又、特開平5−157398号公報の冷熱発生装置は、冷凍温度域(−20℃以下)の冷熱発生は可能であるが、構造が複雑になりやすく、然も、冷房出力(X)と熱源入力(Y)との比(=X/Y)で表される成績係数(COP:Coefficient of Performance)が0.2程度に留まり、実用的な成績係数(例えば0.3以上)を得ることは困難である。
【0006】
そこで本発明の目的は、構造が簡易であり、高い成績係数を得ることが可能な1重サイクルの冷凍システムにおいて、−20℃以下の冷熱発生を実現することである。
尚、1重サイクルとは、2種類の水素吸蔵合金を用いて、両合金間で単一の熱サイクルを構成するものをいう。
【0007】
【課題を解決する為の手段】
本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、1重サイクルの冷凍システムの出力特性は、高温用及び低温用の2種類の水素吸蔵合金の平衡水素圧力と、水素を可逆的に吸収、放出する際の反応の容易性を表わす反応可逆性とによって大きく左右され、従来の冷凍システムにおいては、水素吸蔵合金の反応可逆性が低いために、−20℃以下の冷熱発生が不可能であったことを究明した。
尚、合金の反応可逆性の指標として、HS値を採用することが出来る。HS値は、例えば図3に示す如きP−C−T曲線を有する水素吸蔵合金の場合、ある一定量(例えば0.8wt%)の水素を吸放出させるのに必要な水素吸収曲線上の圧力Paと水素放出曲線上の圧力Pdの自然対数の差の最小値として、下記数1によって定義することが出来る。
【0008】
【数1】
HS=[ln(Pa/Pd)]min
【0009】
図1は、水素吸収時と水素放出時でP−C−T特性曲線に差が生じる実際の水素吸蔵合金の特性を考慮して、前述の冷凍サイクルの状態変化を表わしたものである。図中において、実線は、水素放出時の水素圧力と温度の関係(圧力−温度特性)を表わし、破線は、水素吸収時の水素圧力と温度の関係(圧力−温度特性)を表わしている。又、細線は、HS値が0.6と大きい場合の水素吸放出時の圧力−温度特性を表わし、太線は、HS値が0.3と小さい場合の水素吸放出時の圧力−温度特性を表わしている。
【0010】
図1に示す様に、HS値を減少させることによって、高温用水素吸蔵合金MH1では、水素吸収時の圧力−温度特性が細破線から太破線にシフトし、水素の吸放出に必要な圧力差はΔPa′からΔPaに低下する。又、低温用水素吸蔵合金MH2では、水素放出時の圧力−温度特性が細実線から太実線にシフトし、水素の吸放出に必要な圧力差はΔPb′からΔPbに低下する。
従って、状態▲2▼の低温用水素吸蔵合金MH2が水素を放出する冷却過程で、HS値が0.6と大きい(反応可逆性が低い)ときは、細実線上の状態▲3▼まで温度低下するのに対し、HS値が0.3と小さい(反応可逆性が高い)ときは、太実線上の状態▲3▼′まで温度低下し、状態▲3▼の温度よりもΔT(例えば20deg)だけ温度が低くなる。
尚、低温用水素吸蔵合金から放出された水素は、HS値が0.6と大きい(反応可逆性が低い)ときは、細破線上の状態▲4▼の高温用水素吸蔵合金MH1に吸収されるのに対し、HS値が0.3と小さい(反応可逆性が高い)ときは、太破線上の状態▲4▼′の高温用水素吸蔵合金MH1に吸収されることになる。
上述の如く、低温用水素吸蔵合金と高温用水素吸蔵合金のHS値を出来るだけ小さく抑えることによって、より低温の冷熱を発生させることが出来る。
【0011】
具体的には、本発明に係る水素吸蔵合金を用いた冷凍システムは、太陽熱や産業廃熱の利用によって実現可能な100〜150℃の温度を有する熱源と、外気を用いた空冷によって実現可能な20〜35℃の温度を有する熱媒体とを用いて、−20℃レベルの冷熱の発生を可能とするものである。ここで熱媒体は、熱伝達に用いる媒体、即ち冷媒及び熱媒の総称である。
この場合、冷凍システムの出熱特性に影響する2つの要素、(1)高温用及び低温用の水素吸蔵合金の平衡水素圧力と、(2)各合金の反応可逆性とを考慮する必要がある。
即ち、低温用水素吸蔵合金が、出熱温度である−20℃レベルで作動可能な圧力(0.01MPa以上)を示すこと、空冷式熱交換器を用いて得られる熱媒体の温度により、熱源温度にある高温用水素吸蔵合金から低温用水素吸蔵合金へ水素が移動することが必要である。更に、合金の反応可逆性が低いと熱損失が生じて出熱特性が悪化するため、−20℃以下の冷熱を発生するには、HS値が0.3以下であることが必要である。
【0012】
上述の条件を満たすことが可能な冷凍サイクルとしては、低温用水素吸蔵金及び高温用水素吸蔵合金のHS値がそれぞれ0.3以下の高い反応可逆性を示し、且つ、平衡水素圧力が、高温用水素吸蔵合金については熱源温度域の100〜150℃にて0.8〜1.0MPa、空冷式熱交換器により得られる冷媒温度である20〜35℃にて0.02〜0.05MPa、低温用水素吸蔵合金については空冷式熱交換器により得られる冷媒温度である20〜35℃にて0.6〜0.9MPa、冷熱発生域の−20〜−25℃にて0.05〜0.07MPaとなるサイクルを構成することが出来る(図1参照)。
【0013】
この様なサイクルを実現するべく、本発明においては、低温用水素吸蔵合金については、TiMn2をベースとした多成分化によって、所望の平衡水素圧力と高い反応可逆性を併せ持つ合金組成を得ると共に、該合金組成を有する溶湯をロール急冷法若しくはガスアトマイズ法によって急冷し、合金組織の均質化を図った。
具体的には、低温用水素吸蔵合金は、組成式:
(TiaZr1-a)x(Mn2-b-cbNic)y
但し、
0.8≦a≦0.95
0.3≦b≦0.5
0.55≦c≦0.65
1.8≦y/x≦2.2
で表わされる。
【0014】
又、高温用水素吸蔵合金については、LaNi5系合金をベースとして組成の調整を行ない、該組成を有する溶湯をロール急冷法によって急冷し、合金組織の均質化を図った。
具体的には、高温用水素吸蔵合金は、組成式:
Lax(Ni5-a-bSnaAlb)y
但し、
0.1≦a≦0.25
0.1≦b≦0.2
4.5≦y/x≦5.3
で表わされる。
【0015】
この様にして作製された高い反応可逆性と適正な平衡水素圧力を有する水素吸蔵合金を用いることによって、構造が簡易で成績係数が高く、然も、冷媒又は熱媒の冷却に外気による空冷を採用することが可能な冷凍システムを実現することが出来る。
【0016】
【発明の効果】
本発明によれば、水素吸蔵合金を利用した1重サイクルの冷凍システムにおいて、100〜150℃の熱源と空冷式熱交換器により20〜35℃に冷却された熱媒体とを用いて、−20℃レベルの冷熱を発生させることが出来る。
【0017】
【発明の実施の形態】
以下、本発明を図5に示す冷凍システムに実施した形態について具体的に説明する。
該冷凍システムにおいては、ヒートポンプ装置(1)に対して、熱媒切換え装置(2)を介して集熱器(4)と空冷式熱交換器(6)とが切り換え可能に接続されると共に、冷媒切換え装置(3)を介して空冷式熱交換器(5)と冷凍庫(7)とが切り換え可能に接続され、集熱器(4)と熱媒切換え装置(2)の間には、蓄熱槽(9)が介在している。
【0018】
ヒートポンプ装置(1)は、第1ヒートポンプP1及び第2ヒートポンプP2を併設して構成されている。第1ヒートポンプP1は、平衡水素圧力の低い水素吸蔵合金MH1を内蔵した高温側第1反応容器(11)と平衡水素圧力の高い水素吸蔵合金MH2を内蔵した低温側第1反応容器(12)とを連結管(17)を介して互いに連結してなり、連結管(17)にはバルブ(15)が介在している。又、第2ヒートポンプP2は、平衡水素圧力の低い水素吸蔵合金MH1を内蔵した高温側第2反応容器(13)と平衡水素圧力の高い水素吸蔵合金MH2を内蔵した低温側第2反応容器(14)とを連結管(18)を介して連結してなり、連結管(18)にはバルブ(16)が介在している。
【0019】
熱媒切換え装置(2)は、蓄熱槽(9)から伸びる熱媒供給管(41)及び熱媒戻り管(42)を高温側第1反応容器(11)と高温側第2反応容器(13)の何れか一方に接続すると共に、空冷式熱交換器(6)から伸びる熱媒供給管(61)及び熱媒戻り管(62)を他方の反応容器に接続するための配管系と、該配管系に介在する複数の3方弁とから構成される。
又、冷媒切換え装置(3)は、空冷式熱交換器(5)から伸びる冷媒供給管(51)及び冷媒戻り管(52)を低温側第1反応容器(12)と低温側第2反応容器(14)の何れか一方に接続すると共に、冷凍庫(7)から伸びる冷媒戻り管(71)及び冷媒供給管(72)を他方の反応容器に接続するための配管系と、該配管系に介在する複数の4方弁とから構成される。
【0020】
集熱器(4)は、ヒートパイプ構造を有する複数本の集熱管を併設して構成され、約140℃の熱媒(加圧水)の供給が可能である。
集熱器(4)から伸びる熱媒出口管(43)及び熱媒入口管(44)は蓄熱槽(9)へ接続されると共に、熱媒出口管(43)は3方弁(91)を介して熱媒入口管(44)へ接続されており、集熱器(4)から供給される熱媒が約140℃に達したとき、熱媒出口管(43)から3方弁(91)を経て蓄熱槽(9)へ高温(約140℃)の熱媒が供給される。これによって蓄熱槽(9)に十分な熱が蓄えられ、該蓄熱槽(9)から熱媒供給管(41)を経てヒートポンプ装置(1)へ一定温度(約140℃)の熱媒が供給されるのである。
又、空冷式熱交換器(5)(6)は、冷媒(メチルアルコール)又は熱媒(加圧水)をファンによって冷却するものであって、冷媒供給管(51)又は熱媒供給管(61)を経てヒートポンプ装置(1)へ20℃〜35℃の冷媒が供給される。
【0021】
低温用水素吸蔵合金は、Ti、Zr、Mn、V、及びNiを含有したC14型構造を有し、組成式:
(TiaZr1-a)x(Mn2-b-cbNic)y
但し、
0.8≦a≦0.95
0.3≦b≦0.5
0.55≦c≦0.65
化学量論比:1.8≦y/x≦2.2
で表わされる。
【0022】
一方、前記高温用水素吸蔵合金は、La、Ni、Sn、及びAlを含有したCaCu5型構造を有し、組成式:
Lax(Ni5-a-bSnaAlb)y
但し、
0.1≦a≦0.25
0.1≦b≦0.2
化学量論比:4.5≦y/x≦5.3
で表わされる。
【0023】
低温用水素吸蔵合金及び高温用水素吸蔵合金は、上記組成を有する2種類の水素吸蔵合金の溶湯を回転ロール急冷法若しくはガスアトマイズ法により急冷して作製され、0.8wt%の水素を2つの平衡水素圧力の差で吸収若しくは放出させるのに必要な2つの平衡水素圧力の自然対数の差の最小値(HS値)が0.3以下に設定されている。
【0024】
図5に示す冷凍システムにおいては、集熱器(4)が熱源、空冷式熱交換器(5)及び空冷式熱交換器(6)が放熱源、冷凍庫(7)が冷凍負荷となって、冷凍サイクルが構成される。
例えば、第1ヒートポンプP1においては、先ず、高温側第1反応容器(11)内の水素吸蔵合金MH1が加熱されることによって、水素が放出し、放出された水素は低温側第1反応容器(12)へ送り込まれて、水素吸蔵合金MH2に吸収される。ここで、水素吸蔵合金MH2が水素を吸収することによって発生する熱は、空冷式熱交換器(5)から放熱される。
次に、冷媒切換え装置(3)の切換えによって、低温側第1反応容器(12)には冷凍庫(7)が接続される。この状態で、低温側第1反応容器(12)では、水素吸蔵合金MH2に吸収されている水素が放出し、これによって、冷凍庫(7)から冷媒戻り管(71)を経て供給される冷媒が冷却され、低温(−20℃以下)の冷媒が冷媒供給管(72)を経て冷凍庫(7)へ送り込まれる。
又、熱媒切換え装置(2)の切換えによって、高温側第1反応容器(11)には空冷式熱交換器(6)が接続される。この状態で、低温側第1反応容器(12)から放出されるガスは高温側第1反応容器(11)へ送り込まれ、水素吸蔵合金MH1に吸収される(図1中の▲3▼′→▲4▼′)。ここで、水素吸蔵合金MH1が水素を吸収することによって発生する熱は、空冷式熱交換器(6)から放熱される。
【0025】
上述の冷凍サイクルを第1ヒートポンプP1と第2ヒートポンプP2で180度の位相差をもって行なわしめることにより、冷凍庫(7)には連続的に低温の冷媒が供給され、冷凍庫(7)内は、−20℃以下の低温に保たれるのである。
【0026】
表1(a)(b)は、上記本発明の冷凍システムの開発において、高温用水素吸蔵金及び低温用水素吸蔵合金の組成を調整する過程で作製した各種合金の製造方法、HS値、HS値算出の基礎となる有効水素移動量、及び平衡水素圧力を表わしている。尚、製造方法の「アーク溶解」は、アーク炉中で溶解させた合金溶湯を徐冷してインゴットを作製する工程、又、「溶湯急冷」は溶湯をロール急冷法によって急冷してインゴットを作製する工程、「熱処理」は、インゴットを1000℃前後に加熱した後、徐冷を施す工程を表わしている。
【0027】
【表1】

Figure 0003813746
【0028】
表1(a)に示す様に高温用水素吸蔵合金については、ベースとなるLaNi5合金では、HS値が0.3と反応可逆性が高いが、所望の平衡水素圧力を得ることが出来ない。しかし、組成を調整したLaNi4.7Sn0.2Al0.1合金の溶湯をロール急冷法によって急冷した後、800℃で8時間の熱処理を施することによって、HS値0.30の反応可逆性と、140℃で所望の平衡水素圧力1MPaが得られている。
又、表1(b)に示す様に低温用水素吸蔵合金については、ベースとなるTiMn2系合金の多成分化とロール急冷法による急冷処理によって、Ti0.85Zr0.15Mn1.00.4Ni0.6合金では、HS値0 . 3の反応可逆性と、−20℃で所望の平衡水素圧力0.06MPaが得られている。
【0029】
本発明に係る冷凍システムの性能を実証すべく、実施例となる水素吸蔵合金と比較例となる水素吸蔵合金を用いて図5に示す冷凍システムの実験機を作製し、これらの性能比較を行なった。
【0030】
次に、1つの実施例と6つの比較例における合金組成及び製造方法、冷凍システムの運転条件を示す。
実施例
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.7Sn0.2Al0.1
製造方法:ロール急冷法による急冷後、800℃で8時間の熱処理
(2) 低温用水素吸蔵合金(MH2)
組成:Ti0.85Zr0.15Mn1.00.4Ni0.6
製造方法:ロール急冷合金
尚、何れの合金についても、各反応容器に充填した合金の重量は22kgである。又、何れの合金も、有効水素移動量0.8w%でのHS値は0.3である。ここで、有効水素移動量は1500kcal/hの出力を得るために必要な水素の移動量から算出したものである。
Figure 0003813746
【0031】
比較例1
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.55Al0.45
製造方法:高周波溶解により鋳造後、1000℃で8時間の熱処理
HS値:1.0(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:La0.60.4Ni4.95Mn0.05
製造方法:高周波溶解により鋳造後、1000℃で8時間の熱処理
HS値:1.0(有効水素移動量0.8wt%)
【0032】
比較例2
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.55Al0.45
製造方法:高周波溶解により鋳造後、1000℃で8時間の熱処理
HS値:1.0(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:Ti0.85Zr0.15Mn1.00.4Ni0.6
製造方法:高周波溶解により鋳造後、1050℃で8時間の熱処理
HS値:0.49(有効水素移動量0.8wt%)
【0033】
比較例3
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.7Sn0.2Al0.1
製造方法:高周波溶解により鋳造後、1100℃で8時間の熱処理
HS値:0.60(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:La0.60.4Ni4.95Mn0.05
製造方法:高周波溶解により鋳造後、1050℃で8時間の熱処理
HS値:1.0(有効水素移動量0.8wt%)
【0034】
比較例4
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.7Sn0.2Al0.1
製造方法:高周波溶解により鋳造後、1100℃で8時間の熱処理
HS値:0.60(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:Ti0.85Zr0.15Mn1.00.4Ni0.6
製造方法:高周波溶解により鋳造後、1050℃で8時間の熱処理
HS値:0.49(有効水素移動量0.8wt%)
【0035】
比較例5
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.7Sn0.2Al0.1
製造方法:高周波溶解により鋳造後、1100℃で8時間の熱処理
HS値:0.60(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:Ti0.85Zr0.15Mn1.00.4Ni0.6
製造方法:ロール急冷法による急冷
HS値:0.30(有効水素移動量0.8wt%)
【0036】
比較例6
(1) 高温用水素吸蔵合金(MH1)
組成:LaNi4.7Sn0.2Al0.1
製造方法:ロール急冷法により急冷後、800℃で8時間の熱処理
HS値:0.30(有効水素移動量0.8wt%)
(2) 低温用水素吸蔵合金(MH2)
組成:Ti0.85Zr0.15Mn1.00.4Ni0.6
製造方法:高周波溶解により鋳造後、1050℃で8時間の熱処理
HS値:0.49(有効水素移動量0.8wt%)
【0037】
尚、何れの比較例についても、各反応容器に充填した合金の重量は22kgである。又、有効水素移動量は1500kcal/hの出力を得るために必要な水素の移動量から算出したものである。
【0038】
Figure 0003813746
【0039】
図2は、実施例及び比較例1〜6における冷凍システムの出熱特性として、冷熱発生過程における冷媒出口の温度の変化を表わしている。又、表2は、実施例と比較例1〜6における冷凍システムにおける冷熱発生過程15分後の冷媒出口の温度を示している。
【0040】
【表2】
Figure 0003813746
【0041】
図1及び表2から明らかな様に、比較例1〜6では、初期の数分間は−15℃程度の冷熱を発生しているが、温度が安定化した15分後以降は、−10℃レベルの冷熱発生に留まっている。これに対し、本発明の実施例では、温度安定化後においても、−20℃レベルの冷熱発生を維持している。これは、比較例では、合金の不可逆性に起因する熱損失が大きいために出熱温度の低下を招いているからである。
【0042】
上述の如く、本発明に係る冷凍システムによれば、1重の熱サイクルを構成した場合においても、100〜150℃の熱源と空冷式熱交換器により冷却された20〜35℃の熱媒体とを用いて、−20℃レベルの冷熱を発生させることが出来る。
【0043】
尚、本発明の各部構成は上記実施の形態に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能である。例えば、本発明の冷凍システムに用いる水素吸蔵合金は、実施例で示した合金組成や製造方法に限らず、請求項1〜請求項3に記載されている合金組成や製造方法で作製した合金であれば、同等の出熱性能を得ることが出来る。
【図面の簡単な説明】
【図1】本発明に係る冷凍システムにおいてHS値低下の効果を説明する図である。
【図2】本発明の実施例と比較例において冷媒出口温度の変化を表わすグラフである。
【図3】水素吸蔵合金のP−C−T曲線を表わす図である。
【図4】基本的な冷凍サイクルを表わす図である。
【図5】本発明を実施すべき冷凍システムの構成を表わす系統図である。
【符号の説明】
(1) ヒートポンプ装置
P1 ヒートポンプ
P2 ヒートポンプ
(11) 高温側第1反応容器
(12) 低温側第1反応容器
(13) 高温側第2反応容器
(14) 低温側第2反応容器
(2) 熱媒切換え装置
(3) 冷媒切換え装置
(4) 集熱器
(5) 空冷式熱交換器
(6) 空冷式熱交換器
(7) 冷凍庫[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration system using a hydrogen storage alloy, and more particularly to a refrigeration system capable of generating cold heat of −20 ° C. or lower using a heat source such as solar heat or industrial waste heat.
[0002]
[Prior art]
Effective utilization of inexhaustible solar heat and industrial waste heat, which has been neglected in the past due to the energy situation and environmental problems in recent years, is a major industrial issue and a social demand. Under such circumstances, various refrigeration systems (heat pumps) using hydrogen storage alloys have been proposed.
[0003]
FIG. 4 shows a basic refrigeration cycle ((4) → (1) → (2) in a refrigeration system using a low temperature hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure and a high temperature hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure. ▼ → ▲ 3 ▼ → ▲ 4 ▼). First, the high-temperature hydrogen storage alloy MH1 is heated from the state (4) to the state (1) with a heat source to release hydrogen. The released hydrogen is absorbed by the low-temperature hydrogen storage alloy MH2 in the state (2), and the heat generated thereby is released to the outside by the refrigerant. Next, when the high temperature hydrogen storage alloy MH1 is set to the temperature of the state (4) and the low temperature hydrogen storage alloy MH2 is set to the temperature of the state (3), the pressure of the low temperature hydrogen storage alloy MH2 is increased to the high temperature hydrogen. The pressure of the storage alloy MH1 becomes higher, and the low-temperature hydrogen storage alloy MH2 releases the absorbed hydrogen and is cooled (state (3)), and the released hydrogen is the high-temperature hydrogen in the state (4). It is absorbed by the storage alloy MH1.
In this way, the refrigeration cycle that continuously generates cold by repeating the regeneration process of (4) → (1) → (2) and the refrigeration process of (2) → (3) → (4) alternately. Is configured.
[0004]
For example, Japanese Patent Publication No. 62-1188 proposes an air conditioning apparatus that can be used for indoor air conditioning. Japanese Patent No. 2652456 proposes a heat utilization system that uses a water-cooled heat exchanger to output heat in a refrigeration temperature range (−20 ° C. or lower). Japanese Laid-Open Patent Publication No. 5-157398 proposes a cold heat generator that forms a double heat cycle using three kinds of hydrogen storage alloys and generates heat in a freezing temperature range (−20 ° C. or lower). ing.
[0005]
[Problems to be solved by the invention]
However, the air conditioning apparatus disclosed in Japanese Patent Publication No. 62-1188 cannot generate cooling in the freezing temperature range (−20 ° C. or lower). On the other hand, although the heat utilization system of Japanese Patent No. 2652456 can generate cold in the freezing temperature range (−20 ° C. or lower), there is a problem that the location conditions are restricted because water, electricity, etc. are required. . In addition, although the cold generator of Japanese Patent Laid-Open No. 5-157398 can generate cold in the freezing temperature range (−20 ° C. or less), the structure is likely to be complicated, and the cooling output (X) and heat source The coefficient of performance (COP) expressed by the ratio to the input (Y) (= X / Y) remains at about 0.2, and a practical coefficient of performance (for example, 0.3 or more) is obtained. Have difficulty.
[0006]
Accordingly, an object of the present invention is to realize generation of cold at −20 ° C. or lower in a single cycle refrigeration system having a simple structure and capable of obtaining a high coefficient of performance.
In addition, a single cycle means what comprises a single heat cycle between both alloys using two types of hydrogen storage alloys.
[0007]
[Means for solving the problems]
As a result of intensive studies to solve the above problems, the present inventors have determined that the output characteristics of the single-cycle refrigeration system are the equilibrium hydrogen pressure of two types of hydrogen storage alloys for high temperature and low temperature, and hydrogen. Refrigerant generation at a temperature of -20 ° C. or lower due to the low reversibility of the hydrogen storage alloy in the conventional refrigeration system, which depends greatly on the reversibility of the reaction, which represents the ease of reaction during reversible absorption and release. I found out that was impossible.
The HS value can be adopted as an index of the reaction reversibility of the alloy. For example, in the case of a hydrogen storage alloy having a P-C-T curve as shown in FIG. 3, the HS value is the pressure on the hydrogen absorption curve necessary to absorb and release a certain amount (for example, 0.8 wt%) of hydrogen. The minimum value of the difference between the natural logarithm of Pa and the pressure Pd on the hydrogen release curve can be defined by the following equation (1).
[0008]
[Expression 1]
HS = [ln (Pa / Pd)] min
[0009]
FIG. 1 shows the above-described change in the state of the refrigeration cycle in consideration of the characteristics of an actual hydrogen storage alloy in which there is a difference in the PCT characteristic curve between hydrogen absorption and hydrogen release. In the figure, the solid line represents the relationship between hydrogen pressure and temperature (pressure-temperature characteristics) during hydrogen release, and the broken line represents the relationship between hydrogen pressure and temperature (pressure-temperature characteristics) during hydrogen absorption. The thin line represents the pressure-temperature characteristic during hydrogen absorption / release when the HS value is as large as 0.6, and the thick line represents the pressure-temperature characteristic during hydrogen absorption / desorption when the HS value is as small as 0.3. It represents.
[0010]
As shown in FIG. 1, by reducing the HS value, in the high-temperature hydrogen storage alloy MH1, the pressure-temperature characteristic during hydrogen absorption shifts from a thin broken line to a thick broken line, and the pressure difference necessary for hydrogen absorption and release Decreases from ΔPa ′ to ΔPa. In the low-temperature hydrogen storage alloy MH2, the pressure-temperature characteristic during hydrogen release shifts from a thin solid line to a thick solid line, and the pressure difference required for hydrogen absorption / release decreases from ΔPb ′ to ΔPb.
Therefore, in the cooling process in which the low-temperature hydrogen storage alloy MH2 in the state (2) releases hydrogen, when the HS value is as large as 0.6 (low reaction reversibility), the temperature reaches the state (3) on the thin solid line. On the other hand, when the HS value is as small as 0.3 (reaction reversibility is high), the temperature decreases to the state (3) on the thick solid line, and ΔT (for example, 20 deg) is higher than the temperature in the state (3). ) Only lower the temperature.
The hydrogen released from the low-temperature hydrogen storage alloy is absorbed by the high-temperature hydrogen storage alloy MH1 in the state (4) on the thin broken line when the HS value is as large as 0.6 (reaction reversibility is low). On the other hand, when the HS value is as small as 0.3 (reaction reversibility is high), it is absorbed by the high-temperature hydrogen storage alloy MH1 in the state (4) 'on the thick broken line.
As described above, by lowering the HS value of the low-temperature hydrogen storage alloy and the high-temperature hydrogen storage alloy as small as possible, it is possible to generate cooler heat at a lower temperature.
[0011]
Specifically, the refrigeration system using the hydrogen storage alloy according to the present invention can be realized by a heat source having a temperature of 100 to 150 ° C. that can be realized by using solar heat or industrial waste heat, and air cooling using outside air. Using a heat medium having a temperature of 20 to 35 ° C., it is possible to generate -20 ° C. cold. Here, the heat medium is a general term for a medium used for heat transfer, that is, a refrigerant and a heat medium.
In this case, it is necessary to consider two factors that affect the heat output characteristics of the refrigeration system, (1) the equilibrium hydrogen pressure of the high-temperature and low-temperature hydrogen storage alloys, and (2) the reversibility of each alloy. .
That is, the low-temperature hydrogen storage alloy exhibits a pressure (over 0.01 MPa or more) at which it can operate at a temperature of −20 ° C. that is the heat output temperature, and the temperature of the heat medium obtained by using an air-cooled heat exchanger It is necessary for hydrogen to move from the high temperature hydrogen storage alloy at temperature to the low temperature hydrogen storage alloy. Furthermore, when the reaction reversibility of the alloy is low, heat loss occurs and the heat output characteristics deteriorate, so that it is necessary for the HS value to be 0.3 or less in order to generate cold heat of -20 ° C or less.
[0012]
As a refrigeration cycle capable of satisfying the above conditions, the low-temperature hydrogen storage gold and the high-temperature hydrogen storage alloy each have a high reaction reversibility of 0.3 or less, and the equilibrium hydrogen pressure is high. For the hydrogen storage alloy for use, the heat source temperature range is 100 to 150 ° C., 0.8 to 1.0 MPa, the refrigerant temperature obtained by the air-cooled heat exchanger is 20 to 35 ° C., 0.02 to 0.05 MPa, As for the low-temperature hydrogen storage alloy, it is 0.6 to 0.9 MPa at 20 to 35 ° C. which is a refrigerant temperature obtained by an air-cooled heat exchanger, and 0.05 to 0 at -20 to −25 ° C. in the cold heat generation region. A cycle of 0.07 MPa can be constructed (see FIG. 1).
[0013]
In order to realize such a cycle, in the present invention, for a low-temperature hydrogen storage alloy, by obtaining a multi-component based on TiMn 2 , an alloy composition having both desired equilibrium hydrogen pressure and high reaction reversibility is obtained. The molten metal having the alloy composition was quenched by a roll quenching method or a gas atomizing method to homogenize the alloy structure.
Specifically, the hydrogen storage alloy for low temperature has the composition formula:
(Ti a Zr 1-a ) x (Mn 2-bc V b Ni c ) y
However,
0.8 ≦ a ≦ 0.95
0.3 ≦ b ≦ 0.5
0.55 ≦ c ≦ 0.65
1.8 ≦ y / x ≦ 2.2
It is represented by
[0014]
In addition, the composition of the high-temperature hydrogen storage alloy was adjusted based on a LaNi 5 alloy, and the molten metal having the composition was quenched by a roll quenching method to homogenize the alloy structure.
Specifically, the high temperature hydrogen storage alloy has the composition formula:
La x (Ni 5-ab Sn a Al b ) y
However,
0.1 ≦ a ≦ 0.25
0.1 ≦ b ≦ 0.2
4.5 ≦ y / x ≦ 5.3
It is represented by
[0015]
By using a hydrogen storage alloy having high reaction reversibility and an appropriate equilibrium hydrogen pressure produced in this way, the structure is simple and the coefficient of performance is high.However, air cooling by the outside air is used for cooling the refrigerant or the heat medium. A refrigeration system that can be employed can be realized.
[0016]
【The invention's effect】
According to the present invention, in a single cycle refrigeration system using a hydrogen storage alloy, a heat source of 100 to 150 ° C. and a heat medium cooled to 20 to 35 ° C. by an air-cooled heat exchanger are used, and −20 It can generate cold heat at the ℃ level.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the embodiment in which the present invention is implemented in the refrigeration system shown in FIG. 5 will be specifically described.
In the refrigeration system, a heat collector (4) and an air-cooled heat exchanger (6) are switchably connected to a heat pump device (1) via a heat medium switching device (2). An air-cooled heat exchanger (5) and a freezer (7) are switchably connected via a refrigerant switching device (3), and a heat storage is provided between the heat collector (4) and the heat medium switching device (2). A tank (9) is interposed.
[0018]
The heat pump device (1) includes a first heat pump P1 and a second heat pump P2. The first heat pump P1 includes a high temperature side first reaction vessel (11) containing a hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure and a low temperature side first reaction vessel (12) containing a hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure. Are connected to each other via a connecting pipe (17), and a valve (15) is interposed in the connecting pipe (17). The second heat pump P2 includes a high temperature side second reaction vessel (13) containing a hydrogen storage alloy MH1 having a low equilibrium hydrogen pressure and a low temperature side second reaction vessel (14) containing a hydrogen storage alloy MH2 having a high equilibrium hydrogen pressure. ) Through a connecting pipe (18), and a valve (16) is interposed in the connecting pipe (18).
[0019]
The heat medium switching device (2) includes a heat medium supply pipe (41) and a heat medium return pipe (42) extending from the heat storage tank (9), the high temperature side first reaction container (11) and the high temperature side second reaction container (13 A piping system for connecting a heating medium supply pipe (61) and a heating medium return pipe (62) extending from the air-cooled heat exchanger (6) to the other reaction vessel, It consists of a plurality of three-way valves interposed in the piping system.
The refrigerant switching device (3) includes a refrigerant supply pipe (51) and a refrigerant return pipe (52) extending from the air-cooled heat exchanger (5), the low temperature side first reaction container (12) and the low temperature side second reaction container. (14) A pipe system for connecting the refrigerant return pipe (71) and the refrigerant supply pipe (72) extending from the freezer (7) to the other reaction vessel and being connected to one of the two, and intervening in the pipe system And a plurality of four-way valves.
[0020]
The heat collector (4) is configured with a plurality of heat collecting tubes having a heat pipe structure, and can supply a heating medium (pressurized water) at about 140 ° C.
The heat medium outlet pipe (43) and the heat medium inlet pipe (44) extending from the heat collector (4) are connected to the heat storage tank (9), and the heat medium outlet pipe (43) is connected to the three-way valve (91). When the heat medium supplied from the heat collector (4) reaches about 140 ° C., the three-way valve (91) from the heat medium outlet pipe (43) is connected to the heat medium inlet pipe (44). After that, a high-temperature (about 140 ° C.) heating medium is supplied to the heat storage tank (9). As a result, sufficient heat is stored in the heat storage tank (9), and a heat medium having a constant temperature (about 140 ° C.) is supplied from the heat storage tank (9) to the heat pump device (1) through the heat medium supply pipe (41). It is.
The air-cooled heat exchangers (5) and (6) cool a refrigerant (methyl alcohol) or a heat medium (pressurized water) with a fan, and include a refrigerant supply pipe (51) or a heat medium supply pipe (61). Then, a refrigerant at 20 ° C. to 35 ° C. is supplied to the heat pump device (1).
[0021]
The hydrogen storage alloy for low temperature has a C14 type structure containing Ti, Zr, Mn, V, and Ni, and has a composition formula:
(Ti a Zr 1-a ) x (Mn 2-bc V b Ni c ) y
However,
0.8 ≦ a ≦ 0.95
0.3 ≦ b ≦ 0.5
0.55 ≦ c ≦ 0.65
Stoichiometric ratio: 1.8 ≦ y / x ≦ 2.2
It is represented by
[0022]
Meanwhile, the high-temperature hydrogen storage alloy has a CaCu 5 type structure containing La, Ni, Sn, and Al, and has a composition formula:
La x (Ni 5-ab Sn a Al b ) y
However,
0.1 ≦ a ≦ 0.25
0.1 ≦ b ≦ 0.2
Stoichiometric ratio: 4.5 ≦ y / x ≦ 5.3
It is represented by
[0023]
The hydrogen storage alloy for low temperature and the hydrogen storage alloy for high temperature are prepared by quenching two types of hydrogen storage alloys having the above composition by a rotating roll quenching method or a gas atomizing method, and 0.8 wt% of hydrogen is balanced between the two. The minimum value (HS value) of the difference between the natural logarithms of the two equilibrium hydrogen pressures required for absorption or release by the difference in hydrogen pressure is set to 0.3 or less.
[0024]
In the refrigeration system shown in FIG. 5, the heat collector (4) is a heat source, the air-cooled heat exchanger (5) and the air-cooled heat exchanger (6) are heat radiation sources, and the freezer (7) is a refrigeration load. A refrigeration cycle is configured.
For example, in the first heat pump P1, first, the hydrogen storage alloy MH1 in the high temperature side first reaction vessel (11) is heated to release hydrogen, and the released hydrogen is discharged to the low temperature side first reaction vessel ( 12) and absorbed by the hydrogen storage alloy MH2. Here, the heat generated by the hydrogen storage alloy MH2 absorbing hydrogen is dissipated from the air-cooled heat exchanger (5).
Next, the freezer (7) is connected to the low temperature side first reaction vessel (12) by switching the refrigerant switching device (3). In this state, in the low temperature side first reaction vessel (12), the hydrogen absorbed in the hydrogen storage alloy MH2 is released, whereby the refrigerant supplied from the freezer (7) via the refrigerant return pipe (71) is discharged. Cooled and low-temperature (−20 ° C. or lower) refrigerant is sent to the freezer (7) through the refrigerant supply pipe (72).
Further, the air-cooled heat exchanger (6) is connected to the high temperature side first reaction vessel (11) by switching the heat medium switching device (2). In this state, the gas released from the low temperature side first reaction vessel (12) is sent to the high temperature side first reaction vessel (11) and absorbed by the hydrogen storage alloy MH1 ((3) in FIG. 1 → (4) '). Here, the heat generated by the hydrogen storage alloy MH1 absorbing hydrogen is radiated from the air-cooled heat exchanger (6).
[0025]
By performing the above-described refrigeration cycle with a phase difference of 180 degrees between the first heat pump P1 and the second heat pump P2, a low-temperature refrigerant is continuously supplied to the freezer (7). It is kept at a low temperature of 20 ° C. or lower.
[0026]
Tables 1 (a) and 1 (b) show the manufacturing method, HS value, and HS of various alloys prepared in the process of adjusting the composition of the hydrogen storage alloy for high temperature and the hydrogen storage alloy for low temperature in the development of the refrigeration system of the present invention. It represents the effective hydrogen transfer amount and the equilibrium hydrogen pressure, which are the basis for the value calculation. In addition, “arc melting” in the manufacturing method is a process in which the molten alloy melted in the arc furnace is gradually cooled to produce an ingot, and “melt quenching” is used to quench the molten metal by a roll quenching method to produce an ingot. The step of “heat treatment” represents a step of gradually cooling the ingot after it is heated to about 1000 ° C.
[0027]
[Table 1]
Figure 0003813746
[0028]
As shown in Table 1 (a), with regard to the high-temperature hydrogen storage alloy, the base LaNi 5 alloy has a high reversibility with an HS value of 0.3, but the desired equilibrium hydrogen pressure cannot be obtained. . However, a LaNi 4.7 Sn 0.2 Al 0.1 alloy melt whose composition has been adjusted is quenched by a roll quenching method and then subjected to a heat treatment at 800 ° C. for 8 hours, whereby a reaction reversibility with an HS value of 0.30 and 140 ° C. A desired equilibrium hydrogen pressure of 1 MPa is obtained.
Further, as shown in Table 1 (b), for the hydrogen storage alloy for low temperature, Ti 0.85 Zr 0.1 5 Mn 1.0 V 0.4 Ni 0.6 is obtained by multi-component TiMn 2 base alloy as a base and quenching treatment by roll quenching method. the alloy, and the reaction reversibility of HS zero. 3, the desired equilibrium hydrogen pressure 0.06MPa at -20 ° C. is obtained.
[0029]
In order to demonstrate the performance of the refrigeration system according to the present invention, a hydrogen storage alloy as an example and a hydrogen storage alloy as a comparative example were used to produce an experimental machine of the refrigeration system shown in FIG. It was.
[0030]
Next, alloy compositions and manufacturing methods and operating conditions of the refrigeration system in one example and six comparative examples are shown.
Example
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.7 Sn 0.2 Al 0.1
Manufacturing method: After quenching by roll quenching method, heat treatment at 800 ° C for 8 hours
(2) Low temperature hydrogen storage alloy (MH2)
Composition: Ti 0.85 Zr 0.15 Mn 1.0 V 0.4 Ni 0.6
Production method: Roll quenched alloy In each alloy, the weight of the alloy filled in each reaction vessel is 22 kg. Further, in any alloy, the HS value at an effective hydrogen transfer amount of 0.8 w% is 0.3. Here, the effective hydrogen transfer amount is calculated from the hydrogen transfer amount necessary to obtain an output of 1500 kcal / h.
Figure 0003813746
[0031]
Comparative Example 1
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.55 Al 0.45
Manufacturing method: Heat treatment at 1000 ° C. for 8 hours after casting by high frequency melting HS value: 1.0 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: La 0.6 Y 0.4 Ni 4.95 Mn 0.05
Manufacturing method: Heat treatment at 1000 ° C. for 8 hours after casting by high frequency melting HS value: 1.0 (effective hydrogen transfer amount 0.8 wt%)
[0032]
Comparative Example 2
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.55 Al 0.45
Manufacturing method: Heat treatment at 1000 ° C. for 8 hours after casting by high frequency melting HS value: 1.0 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: Ti 0.85 Zr 0.15 Mn 1.0 V 0.4 Ni 0.6
Manufacturing method: After casting by high frequency melting, heat treatment HS value at 1050 ° C. for 8 hours: 0.49 (effective hydrogen transfer amount 0.8 wt%)
[0033]
Comparative Example 3
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.7 Sn 0.2 Al 0.1
Manufacturing method: After casting by high frequency melting, heat treatment for 8 hours at 1100 ° C. HS value: 0.60 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: La 0.6 Y 0.4 Ni 4.95 Mn 0.05
Manufacturing method: After casting by high-frequency melting, heat treatment HS value at 1050 ° C. for 8 hours: 1.0 (effective hydrogen transfer amount 0.8 wt%)
[0034]
Comparative Example 4
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.7 Sn 0.2 Al 0.1
Manufacturing method: After casting by high frequency melting, heat treatment for 8 hours at 1100 ° C. HS value: 0.60 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: Ti 0.85 Zr 0.15 Mn 1.0 V 0.4 Ni 0.6
Manufacturing method: After casting by high frequency melting, heat treatment HS value at 1050 ° C. for 8 hours: 0.49 (effective hydrogen transfer amount 0.8 wt%)
[0035]
Comparative Example 5
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.7 Sn 0.2 Al 0.1
Manufacturing method: After casting by high frequency melting, heat treatment for 8 hours at 1100 ° C. HS value: 0.60 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: Ti 0.85 Zr 0.15 Mn 1.0 V 0.4 Ni 0.6
Production method: quenching HS value by roll quenching method: 0.30 (effective hydrogen transfer amount 0.8 wt%)
[0036]
Comparative Example 6
(1) High temperature hydrogen storage alloy (MH1)
Composition: LaNi 4.7 Sn 0.2 Al 0.1
Production method: After quenching by roll quenching method, heat treatment for 8 hours at 800 ° C. HS value: 0.30 (effective hydrogen transfer amount 0.8 wt%)
(2) Low temperature hydrogen storage alloy (MH2)
Composition: Ti 0.85 Zr 0.15 Mn 1.0 V 0.4 Ni 0.6
Manufacturing method: After casting by high frequency melting, heat treatment HS value at 1050 ° C. for 8 hours: 0.49 (effective hydrogen transfer amount 0.8 wt%)
[0037]
In any comparative example, the weight of the alloy filled in each reaction vessel is 22 kg. The effective hydrogen transfer amount is calculated from the hydrogen transfer amount necessary to obtain an output of 1500 kcal / h.
[0038]
Figure 0003813746
[0039]
FIG. 2 shows changes in the temperature of the refrigerant outlet during the cold heat generation process as the heat output characteristics of the refrigeration systems in Examples and Comparative Examples 1 to 6. Table 2 shows the refrigerant outlet temperature after 15 minutes of the cold heat generation process in the refrigeration systems in Examples and Comparative Examples 1 to 6.
[0040]
[Table 2]
Figure 0003813746
[0041]
As is apparent from FIG. 1 and Table 2, in Comparative Examples 1 to 6, cold heat of about −15 ° C. was generated in the initial few minutes, but after −15 minutes after the temperature was stabilized, −10 ° C. It has remained at the level of cold heat generation. On the other hand, in the embodiment of the present invention, the generation of cold at the −20 ° C. level is maintained even after temperature stabilization. This is because in the comparative example, the heat loss due to the irreversibility of the alloy is large, leading to a decrease in the heat output temperature.
[0042]
As described above, according to the refrigeration system of the present invention, even when a single heat cycle is configured, a heat source of 100 to 150 ° C. and a heat medium of 20 to 35 ° C. cooled by an air-cooled heat exchanger Can be used to generate -20 ° C level cold.
[0043]
In addition, each part structure of this invention is not restricted to the said embodiment, A various deformation | transformation is possible within the technical scope as described in a claim. For example, the hydrogen storage alloy used in the refrigeration system of the present invention is not limited to the alloy composition and manufacturing method shown in the examples, but is an alloy manufactured by the alloy composition and manufacturing method described in claims 1 to 3. If there is, an equivalent heat output performance can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the effect of lowering the HS value in a refrigeration system according to the present invention.
FIG. 2 is a graph showing changes in refrigerant outlet temperature in an example of the present invention and a comparative example.
FIG. 3 is a diagram showing a PCT curve of a hydrogen storage alloy.
FIG. 4 is a diagram showing a basic refrigeration cycle.
FIG. 5 is a system diagram showing a configuration of a refrigeration system in which the present invention is to be implemented.
[Explanation of symbols]
(1) Heat pump device P1 Heat pump P2 Heat pump
(11) High temperature side first reaction vessel
(12) Low temperature side first reaction vessel
(13) High temperature side second reaction vessel
(14) Low temperature side second reaction vessel
(2) Heat medium switching device
(3) Refrigerant switching device
(4) Heat collector
(5) Air-cooled heat exchanger
(6) Air-cooled heat exchanger
(7) Freezer

Claims (5)

平衡水素圧力の高い低温用水素吸蔵合金が充填された低温側反応容器と、平衡水素圧力の低い高温用水素吸蔵合金が充填された高温側反応容器とを互いに連結して構成され、高温側反応容器から低温側反応容器へ水素ガスを流す再生過程と、低温側反応容器から高温側反応容器へ水素ガスを流す冷熱発生過程とを繰り返す冷凍システムにおいて、前記低温用水素吸蔵合金は、Ti、Zr、Mn、V、及びNiを含有したC14型構造を有し、前記高温用水素吸蔵合金は、La、Ni、Sn、及びAlを含有したCaCu5型構造を有し、各水素吸蔵合金は、0.8wt%の水素を2つの平衡水素圧力の差で吸収若しくは放出させるのに必要な2つの平衡水素圧力の自然対数の差の最小値が0.3以下であることを特徴とする水素吸蔵合金を用いた冷凍システム。A low-temperature reaction vessel filled with a low-temperature hydrogen storage alloy having a high equilibrium hydrogen pressure and a high-temperature reaction vessel filled with a high-temperature hydrogen storage alloy having a low equilibrium hydrogen pressure are connected to each other, so that a high-temperature reaction is performed. In the refrigeration system that repeats the regeneration process of flowing hydrogen gas from the container to the low temperature side reaction container and the cold heat generation process of flowing hydrogen gas from the low temperature side reaction container to the high temperature side reaction container, the low temperature hydrogen storage alloy is Ti, Zr , Mn, V and Ni containing C14 type structure, the high temperature hydrogen storage alloy has a CaCu 5 type structure containing La, Ni, Sn and Al, each hydrogen storage alloy, Hydrogen storage characterized by the minimum difference between the natural logarithms of two equilibrium hydrogen pressures required to absorb or release 0.8 wt% of hydrogen by the difference between the two equilibrium hydrogen pressures being 0.3 or less With alloy Refrigeration system. 低温用水素吸蔵金の組成式が、
(TiaZr1-a)x(Mn2-b-cbNic)y
但し、
0.8≦a≦0.95
0.3≦b≦0.5
0.55≦c≦0.65
1.8≦y/x≦2.2
で表わされると共に、高温用水素吸蔵合金の組成式が、
Lax(Ni5-a-bSnaAlb)y
但し、
0.1≦a≦0.25
0.1≦b≦0.2
4.5≦y/x≦5.3
で表わされる請求項1に記載の冷凍システム。
The composition formula of the hydrogen storage gold for low temperature is
(Ti a Zr 1-a ) x (Mn 2-bc V b Ni c ) y
However,
0.8 ≦ a ≦ 0.95
0.3 ≦ b ≦ 0.5
0.55 ≦ c ≦ 0.65
1.8 ≦ y / x ≦ 2.2
And the composition formula of the high-temperature hydrogen storage alloy is
La x (Ni 5-ab Sn a Al b ) y
However,
0.1 ≦ a ≦ 0.25
0.1 ≦ b ≦ 0.2
4.5 ≦ y / x ≦ 5.3
The refrigeration system of Claim 1 represented by these.
各水素吸蔵合金は、前記組成を有する合金溶湯を回転ロール急冷法若しくはガスアトマイズ法により急冷して作製される請求項2に記載の冷凍システム。3. The refrigeration system according to claim 2, wherein each hydrogen storage alloy is manufactured by rapidly cooling a molten alloy having the above composition by a rotating roll rapid cooling method or a gas atomizing method. 高温用水素吸蔵合金を加熱すべき熱源の温度は100℃〜150℃であり、高温用及び低温用水素吸蔵合金と熱交換させるべき熱媒体の温度は20℃〜35℃である請求項1乃至請求項3の何れかに記載の冷凍システム。The temperature of the heat source for heating the high-temperature hydrogen storage alloy is 100 ° C to 150 ° C, and the temperature of the heat medium to be heat exchanged with the high-temperature and low-temperature hydrogen storage alloy is 20 ° C to 35 ° C. The refrigeration system according to claim 3. 第1及び第2のヒートポンプを併設して構成されるヒートポンプ装置(1)を具え、第1ヒートポンプは、高温用水素吸蔵合金MH1を内蔵した高温側第1反応容器(11)と低温用水素吸蔵合金MH2を内蔵した低温側第1反応容器(12)とを互いに連結してなり、第2ヒートポンプは、高温用水素吸蔵合金MH1を内蔵した高温側第2反応容器(13)と低温用水素吸蔵合金MH2を内蔵した低温側第2反応容器(14)とを互いに連結してなり、該ヒートポンプ装置(1)に対し、高温側の2つの反応容器(11)(13)には、熱媒切換え装置(2)を介して高温側熱源と空冷式熱交換器(6)とが切り換え可能に接続されると共に、低温側の2つの反応容器(12)(14)には、冷媒切換え装置(3)を介して空冷式熱交換器(5)と冷凍庫(7)とが切り換え可能に接続されている請求項1乃至請求項4の何れかに記載の冷凍システム。A heat pump device (1) configured with a first heat pump and a second heat pump is provided. The first heat pump includes a high temperature side first reaction vessel (11) containing a high temperature hydrogen storage alloy MH1 and a low temperature hydrogen storage. The low temperature side first reaction vessel (12) containing the alloy MH2 is connected to each other, and the second heat pump is composed of the high temperature side second reaction vessel (13) containing the high temperature hydrogen storage alloy MH1 and the low temperature hydrogen storage. The low temperature side second reaction vessel (14) containing the alloy MH2 is connected to each other, and the two high temperature side reaction vessels (11) and (13) are connected to the heat pump device (1). The high-temperature side heat source and the air-cooled heat exchanger (6) are switchably connected via the device (2), and the two reaction vessels (12) and (14) on the low-temperature side are connected to the refrigerant switching device (3 The air-cooled heat exchanger (5) and the freezer (7) are connected to each other via a switch. The refrigeration system according to claim 4.
JP27131498A 1998-09-25 1998-09-25 Refrigeration system using hydrogen storage alloy Expired - Fee Related JP3813746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27131498A JP3813746B2 (en) 1998-09-25 1998-09-25 Refrigeration system using hydrogen storage alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27131498A JP3813746B2 (en) 1998-09-25 1998-09-25 Refrigeration system using hydrogen storage alloy

Publications (2)

Publication Number Publication Date
JP2000097514A JP2000097514A (en) 2000-04-04
JP3813746B2 true JP3813746B2 (en) 2006-08-23

Family

ID=17498333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27131498A Expired - Fee Related JP3813746B2 (en) 1998-09-25 1998-09-25 Refrigeration system using hydrogen storage alloy

Country Status (1)

Country Link
JP (1) JP3813746B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112867776B (en) * 2018-10-15 2022-04-26 日产自动车株式会社 Heat-generating material, heat-generating system using the same, and heat supply method
CN115020053B (en) * 2022-06-02 2023-03-24 杭州电子科技大学 R applied to magnetic refrigeration 2 TiNiO 6 Rare earth oxide and preparation method thereof

Also Published As

Publication number Publication date
JP2000097514A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
CN104279012B (en) A kind of nuclear power peak regulation system based on deep cooling energy storage
JP2652456B2 (en) Operating method of heat utilization system using hydrogen storage alloy
US20210164700A1 (en) Control method of transcritical carbon dioxide composite heat pump system
JP2020528509A (en) Piecewise cold storage supercritical compressed air energy storage system and method
JP3813746B2 (en) Refrigeration system using hydrogen storage alloy
JP4716304B2 (en) Hydrogen storage alloy storage and release method, hydrogen storage alloy and fuel cell using the method
CN210320439U (en) Cold-storage central air conditioner with power generation function
US5174367A (en) Thermal utilization system using hydrogen absorbing alloys
Miao et al. Review of thermal management technology for metal hydride reaction beds
CN116576398A (en) Carbon dioxide trapping energy storage peak regulation system based on cold energy utilization of liquefied natural gas
CN104047730A (en) Gas turbine air inlet cooling system by using cascaded lithium bromide refrigerators
CN115325774A (en) Small-sized hydrogen liquefying device and method for segmented conversion of orthohydrogen and parahydrogen by adopting low-temperature cooler
JP3350445B2 (en) Hydrogen storage alloy unit for heat pump
CN219083235U (en) Heating system of supercritical CO2 coupling phase change energy storage material
JP3059964B1 (en) Solar powered refrigerator and its operation method
JP2020079628A (en) High-pressure hydrogen expansion turbin type filling system
CN220136131U (en) Alloy phase-change heat storage device for compressed air liquefied air energy storage and heat supplement
CN115092014B (en) Whole car thermal management system is retrieved to surplus cold
EP1329416A1 (en) Method of absorption-desorption of hydrogen storage alloy and hydrogen storage alloy and fuel cell using said method
CN115506016A (en) Single crystal growing system
JPS63148840A (en) Facility for converting, storing and utilizing electric energy
JP2623006B2 (en) Refrigeration equipment using hydrogen storage alloy
JPH04165271A (en) Cold-heat generating system
CN114962993A (en) Hydrogen storage fuel cell air conditioning system and hydrogenation equipment
JP3133442B2 (en) Heat driven cold heat generation method and apparatus using metal hydride

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060601

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140609

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees