JP3811947B2 - Manufacturing method of strength structural member - Google Patents

Manufacturing method of strength structural member Download PDF

Info

Publication number
JP3811947B2
JP3811947B2 JP2002064047A JP2002064047A JP3811947B2 JP 3811947 B2 JP3811947 B2 JP 3811947B2 JP 2002064047 A JP2002064047 A JP 2002064047A JP 2002064047 A JP2002064047 A JP 2002064047A JP 3811947 B2 JP3811947 B2 JP 3811947B2
Authority
JP
Japan
Prior art keywords
strength
structural member
hollow tube
manufacturing
strength structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002064047A
Other languages
Japanese (ja)
Other versions
JP2003260531A (en
Inventor
寛 桜井
秀司 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002064047A priority Critical patent/JP3811947B2/en
Publication of JP2003260531A publication Critical patent/JP2003260531A/en
Application granted granted Critical
Publication of JP3811947B2 publication Critical patent/JP3811947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車の構造部材として用いられて、衝突時の衝撃エネルギを吸収して衝撃を和らげるのに利用される強度構造部材の製造方法および強度構造部材に関するものである。
【0002】
【発明が解決しようとする課題】
上記したような強度構造部材において、その素材となるブランク材は、板厚や強度が異なる板材同士をレーザ溶接やシーム溶接によって接合することによって形成される都合上、このブランク材に対してよりきめ細かな板厚分布と強度分布を与えようとする場合には、溶接する板の枚数を増やす必要がある。つまり、後の行程でプレス成形される1個のブランク材を形成するためには、何枚もの板材を溶接しなくてはならず、その分だけ、多くの溶接設備が必要になるという問題があった。
【0003】
また、このような板厚や強度が異なる板材同士を接合してなるブランク材に対してプレス加工を施す場合には、1枚の板材にプレス加工を施す場合と比較してスプリングバックの挙動が複雑になるうえ、とくに、強度の高い板材あるいはヤング率の低い軽合金を使用する場合には、より大きなスプリングバックが発生するため、短時間に部品精度を確保することが困難であるという問題があり、これらの問題を解決することが従来の課題であった。
【0004】
【発明の目的】
本発明は、上記した従来の課題に着目してなされたもので、多くの溶接設備を必要とすることなく強度構造部材を製造することができ、加えて、プレス成形時のスプリングバックの挙動が単純でかつ短時間のうちに部品精度を確保することが可能である強度構造部材の製造方法および強度構造部材を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明の請求項1に係わる強度構造部材の製造方法は、ひずみ時効性を有する鋼板から一体に形成されてなるテーパ状の中空管にスピニングあるいはスウェージングによるテーパを減らす縮管成形を施して、中空管の小径側に位置する一方の端部から大径側に位置する他方の端部にかけてひずみ勾配をもたせた後、この中空管を部品形状に成形するのに続いて熱処理を行って、上記一方の端部から上記他方の端部にかけて強度勾配を有する強度構造部材を製造する構成としたことを特徴としており、この強度構造部材の製造方法の構成を前述した従来の課題を解決するための手段としている。
【0006】
本発明の請求項2に係わる強度構造部材の製造方法において、ひずみ時効性を有する鋼板から一体に形成されてなるテーパ状の中空管に小径側に位置する一方の端部の直径および板厚を維持したままスピニングあるいはスウェージングによるテーパを減らす縮管成形を施して、中空管の小径側に位置する一方の端部から大径側に位置する他方の端部にかけて漸次板厚が増加する板厚勾配をもたせた後、この中空管を部品形状に成形するのに続いて熱処理を行って、上記一方の端部から上記他方の端部にかけて板厚勾配および強度勾配を有する強度構造部材を製造する構成としたことを特徴としており、この強度構造部材の製造方法の構成を前述した従来の課題を解決するための手段としている。
【0007】
本発明の請求項3に係わる強度構造部材の製造方法において、大径側の他方の端部の縮管率を8〜25%とした構成とし、本発明の請求項4に係わる強度構造部材の製造方法において、小径側の一方の端部の縮管率を0〜2%とした構成としている。
【0008】
本発明の請求項5に係わる強度構造部材の製造方法において、小径側の一方の端部の相当ひずみを0.035以下とし、大径側の他方の端部の相当ひずみを0.09以上とした構成とし、本発明の請求項6に係わる強度構造部材の製造方法において、大径側の他方の端部における縮管成形前の板厚に対する板厚増加率を5%以上とした構成としている。
【0009】
一方、本発明の請求項7に係わる強度構造部材は、上記した強度構造部材の製造方法によって製造された強度構造部材であって、一方の端部から他方に端部にかけて強度勾配をもたせてある構成としたことを特徴としており、この強度構造部材の構成を前述した従来の課題を解決するための手段としている。
【0010】
本発明の請求項8に係わる強度構造部材は、上記した強度構造部材の製造方法によって製造された強度構造部材であって、一方の端部から他方に端部にかけて板厚勾配および強度勾配をもたせてある構成としたことを特徴としており、この強度構造部材の構成を前述した従来の課題を解決するための手段としている。
【0011】
【発明の実施の形態】
本発明に係わる強度構造部材の製造方法において、引張り強度が上昇するひずみ時効型の鋼板によってテーパ状の中空管を形成し、スピニングあるいはスウェージングによってこの中空管のテーパを減らす縮管成形を行うことにより、中空管の長手方向にひずみ分布と板厚分布を付与した後、このひずみ分布を有する中空管を部品形状に成形するのに続いて熱処理を行うことによって、小径側の一方の端部から大径側の他方の端部に向けて強度勾配および板厚分布を与えることが可能となる。
【0012】
より詳しく述べると、例えば、小径側の一方の端部は強度が低く、縮管された大径側の他方の端部に向けて強度を大きくしたり、あるいは、強度に加えて板厚を大径側の他方の端部に向けて厚くした中空管を成形することができ、これによって、多数の板材を溶接することなく、ひずみ時効性を有する鋼板から一体に形成されてなる部材に板圧分布と強度分布を与えることが可能となる。
【0013】
上記スピニングによって中空管の長手方向にひずみ分布を与えることは可能であるが、断面の大きさが変化する中空管の断面が大きな箇所に対して、より大きなひずみを与えたり、板厚の増肉を行ったりすることは、スピニング加工の性質上困難である。そこで、本発明に係わる強度構造部材の製造方法では、素材とする中空管にテーパを与えて、小さい断面の部分については絞り成形を行わず、大きな断面の部分を縮管して断面が大きい部分に大きなひずみと板厚増肉を形成する。
【0014】
ここで、使用する鋼板としてひずみ時効性をほとんど持たない鋼板を用いると、加工硬化によって耐力は増加するが、強度が大きく上昇することは望めない。そこで、例えば、耐力のみならず強度も増加するひずみ時効性を有する材料を使用して、自動車の焼きつけ塗装工程における典型的な熱処理である170℃で20分間の熱処理を行うことによって、より大きな耐力およびより大きな強度を大きなひずみを加えた部位に付与することが可能となり、したがって、異なる板厚および異なる強度レベルの材料同士を溶接等によって接合することなく、ひずみ時効性を有する鋼板から一体に形成されてなる1つの中空管に強度勾配、さらには板厚分布を与えることができる。
【0015】
このようにして、テーパ付きの中空管をスピニング加工によって、断面の大きな箇所により大きな縮管成形を行い、この中空管に使用する鋼板に自動車の焼き付け塗装工程等において耐力および強度が上昇する鋼板を用いることで、長手方向に強度勾配を有する強度構造部材を得ることができる。
【0016】
【発明の効果】
本発明に係わる強度構造部材の製造方法によれば、上記した構成としているので、多くの溶接設備を用いることなく、一方の端部から他方の端部に向けて強度勾配を有する強度構造部材を製造することができるのに加えて、プレス成形時のスプリングバックの挙動を単純なものとすることができると共に、部品精度を短時間のうちに確保することが可能であるという非常に優れた効果がもたらされる。
【0017】
本発明に係わる強度構造部材の製造方法によって製造された強度構造部によれば、溶接設備をほとんど不要なものとすることができるうえ、プレス成形時におけるスプリングバックの挙動が単純化すると共に、部品精度が短時間のうちに確保されるという非常に優れた効果がもたらされる。
【0018】
【実施例】
以下、本発明を図面に基づいて説明する。
【0019】
[実施例1]
図1は、本発明に係わる強度構造部材の製造方法の一実施例による製造工程を示している。
【0020】
この実施例による強度構造部材の製造方法では、まず、図1(a)に示すように、引張り強度が460MPaでかつ板厚が1.8mmのひずみ時効性を有する鋼板Sを丸めて長さ500mmのテーパ管状に成形し、鋼板Sの端縁同士をシーム溶接で接合することによって、小径側の一方の端部1aにおける直径が100mmで大径側の他方の端部1bにおける直径が150mmのテーパ状の中空管1を形成する。
【0021】
次に、図1(b)に示すように、スピニングローラR,Rを使用してこの中空管1にスピニング加工を行うことによって、図1(c)に示すように、小径側の一方の端部2aにおける直径が100mmで大径側の他方の端部2bにおける直径が120mmのテーパ状の中空管2とする。
【0022】
このとき、中空管2の板厚は、全長にわたって1.8mmになった。また、中空管2の全長は、中空管1よりも長くなったが、素材としての鋼板Sの長さに比較すると、全長に対する縮管率、すなわち、各部位の直径とこれに対応する縮管前の各部位との直径の比が、図1(d)のグラフに示すように、直線的に変化するように成形することができた。
【0023】
なお、このときの縮管率は、30%を超えるようにすることも可能であるが、ひずみ分布を与えたテーパ状の中空管2に対して後工程においてさらに成形加工を施すためには、縮管率を25%以下に留めることが望ましい。さらに、ひずみ時効型の鋼板Sを用いている場合には、焼付け硬化処理後の強度の上昇は、縮管率で8%以上で最も効果的である。
【0024】
従って、自動車のフロントサイドメンバのように前端部(図示左側の小径側端部)から優先的に変形させようとする強度構造部材では、最も変形を抑制したい後端部(図示右側の大径側端部)の縮管率は、8%から25%の間が望ましい。相当ひずみとして表現するならば、0.09以上とすることによって焼き付け硬化処理後の強度上昇が効果的となる。
【0025】
変形が生じた場合に最も優先的に変形させたい前端部では、ひずみ硬化性材料を用いる特徴上、不必要に大きなひずみを加えることは好ましくない。相当ひずみ量として0.035以下に留めることによって、強度の大幅上昇を抑制することができる。また、前端部の縮管率は、0%〜2%とすることが好ましい。
【0026】
次いで、液圧成形型により、初期液圧を10MPaとして、中空管2が液圧で拡管しないようにその後の液圧増加を20MPa以下に制御しつつ中空管2のプレス成形を行って、図1(e)に示すように、部品形状をなす中空角管3を得た、すなわち、一方の端部3aの断面が60mm×90mmの小さい四角形状をなしていると共に他方の端部3bの断面が80mm×100mmの大きい四角形状をなす中空角管3を得た。
【0027】
そして、図1(f)に示すように、この中空角管3に対して170℃のオーブンで20分間の熱処理を行った。このようにして製造した強度構造部材4において、一方の端部4a(図示左端部)のビッカース硬度はHv=200であり、他方の端部4b(図示右端部)のビッカース硬度はHv=250であって、全長にわたって強度分布を有しており、これにより、この実施例による強度構造部材の製造方法によって、一方の端部4aから他方の端部4bに向けて強度勾配を有する強度構造部材4を製造可能であることが実証できた。
【0028】
[実施例2]
図2は、本発明に係わる強度構造部材の製造方法の他の実施例による製造工程を示している。
【0029】
この実施例による強度構造部材の製造方法では、まず、図2(a)に示すように、引張り強度が460MPaでかつ板厚が1.8mmのひずみ時効性を有する鋼板Sを丸めてテーパ管状に成形し、鋼板Sの端縁同士をシーム溶接で接合することによって、小径側の一方の端部21aにおける直径が100mmで大径側の他方の端部21bにおける直径が125mmのテーパ状の中空管21を形成する。
【0030】
次に、図2(b)に示すように、スピニングローラR,Rを使用してこの中空管21にスピニング加工を行うことによって、図2(c)に示すように、小径側の一方の端部22aから大径側の他方の端部22bにかけて直径を100mmで一定させた長さ400mmのストレート状の中空管22とする。
【0031】
このとき、中空管22の一方の端部22aにおける板厚を1.8mmとし、他方の端部22bに向けて漸次板厚を増して他方の端部22bの板厚が2.0mmとなるように成形した。また、中空管22の全長は伸びているが、素材としての鋼板Sの長さに比較すると、全長に対する板厚分布は、図2(d)のグラフに示すように、直線的に変化するように成形することができた。
【0032】
次いで、液圧成形型により、初期液圧を10MPaとして、中空管22が液圧で拡管しないようにその後の液圧増加を20MPa以下に制御しつつ中空管22のプレス成形を行って、図2(e)に示すように、部品形状をなす中空角管23を得た、すなわち、断面が75mm×75mmの四角形状をなしている中空角管23を得た。
【0033】
そして、図2(f)に示すように、この中空角管23に対して170℃のオーブンで20分間の熱処理を行った。このようにして製造した強度構造部材24において、一方の端部24a(図示左端部)のビッカース硬度はHv=200であり、他方の端部24b(図示右端部)のビッカース硬度はHv=250であって、全長にわたって強度分布および板厚分布を有しており、これにより、この実施例による強度構造部材の製造方法により、一方の端部24aから他方の端部24bに向けて強度勾配および板厚勾配を有する強度構造部材24を製造可能であることが実証できた。
【0034】
[実施例3]
図3は、本発明に係わる強度構造部材の製造方法のさらに他の実施例による製造工程を示している。
【0035】
この実施例による強度構造部材の製造方法では、まず、図3(a)に示すように、引張り強度が460MPaでかつ板厚が1.8mmのひずみ時効性を有する鋼板Sを丸めて長さ500mmのテーパ管状に成形し、鋼板Sの端縁同士をシーム溶接で接合することによって、小径側の一方の端部31aにおける直径が100mmで大径側の他方の端部31bにおける直径が150mmのテーパ状の中空管31を形成する。
【0036】
次に、図3(b)に示すように、スピニングローラR,Rを使用してこの中空管31にスピニング加工を行うことによって、図3(c)に示すように、小径側の一方の端部32aにおける直径が100mmで大径側の他方の端部32bにおける直径が120mmのテーパ状の中空管32とする。
【0037】
このとき、中空管32の一方の端部32aにおける板厚を1.8mmとし、他方の端部32bに向けて漸次板厚を増して他方の端部32bの板厚が2.0mmとなるように成形した。また、素材の長さに対する中空管32の全長の板厚分布は、図3(d)のグラフに示すように、直線的に変化するように成形することができた。
【0038】
次いで、液圧成形型により、初期液圧を10MPaとして、中空管32が液圧で拡管しないようにその後の液圧増加を20MPa以下に制御しつつ中空管32のプレス成形を行って、図3(e)に示すように、部品形状をなす中空角管33を得た、すなわち、すなわち、一方の端部33aの断面が60mm×90mmの小さい四角形状をなしていると共に他方の端部33bの断面が80mm×100mmの大きい四角形状をなす中空角管33を得た。
【0039】
そして、図3(f)に示すように、この中空角管33に対して170℃のオーブンで20分間の熱処理を行った。このようにして製造した強度構造部材34において、一方の端部34a(図示左端部)のビッカース硬度はHv=200であり、他方の端部34b(図示右端部)のビッカース硬度はHv=255であって、全長にわたって強度分布および板厚分布を有しており、これにより、この実施例による強度構造部材の製造方法により、一方の端部34aから他方の端部34bに向けて強度勾配および板厚勾配を有する強度構造部材34を製造可能であることが実証できた。
【図面の簡単な説明】
【図1】本発明に係わる強度構造部材の製造方法の一実施例による製造工程説明図(a)〜(f)である。
【図2】本発明に係わる強度構造部材の製造方法の他の実施例による製造工程説明図(a)〜(f)である。
【図3】本発明に係わる強度構造部材の製造方法のさらに他の実施例による製造工程説明図(a)〜(f)である。
【符号の説明】
1,21,31 テーパ状の中空管
2,22,32 縮管成形後の中空管
2a,22a,32a 縮管成形後の中空管の小径側に位置する一方の端部
2b,22b,32b 縮管成形後の中空管の大径側に位置する一方の端部
3,23,33 部品形状に成形した中空角管
4,24,34 強度構造部材
4a,24a,34a 強度構造部材の一方の端部
4b,24b,34b 強度構造部材の他方の端部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a strength structural member and a strength structural member that are used, for example, as a structural member of an automobile and are used to absorb impact energy at the time of a collision and reduce the impact.
[0002]
[Problems to be solved by the invention]
In the strength structural member as described above, the blank material used as the material is finer than the blank material because it is formed by joining plate materials of different thickness and strength by laser welding or seam welding. In order to give a plate thickness distribution and strength distribution, it is necessary to increase the number of plates to be welded. In other words, in order to form one blank material that is press-formed in the subsequent process, a number of plate materials must be welded, which requires a lot of welding equipment. there were.
[0003]
In addition, when pressing a blank material formed by joining plate materials having different plate thicknesses and strengths, the behavior of the spring back is compared to when pressing a single plate material. In addition to the complexity, especially when using high-strength plates or light alloys with a low Young's modulus, there is a problem that it is difficult to ensure the accuracy of parts in a short time because a larger springback occurs. There has been a conventional problem to solve these problems.
[0004]
OBJECT OF THE INVENTION
The present invention has been made by paying attention to the above-described conventional problems, and can produce a strength structural member without requiring many welding equipments. In addition, the behavior of the spring back during press molding is improved. It is an object of the present invention to provide a method for manufacturing a strength structural member and a strength structural member that are simple and can ensure the accuracy of parts in a short time.
[0005]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a method for producing a strength structural member comprising: a tapered hollow tube formed integrally from a steel plate having strain aging, and a reduced tube forming for reducing taper due to spinning or swaging. After applying a strain gradient from one end located on the small-diameter side of the hollow tube to the other end located on the large-diameter side, heat treatment is performed subsequent to forming the hollow tube into a part shape. The strength structure member having a strength gradient from the one end to the other end is manufactured, and the structure of the method for manufacturing the strength structure member solves the conventional problems described above. As a means to do.
[0006]
In the method for manufacturing a strength structural member according to claim 2 of the present invention, the diameter and thickness of one end located on the small diameter side in a tapered hollow tube integrally formed from a steel plate having strain aging properties The tube thickness is gradually increased from one end located on the small-diameter side of the hollow tube to the other end located on the large-diameter side. A strength structural member having a thickness gradient and a strength gradient from the one end portion to the other end portion after the plate thickness gradient is given and then heat treatment is performed after forming the hollow tube into a part shape. The structure of the manufacturing method of the strength structural member is a means for solving the above-described conventional problems.
[0007]
In the manufacturing method of the strength structural member according to claim 3 of the present invention, the contraction rate of the other end portion on the large diameter side is set to 8 to 25%, and the strength structural member according to claim 4 of the present invention is configured. In the manufacturing method, it is set as the structure which made the reduced tube ratio of one edge part of the small diameter side 0-2%.
[0008]
In the method for manufacturing a strength structural member according to claim 5 of the present invention, the equivalent strain at one end on the small diameter side is 0.035 or less, and the equivalent strain at the other end on the large diameter side is 0.09 or more. In the method for manufacturing a strength structural member according to claim 6 of the present invention, the thickness increase rate with respect to the plate thickness before the tube forming at the other end on the large diameter side is set to 5% or more. .
[0009]
On the other hand, claim 7 involved that strength structural member of the present invention is a strength structural member manufactured by the manufacturing method of the strength structural member described above, the other in remembering intensity gradient toward the ends from one end The structure of this strength structure member is a means for solving the above-described conventional problems.
[0010]
Strength structural member according to claim 8 of the present invention is a strength structural member manufactured by the manufacturing method of the strength structural member described above, the plate Atsu勾distribution and intensity over the end from one to the other end The structure is characterized by a gradient, and the structure of the strength structural member is used as a means for solving the above-described conventional problems .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In the method of manufacturing a strength structural member according to the present invention, a tapered hollow tube is formed by a strain-aged steel plate having an increased tensile strength, and the reduced tube is formed by reducing the taper of the hollow tube by spinning or swaging. By applying a strain distribution and a plate thickness distribution in the longitudinal direction of the hollow tube by performing a heat treatment subsequent to forming the hollow tube having this strain distribution into a part shape, one of the small diameter side It is possible to give an intensity gradient and a plate thickness distribution from one end of the plate to the other end on the large diameter side.
[0012]
More specifically, for example, one end portion on the small diameter side has low strength, and the strength is increased toward the other end portion on the large diameter side that has been contracted, or the thickness is increased in addition to the strength. A hollow tube thickened toward the other end on the radial side can be formed, and thereby, a plate formed on a member formed integrally from a steel plate having strain aging without welding a large number of plate members. It becomes possible to give pressure distribution and intensity distribution.
[0013]
Although it is possible to give a strain distribution in the longitudinal direction of the hollow tube by the above spinning, a larger strain is applied to a portion where the cross section of the hollow tube where the size of the cross section changes is large, It is difficult to increase the thickness because of the nature of the spinning process. Therefore, in the manufacturing method of the strength structural member according to the present invention, the hollow tube as a raw material is tapered, and the small cross-section portion is not drawn, and the large cross-section portion is contracted to increase the cross section. Large strain and thickening of the plate are formed in the part.
[0014]
Here, when a steel plate having almost no strain aging is used as the steel plate to be used, the yield strength is increased by work hardening, but the strength cannot be expected to increase greatly. Therefore, for example, by using a material having strain aging that increases not only the yield strength but also the strength, a heat treatment is performed at 170 ° C. for 20 minutes, which is a typical heat treatment in the baking coating process of an automobile, and thereby a greater yield strength. It is possible to apply a greater strength to a portion subjected to a large strain. Therefore, it is integrally formed from a steel plate having strain aging without joining materials of different plate thicknesses and different strength levels by welding or the like. An intensity gradient and further a plate thickness distribution can be given to one hollow tube.
[0015]
In this way, a tapered hollow tube is subjected to spinning processing to form a larger contraction tube at a portion having a large cross section, and the proof stress and strength of the steel plate used for the hollow tube are increased in an automobile baking process or the like. By using a steel plate, a strength structural member having a strength gradient in the longitudinal direction can be obtained.
[0016]
【The invention's effect】
According to the manufacturing method of the strength structural member according to the present invention, the strength structural member having the strength gradient from one end portion to the other end portion is used without using many welding equipments because the above-described configuration is adopted. In addition to being able to be manufactured, the springback behavior during press molding can be simplified, and it is possible to ensure the accuracy of parts in a short time. Is brought about.
[0017]
According to the intensity structure manufactured by the manufacturing method of the intensity structure member according to the present invention, upon which can be a welding equipment almost unnecessary ones, while simplifying behavior springback during press forming As a result, it is possible to obtain a very excellent effect that the component accuracy is ensured in a short time.
[0018]
【Example】
Hereinafter, the present invention will be described with reference to the drawings.
[0019]
[Example 1]
FIG. 1 shows a manufacturing process according to an embodiment of a method for manufacturing a strength structural member according to the present invention.
[0020]
In the manufacturing method of the strength structural member according to this embodiment, first, as shown in FIG. 1 (a), a steel sheet S having a strain aging property with a tensile strength of 460 MPa and a plate thickness of 1.8 mm is rolled to a length of 500 mm. Is formed into a taper tube, and the edges of the steel sheet S are joined together by seam welding so that the diameter at one end 1a on the small diameter side is 100 mm and the diameter at the other end 1b on the large diameter side is 150 mm. A hollow tube 1 is formed.
[0021]
Next, as shown in FIG. 1B, by spinning the hollow tube 1 using the spinning rollers R and R, as shown in FIG. A tapered hollow tube 2 having a diameter of 100 mm at the end 2 a and a diameter of 120 mm at the other end 2 b on the large diameter side is used.
[0022]
At this time, the plate | board thickness of the hollow tube 2 became 1.8 mm over the full length. Moreover, although the full length of the hollow tube 2 became longer than the hollow tube 1, compared with the length of the steel plate S as a raw material, the tube contraction rate with respect to a full length, ie, the diameter of each site | part, and this respond | corresponds to this. As shown in the graph of FIG. 1 (d), the ratio of the diameter to each part before contraction could be linearly changed.
[0023]
In this case, the tube contraction rate can exceed 30%. However, in order to further form the tapered hollow tube 2 having a strain distribution in the subsequent process, It is desirable to keep the tube contraction rate at 25% or less. Furthermore, when the strain aging type steel sheet S is used, the strength increase after the bake hardening treatment is most effective when the tube contraction rate is 8% or more.
[0024]
Therefore, in the case of a strength structure member that is preferentially deformed from the front end portion (the small diameter side end portion on the left side in the drawing) like a front side member of an automobile, the rear end portion (the large diameter side on the right side in the drawing portion) that is most desirably prevented from being deformed. The contraction rate of the end portion is desirably between 8% and 25%. If expressed as an equivalent strain, an increase in strength after bake-hardening treatment is effective by setting it to 0.09 or more.
[0025]
It is not preferable to apply an unnecessarily large strain at the front end portion which is desired to be deformed most preferentially when deformation occurs because of the characteristics of using the strain hardening material. By keeping the equivalent strain amount to 0.035 or less, a significant increase in strength can be suppressed. Further, the tube contraction rate at the front end is preferably 0% to 2%.
[0026]
Next, press forming the hollow tube 2 while controlling the subsequent hydraulic pressure increase to 20 MPa or less so that the initial hydraulic pressure is 10 MPa and the hollow tube 2 is not expanded by the hydraulic pressure by the hydraulic molding die, As shown in FIG. 1 (e), a hollow rectangular tube 3 having a part shape was obtained, that is, the cross section of one end 3a is a small square of 60 mm × 90 mm and the other end 3b A hollow rectangular tube 3 having a large square shape with a cross section of 80 mm × 100 mm was obtained.
[0027]
Then, as shown in FIG. 1 (f), this hollow rectangular tube 3 was heat-treated in an oven at 170 ° C. for 20 minutes. In the strength structural member 4 thus manufactured, the Vickers hardness of one end 4a (the left end in the drawing) is Hv = 200, and the Vickers hardness of the other end 4b (the right end in the drawing) is Hv = 250. The strength structure member 4 has a strength distribution over the entire length, and thus has a strength gradient from one end portion 4a to the other end portion 4b by the manufacturing method of the strength structure member according to this embodiment. It has been proved that can be manufactured.
[0028]
[Example 2]
FIG. 2 shows a manufacturing process according to another embodiment of the method for manufacturing a strength structural member according to the present invention.
[0029]
In the method of manufacturing a strength structural member according to this embodiment, first, as shown in FIG. 2A, a steel plate S having a strain aging property with a tensile strength of 460 MPa and a plate thickness of 1.8 mm is rounded into a tapered tubular shape. By forming and joining the edges of the steel sheet S by seam welding, a tapered hollow having a diameter of 100 mm at one end 21 a on the small diameter side and a diameter of 125 mm at the other end 21 b on the large diameter side is formed. Tube 21 is formed.
[0030]
Next, as shown in FIG. 2B, by spinning the hollow tube 21 using the spinning rollers R and R, as shown in FIG. A straight hollow tube 22 having a length of 400 mm with a constant diameter of 100 mm from the end 22 a to the other end 22 b on the large diameter side is used.
[0031]
At this time, the plate thickness at one end 22a of the hollow tube 22 is set to 1.8 mm, the plate thickness is gradually increased toward the other end 22b, and the plate thickness of the other end 22b becomes 2.0 mm. Molded as follows. Moreover, although the full length of the hollow tube 22 is extended, as compared with the length of the steel plate S as a material, the plate thickness distribution with respect to the full length changes linearly as shown in the graph of FIG. Could be molded as follows.
[0032]
Next, press forming the hollow tube 22 while controlling the subsequent increase in hydraulic pressure to 20 MPa or less so that the initial hydraulic pressure is 10 MPa and the hollow tube 22 is not expanded by the hydraulic pressure by the hydraulic molding die, As shown in FIG. 2 (e), a hollow rectangular tube 23 having a part shape was obtained, that is, a hollow rectangular tube 23 having a square shape with a cross section of 75 mm × 75 mm was obtained.
[0033]
Then, as shown in FIG. 2 (f), the hollow rectangular tube 23 was heat-treated in an oven at 170 ° C. for 20 minutes. In the strength structural member 24 thus manufactured, the Vickers hardness of one end 24a (the left end in the drawing) is Hv = 200, and the Vickers hardness of the other end 24b (the right end in the drawing) is Hv = 250. And has a strength distribution and a plate thickness distribution over the entire length, whereby the strength gradient and the plate from the one end 24a to the other end 24b by the manufacturing method of the strength structural member according to this embodiment. It has been demonstrated that a strength structural member 24 having a thickness gradient can be manufactured.
[0034]
[Example 3]
FIG. 3 shows a manufacturing process according to still another embodiment of a method for manufacturing a strength structural member according to the present invention.
[0035]
In the manufacturing method of the strength structural member according to this embodiment, first, as shown in FIG. 3A, a steel sheet S having a strain aging property with a tensile strength of 460 MPa and a plate thickness of 1.8 mm is rounded to a length of 500 mm. Is formed into a taper tube, and the edges of the steel sheet S are joined together by seam welding so that the diameter at one end 31a on the small diameter side is 100 mm and the diameter at the other end 31b on the large diameter side is 150 mm. A hollow tube 31 is formed.
[0036]
Next, as shown in FIG. 3B, by spinning the hollow tube 31 using the spinning rollers R and R, as shown in FIG. A tapered hollow tube 32 having a diameter of 100 mm at the end 32 a and a diameter of 120 mm at the other end 32 b on the large diameter side is used.
[0037]
At this time, the plate thickness at one end portion 32a of the hollow tube 32 is set to 1.8 mm, the plate thickness is gradually increased toward the other end portion 32b, and the plate thickness of the other end portion 32b becomes 2.0 mm. Molded as follows. Further, the plate thickness distribution of the entire length of the hollow tube 32 with respect to the length of the material could be molded so as to change linearly as shown in the graph of FIG.
[0038]
Next, press molding of the hollow tube 32 while controlling the subsequent increase in hydraulic pressure to 20 MPa or less so that the initial hydraulic pressure is 10 MPa and the hollow tube 32 is not expanded by the hydraulic pressure with a hydraulic molding die, As shown in FIG. 3 (e), a hollow rectangular tube 33 having a component shape was obtained, that is, the cross section of one end 33a is a small square shape of 60 mm × 90 mm and the other end. A hollow rectangular tube 33 having a large square shape with a cross section of 33b of 80 mm × 100 mm was obtained.
[0039]
Then, as shown in FIG. 3 (f), the hollow rectangular tube 33 was heat-treated in an oven at 170 ° C. for 20 minutes. In the strength structural member 34 manufactured as described above, the Vickers hardness of one end 34a (the left end in the drawing) is Hv = 200, and the Vickers hardness of the other end 34b (the right end in the drawing) is Hv = 255. And having a strength distribution and a plate thickness distribution over the entire length, whereby the strength gradient and the plate from one end 34a to the other end 34b by the method of manufacturing a strength structural member according to this embodiment. It has been demonstrated that a strength structural member 34 having a thickness gradient can be manufactured.
[Brief description of the drawings]
FIGS. 1A to 1F are manufacturing process explanatory views (a) to (f) according to an embodiment of a manufacturing method of a strength structural member according to the present invention.
FIGS. 2A to 2F are manufacturing process explanatory views (a) to (f) according to another embodiment of the method for manufacturing a strength structural member according to the present invention. FIGS.
FIGS. 3A to 3F are manufacturing process explanatory views (a) to (f) according to still another embodiment of a method for manufacturing a strength structural member according to the present invention. FIGS.
[Explanation of symbols]
1, 21, 31 Tapered hollow tubes 2, 22, 32 Hollow tubes 2a, 22a, 32a after compaction molding One end portions 2b, 22b located on the small diameter side of the hollow tube after compaction molding 32b One end portions 3, 23, 33 located on the large-diameter side of the hollow tube after compression tube forming Hollow square tubes 4, 24, 34 formed into part shapes Strength structural members 4a, 24a, 34a Strength structural members One end 4b, 24b, 34b of the other end of the strength structural member

Claims (8)

ひずみ時効性を有する鋼板から一体に形成されてなるテーパ状の中空管にスピニングあるいはスウェージングによるテーパを減らす縮管成形を施して、中空管の小径側に位置する一方の端部から大径側に位置する他方の端部にかけてひずみ勾配をもたせた後、この中空管を部品形状に成形するのに続いて熱処理を行って、上記一方の端部から上記他方の端部にかけて強度勾配を有する強度構造部材を製造することを特徴とする強度構造部材の製造方法。  A tapered hollow tube formed integrally from a steel plate with strain aging is subjected to reduced tube forming to reduce the taper due to spinning or swaging, and the large diameter from one end located on the small diameter side of the hollow tube After giving a strain gradient to the other end located on the radial side, the hollow tube is formed into a part shape, followed by heat treatment, and the strength gradient from the one end to the other end. A method for producing a strength structural member, comprising: ひずみ時効性を有する鋼板から一体に形成されてなるテーパ状の中空管に小径側に位置する一方の端部の直径および板厚を維持したままスピニングあるいはスウェージングによるテーパを減らす縮管成形を施して、中空管の小径側に位置する一方の端部から大径側に位置する他方の端部にかけて漸次板厚が増加する板厚勾配をもたせた後、この中空管を部品形状に成形するのに続いて熱処理を行って、上記一方の端部から上記他方の端部にかけて板厚勾配および強度勾配を有する強度構造部材を製造することを特徴とする強度構造部材の製造方法。  Reduced taper by spinning or swaging while maintaining the diameter and thickness of one end located on the small diameter side in a tapered hollow tube formed integrally from a steel plate with strain aging After applying a plate thickness gradient that gradually increases from one end located on the small diameter side of the hollow tube to the other end located on the large diameter side, the hollow tube is shaped into a part shape. A method for producing a strength structural member, comprising performing heat treatment subsequent to molding to produce a strength structural member having a thickness gradient and a strength gradient from the one end to the other end. 大径側の他方の端部の縮管率を8〜25%とした請求項1または2に記載の強度構造部材の製造方法。  The manufacturing method of the strength structural member according to claim 1 or 2 which made the contraction rate of the other end part by the side of a large diameter into 8-25%. 小径側の一方の端部の縮管率を0〜2%とした請求項3に記載の強度構造部材の製造方法。  The manufacturing method of the strength structural member according to claim 3, wherein the contraction rate of one end portion on the small diameter side is 0 to 2%. 小径側の一方の端部の相当ひずみを0.035以下とし、大径側の他方の端部の相当ひずみを0.09以上とした請求項1ないし4のいずれかに記載の強度構造部材の製造方法。  5. The strength structure member according to claim 1, wherein an equivalent strain at one end portion on the small diameter side is set to 0.035 or less and an equivalent strain at the other end portion on the large diameter side is set to 0.09 or more. Production method. 大径側の他方の端部における縮管成形前の板厚に対する板厚増加率を5%以上とした請求項5に記載の強度構造部材の製造方法。  The manufacturing method of the strength structure member according to claim 5 which made board thickness increase rate 5% or more with respect to board thickness before contraction forming in the other end part by the side of a large diameter. 請求項1,3〜6のいずれかに記載の強度構造部材の製造方法によって製造された強度構造部材であって、一方の端部から他方に端部にかけて強度勾配をもたせてあることを特徴とする強度構造部材。 A strength structural member manufactured by the manufacturing method of the intensity structure according to any of claims 1,3~6, characterized in that are remembering intensity gradient toward the end from the end of the hand to the other Strength structural member. 請求項2〜6のいずれかに記載の強度構造部材の製造方法によって製造された強度構造部材であって、一方の端部から他方の端部にかけて板厚勾配および強度勾配をもたせてあることを特徴とする強度構造部材。 A strength structural member manufactured by the manufacturing method of the intensity structure according to any of claims 2-6, by remembering plate Atsu勾distribution and intensity gradients over the end of the hand at the other end strength of structural member, characterized in that.
JP2002064047A 2002-03-08 2002-03-08 Manufacturing method of strength structural member Expired - Fee Related JP3811947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064047A JP3811947B2 (en) 2002-03-08 2002-03-08 Manufacturing method of strength structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064047A JP3811947B2 (en) 2002-03-08 2002-03-08 Manufacturing method of strength structural member

Publications (2)

Publication Number Publication Date
JP2003260531A JP2003260531A (en) 2003-09-16
JP3811947B2 true JP3811947B2 (en) 2006-08-23

Family

ID=28670981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064047A Expired - Fee Related JP3811947B2 (en) 2002-03-08 2002-03-08 Manufacturing method of strength structural member

Country Status (1)

Country Link
JP (1) JP3811947B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108127014B (en) * 2017-12-06 2019-05-31 西安航天动力机械有限公司 The wrong method away from reversed spinning of a kind of pair of wheel

Also Published As

Publication number Publication date
JP2003260531A (en) 2003-09-16

Similar Documents

Publication Publication Date Title
JP5682701B2 (en) Sheet metal bending method and product
EP0946311B1 (en) Method for the production of a sheet metal part by forming
JP6032374B2 (en) Method for producing press-molded body and press-molding apparatus
EP1818115B1 (en) Method for manufacturing a structural or chassis element for motor vehicles
US20150315666A1 (en) Induction annealing as a method for expanded hydroformed tube formability
CN107257762B (en) For manufacturing the method and vehicle bridge subframe of the sheet metal forming part in the region with multiple wall thickness different from each other
KR102036062B1 (en) Press processing apparatus and press processing method
US11007839B2 (en) Automotive component manufacturing method and automotive component
DE102006020623B4 (en) Method for producing components from tailored blanks
DE102008044693B4 (en) Method for producing hardened components with multiple heating
EP0811444A1 (en) Method of wall-thickening metal pipes
EP0862956B1 (en) Hollow beam for a car body and method of producing the same by internal high pressure forming
JP7043496B2 (en) Methods and Semi-Products for Producing At least Partially Hardened Variant Components
JP3811947B2 (en) Manufacturing method of strength structural member
EP2942418B1 (en) Method for manufacturing a motor vehicle part made of aluminium
DE102013106422B3 (en) Method for producing a rolling piston for an air spring for motor vehicles and such rolling piston
US7454942B2 (en) Hollow molded part with closed cross-section and a reinforcement
DE10312028B4 (en) Process for the production of components
EP3302841B1 (en) Method for producing open-seam pipes from sheet metal panels
JP2017177132A (en) Heat treated aluminum alloy material joining method
DE102011001849A1 (en) Method for producing metal sheet structural component for motor vehicle, involves performing adhesive bonding of base metal sheet and reinforcing metal sheet, and inserting combined metal sheet into material reshaping tool
JPS58105881A (en) Reinforcing treatment of chassis member for vehicle
EP1342515A1 (en) Process for the manufacture of closed, hardened sections with no cross-sectional limits
JP2013052442A (en) Method of manufacturing wheel rim of vehicle
EP1379341B1 (en) Method of manufacturing a closed profile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060521

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees