JP3811561B2 - One can two water channel type water heater - Google Patents

One can two water channel type water heater Download PDF

Info

Publication number
JP3811561B2
JP3811561B2 JP34444997A JP34444997A JP3811561B2 JP 3811561 B2 JP3811561 B2 JP 3811561B2 JP 34444997 A JP34444997 A JP 34444997A JP 34444997 A JP34444997 A JP 34444997A JP 3811561 B2 JP3811561 B2 JP 3811561B2
Authority
JP
Japan
Prior art keywords
hot water
temperature
water supply
burner
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34444997A
Other languages
Japanese (ja)
Other versions
JPH11159862A (en
Inventor
節義 田畑
正登 近藤
寿久 斉藤
達也 和田
Original Assignee
株式会社ガスター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ガスター filed Critical 株式会社ガスター
Priority to JP34444997A priority Critical patent/JP3811561B2/en
Publication of JPH11159862A publication Critical patent/JPH11159862A/en
Application granted granted Critical
Publication of JP3811561B2 publication Critical patent/JP3811561B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control For Baths (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、給湯機能と給湯以外の他機能を備えた一缶二水路式給湯装置に関するものである。
【0002】
【従来の技術】
図12には出願人が開発している一缶二水路式給湯装置のシステム構成が示されている。同図において、器具ケース1内には給湯機能の給湯熱交換器2と給湯以外の他機能の追い焚き機能を行う追い焚き熱交換器3とが一体化されて配設されている。すなわち、複数の共通のフィンプレート4に給湯側の水管を貫通装着して給湯熱交換器2と成し、同じくフィンプレート4に追い焚き側の水管を貫通装着して追い焚き熱交換器3と成している。
【0003】
これら一体化された熱交換器の下方側には給湯熱交換器2と追い焚き熱交換器3を共通に加熱するバーナ5が配置されており、このバーナ5の燃焼の給排気を行う燃焼ファン6がバーナの下側に配置されている。バーナ5にはガス通路9が接続されており、このガス通路9には通路の開閉を行う電磁弁7,8とガスの供給量(バーナの燃焼熱量)を開弁量によって制御する比例弁10が介設されている。なお、前記比例弁10の開弁量制御は、具体的には、比例弁10に印加される電流(開弁駆動電流)の可変制御によって行われている。
【0004】
前記給湯熱交換器2の入側には給水管11が接続されており、この給水管11には給湯熱交換器2の入水温度(給水温度)を検出する給水温度検出センサ12と、給水(給湯)流量(湯張りの場合には湯張り流量)を検出する流量検出センサ13が設けられている。なお、給水管11の入口側は水道管に接続されている。
【0005】
前記給湯熱交換器2の出側には給湯管14が接続されており、この給湯管14は外部配管を介して台所等の所望の給湯場所に導かれている。前記給湯熱交換器2の出側の流路には給湯温度を検出する給湯温度センサ15が設けられている。これら、給水管11から給湯熱交換器2を経由して給湯管14に至る通路は給湯回路を構成する。
【0006】
前記追い焚き熱交換器3の入側には管路16の一端側が接続され、管路16の他端側は循環ポンプ17の吐出側に接続されている。そして、循環ポンプ17の吸込側と浴槽18は戻り管20によって接続されており、この戻り管20には浴槽18の循環湯水の温度を風呂温度として検出する風呂温度センサ21と流水を検出する流水センサ(流水スイッチ)や流量センサ19が設けられている。前記追い焚き熱交換器3の出側には往管22の一端側が接続され、往管22の他端側は浴槽18に接続されており、浴槽18から戻り管20、循環ポンプ17、管路16、追い焚き熱交換器3および往管22を介して浴槽18に至る通路は流体の循環流路として機能する追い焚き循環流路23を構成している。
【0007】
前記給湯熱交換器2の給湯管14と追い焚き循環路23(図12においては管路16)は湯張り通路24によって連通接続されており、この湯張り通路24には通路の開閉を行う電磁弁等により構成される注湯弁25が介設され、この注湯弁25の下流側の湯張り通路24には浴槽18の水位を水圧によって検出する水位センサ(圧力センサ)26が設けられている。
【0008】
前記流量検出センサ13、温度センサ12,15,21、水位センサ26等のセンサ検出信号は制御装置27に加えられており、この制御装置27にはリモコン28が接続されている。このリモコン28には給湯温度を設定する給湯温度設定手段や、風呂温度を設定する風呂温度設定手段や、自動運転、追い焚き運転、湯張り運転等を指令する各種運転ボタンや、必要な情報を表示する表示部等が設けられている。
【0009】
前記制御装置27は各種センサ検出信号とリモコン28の情報を取り込み、内部に与えられているシーケンスプログラムに従い、給湯運転と、湯張り運転と、追い焚き運転を次のように制御する。
【0010】
例えば、台所等に導かれた給湯通路の水栓30が開けられ、流量検出センサ13により作動流量が検出されると、燃焼ファン6の回転が行われ、電磁弁7,8の開動作が行われてバーナ5に燃料ガスが供給されると共に、点火器(図示せず)の点火によりバーナ5の燃焼が行われ、給湯温度センサ15で検出される給湯温度がリモコン28で設定される給湯設定温度に一致するように比例弁10への開弁駆動電流を制御し、給湯熱交換器2を通る水をバーナ5の火炎により加熱して設定温度の湯を作り出し、この湯を給湯管14を介して給湯場所へ給湯する。そして、水栓30が閉められて、流量検出センサ13からオフ信号が出力されたときに、バーナ燃焼を停止し、給湯運転モードの動作を終了する。
【0011】
また、リモコン28により自動運転のモードや、湯張り運転モードが指令されると、注湯弁25が開けられる。そして、流量検出センサ13により作動流量が検出されると、給湯運転の場合と同様にバーナ5の燃焼が開始し、給湯熱交換器2で作り出された湯は給湯管14、湯張り通路24を通り、さらに分岐して管路16から追い焚き熱交換器3を経て往管22を通る通路と戻り管20を通る通路の両側から浴槽18に湯が落とし込まれる。そして、設定水位までの湯の水量が落とし込まれたとき、又は水位センサ26により設定水位が検出されたときに注湯電磁弁25が閉じられバーナ5の燃焼が停止して湯張り運転モードの動作が終了する。
【0012】
追い焚き運転モードの動作においては、注湯弁25が閉じられている状態で、循環ポンプ17が回転駆動され、浴槽18内の湯水の循環が追い焚き回路23を通して行われ、風呂温度センサ21により浴槽の風呂温度が検出される。そして、風呂検出温度が風呂設定温度よりも低いときには、流水センサ又は流量センサ19から流水オン信号を受けてバーナ5の点着火による燃焼が行われ(この燃焼状態が炎検出センサであるフレームロッドのオン信号により検出されたときに追い焚き状態を報知する追い焚き燃焼ランプが点灯される)、追い焚き循環流路23を通して循環する浴槽湯水を追い焚き熱交換器3で加熱する。風呂温度センサ21により浴槽湯水の温度が風呂設定温度に達したことが検出されたときに、循環ポンプ17の停止とバーナ5の燃焼停止が行われて追い焚き運転モードの動作が終了する(バーナ5の燃焼停止がフレームロッドのオフ信号により検出されて追い焚き燃焼ランプは消灯する)。
【0013】
上記の如く、一缶二水路風呂給湯器は、共通のバーナ5を用いて一体化された給湯熱交換器2と追い焚き熱交換器3を加熱する方式なので、別体に設けられた給湯熱交換器と追い焚き熱交換器をそれぞれ別個のバーナを用いて燃焼加熱する方式に比べ、装置構成の簡易化が図れ、これに伴い、装置(器具)の小型化とコスト低減が図れることになる。
【0014】
ところで、この種の一缶二水路式の給湯装置は、給湯熱交換器2と追い焚き熱交換器3とが一体化されているため、追い焚き単独運転が行われて、バーナ5の燃焼により追い焚きが行われると、滞留している給湯熱交換器2内の湯水が加熱されて、沸騰あるいは沸騰寸前の高温に加熱され、水栓30が開けられて給湯が開始する際に、その高温の湯水が出湯して危険の状態になるという問題が生じる。本出願人は、このような問題を解消するために、バーナ5の間欠燃焼の駆動方式を提案している。このバーナ5の間欠駆動方式は、給湯熱交換器2の水管に給湯熱交換器2内の湯温を検出する給湯熱交湯温センサ31を設け、図10に示すようにこの給湯熱交湯温センサ31の検出情報をバーナオン・オフ燃焼制御部32に加え、このバーナオン・オフ燃焼制御部32によりバーナ5の間欠燃焼を制御するものである。
【0015】
すなわち、バーナオン・オフ燃焼制御部32は、追い焚き単独運転モードの動作(追い焚き単独オンの動作)であることを確認し、図11に示す如く、給湯熱交湯温センサ31で検出される給湯熱交湯温が予め与えられるオフ温度を上側に越えるときに、電磁弁7(8)を閉じてバーナ5の燃焼を停止(燃焼オフ)し、この燃焼停止中に給湯熱交湯温が予め与えられるオン温度を下側に越えるときに、電磁弁7(8)を開けてバーナ5の燃焼を開始(燃焼オン)させるという如く、バーナ5の間欠燃焼を制御し、追い焚き単独運転中における給湯熱交換器2側の湯温が高温に加熱されるのを防止して給湯開始時の安全をはかるものである。
【0016】
【発明が解決しようとする課題】
一般に、浴槽18内には髪の毛等のゴミが混入しやすく、追い焚き運転を行うと、これらの髪の毛等が流水センサや流量センサ19の検出部に絡みつき、流水センサや流量センサ19が故障を起こすという問題が生じる。流水センサや流量センサ19が故障すると、例えば、追い焚き運転を行う場合、循環ポンプ17が駆動して浴槽18の湯水が追い焚き循環流路23を循環しているにも拘わらず、その流水や流量が検出されないために、空焚き状態と判断されてバーナ5の燃焼が行われないという不具合状態が発生する。
【0017】
本発明者は、一缶二水路式の熱交換器の特性、すなわち、追い焚き単独運転の動作中等において、給湯熱交換器2側の熱が追い焚き側の循環湯水に吸熱されて、追い焚き流量の大きさに応じ給湯熱交湯温が変化することに着目し、前記バーナ5の間欠燃焼運転に用いる給湯熱交湯温センサ31の給湯熱交湯温の検出情報を利用して故障の生じやすい流水センサや流量センサ19を用いることなく追い焚き循環流量の検出を行うことが可能な一缶二水路式給湯装置を提供するものである。
【0018】
【課題を解決するための手段】
本発明上記技術課題を解決するために、次のような手段を講じている。すなわち、第1の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼停止時から次のバーナ燃焼開始までの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、他機能単独運転中に前記時間計測手段によって計測されるバーナの燃焼停止時から次のバーナ燃焼開始までの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0019】
また、第2の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼開始時から次のバーナ燃焼停止までの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナの燃焼開始時から次のバーナ燃焼停止までの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0020】
さらに、第3の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼開始時から次の燃焼停止を経てバーナが再び燃焼開始するまでの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナの燃焼開始時から次の燃焼停止を経てバーナが再び燃焼開始するまでの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0021】
さらに、第4の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼停止時から次の燃焼動作を経てバーナが再び燃焼停止するまでの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナ燃焼停止時から次の燃焼動作を経てバーナが再び燃焼停止するまでの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0022】
さらに、第5の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の上側ピーク温度と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の上側ピーク温度と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0023】
さらに、第6の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の下側ピーク温度と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の下側ピーク温度と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0024】
さらに、第7の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の上昇傾きと循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の上昇傾きと前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0025】
さらに、第8の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の下降傾きと循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の下降傾きと前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0026】
さらに、第9の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の給湯熱交換器内湯温の上側ピーク温度と下側ピーク温度を時間軸上に表した経時データをベースとして時間的に前後する両隣の下側ピーク温度を結ぶ下側ピーク間結線の長さ(a+b)のデータと上側ピーク温度から前記下側ピーク間結線に下した垂線の長さcのデータとこの垂線の交点の位置から前側の下側ピーク温度までの線長aのデータと前記垂線の交点の位置から後方の下側ピーク温度までの線長bのデータのうちのいずれか2つのデータの比と循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間の計測手段と、前記他機能単独運転中の少なくとも前記熱交検出湯温の上側ピーク温度と下側ピーク温度を経時データとして取り込み記憶する経時温度データ採取記憶部と、前記取り込み記憶された経時データを時間軸と温度軸のグラフ上に表したときの両隣の下側ピーク温度を結ぶ下側ピーク間結線の長さ(a+b)のデータと上側ピーク温度から前記下側ピーク間結線に下した垂線の長さcのデータとこの垂線の交点の位置から前側の下側ピーク温度までの線長aのデータと前記垂線の交点の位置から後方の下側ピーク温度までの線長bのデータのうちのいずれか2つのデータの比を求めこの求めた比の値と前記非給湯側流体温度検出センサによって検出された非給湯側流体温度の情報により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0027】
さらに、第10の発明は、給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の給湯熱交換器内湯温の上側ピーク温度と下側ピーク温度を時間軸上に表した経時データをベースとして上側のピーク温度と下側ピーク温度との経時的に連続する4個のピーク温度位置と下側のピーク温度位置から両隣の上側のピーク温度を結ぶ線に下ろした垂線の交点位置と上側のピーク温度位置から両隣の下側のピーク温度を結ぶ線に下ろした垂線の交点位置の3点以上を結んで得られる図形の面積と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記他機能単独運転中の少なくとも前記熱交検出湯温の上側ピーク温度と下側ピーク温度を経時データとして取り込み記憶する経時温度データ採取記憶部と、前記取り込み記憶された経時データを時間軸と温度軸のグラフ上に表したときの上側のピーク温度と下側のピーク温度との経時的に連続する4個のピーク温度位置と下側のピーク温度位置から両隣の上側のピーク温度を結ぶ線に下ろした垂線の交点位置と上側のピーク温度位置から両隣の下側のピーク温度を結ぶ線に下ろした垂線の交点位置の3点以上を結んで得られる図形の面積を求めこの求めた図形の面積と前記非給湯側流体温度検出センサによって検出された非給湯側流体温度の情報により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流路を求める循環流量検出部とが設けられている構成をもって課題を解決する手段としている。
【0028】
さらに、第11の発明は、前記第1乃至第10のいずれか1つの発明の構成を備えたものにおいて、循環流量検出部で求められた循環流量が予め与えられている作動流量未満のときに循環路内の液無し状態を報知する液無し報知手段が設けられている構成をもって課題を解決する手段としている。
【0029】
さらに、第12の発明は、前記第1乃至第11のいずれか1つの発明の構成を備えたものにおいて、循環流量検出部で求められた循環流量が予め与えられている作動流量未満のときに他機能単独運転の停止を行う空焚き防止安全手段が設けられている構成をもって課題を解決する手段としている。
【0030】
さらに、第13の発明は、前記第1乃至第12のいずれか1つの発明の構成を備えたものにおいて、他機能運転の燃焼状態を報知する他機能燃焼ランプが設けられ、他機能単独運転が開始されたときに循環流路に設けられる循環ポンプを起動してバーナの燃焼駆動を行い循環流量検出部で求められる循環流量が予め与えられている作動流量以上となったことを確認して前記他機能燃焼ランプをオン駆動する他機能開始動作制御部が設けられている構成をもって課題を解決する手段としている。
【0031】
さらに、第14の発明は、前記第1乃至第13のいずれか1つの発明の構成を備えたものにおいて、他機能の運転は追い焚き運転と成し、循環流路は浴槽に接続されて浴槽湯水を循環する追い焚き循環流路と成し、非給湯側熱交換器は循環浴槽湯水を追い焚きする追い焚き熱交換器と成した構成をもって課題を解決する手段としている。
【0032】
上記本発明においては、給湯以外の他機能単独運転の動作中は、給湯熱交湯温センサによって給湯熱交換器内の湯温が検出され、その給湯熱交湯温に基づいてバーナのオン・オフ間欠燃焼が行われて給湯熱交換器内の滞留湯水の温度が高温に達するのを防止する。
【0033】
その一方で、バーナのオン・オフ間欠燃焼のバーナオフからオンまで、オンからオフまで、オンからオンまで、オフからオフまでという如く予め定められたバーナの動作状態の時間の情報あるいは給湯熱交湯温センサで検出される給湯熱交湯温の検出情報が循環流量検出部に加えられる。また、非給湯側流体温度検出センサにより、検出される循環流路を流れる循環流体の温度検出値が非給湯側流体温度のデータとして循環流量検出部に加えられる。
【0034】
循環流量検出部は、これらの加えられる情報とデータメモリに与えられているこれらの情報に対応する関係データとを参照し、循環流路を流れる循環流量を検出する。
【0035】
この検出された循環流量が予め与えられる作動流量未満のときには循環流路内に液体(流体)がないことを報知したり、空焚きを防止するためのバーナの燃焼停止(他機能単独運転の停止)が行われて器具運転の安全が図られる。
【0036】
【発明の実施の形態】
以下、本発明の実施形態例を図面に基づき説明する。図1はバーナ5のオン・オフ間欠燃焼の動作状態の時間計測情報に基づき循環流路内を流れる流量を検出する実施形態例の要部ブロック構成を示すものである。本実施形態例の一缶二水路式給湯装置のシステムは図12に示す流水センサや流量センサ19が必要に応じ省略される以外は図12に示すものと同様であり、同一名称部分には同一符号を用いてその重複説明は省略する。
【0037】
図1に示す第1の実施形態例の特徴的な制御構成は制御装置27に設けられるもので、バーナオン・オフ燃焼制御部32と、時間計測手段33と、循環流量検出部34と、データメモリ35と、液無し報知手段として機能する水無し報知手段36と、空焚き防止安全手段37とを有して構成されている。バーナオン・オフ燃焼制御部32は前記図10で説明した場合と同様に給湯熱交湯温センサ31の給湯熱交湯温検出データを取り込み、給湯熱交湯温が予め設定されているオフ温度を上側に越えたときにはバーナ5の燃焼を停止し、給湯熱交湯温が予め与えらているオン温度を下側に越えたときにはバーナ5の燃焼を再開するという如く、バーナ5をオン・オフ間欠燃焼させて追い焚き単独運転中に給湯熱交換器2内の滞留湯水の温度が高温になるのを防止する。
【0038】
循環流量検出部34は、前記バーナオン・オフ燃焼制御部32によるバーナ5のオン・オフ間欠燃焼制御の信号を取り込んでバーナ5が燃焼状態にあるか燃焼停止状態にあるかを検出し、時間計測手段33の時間計測情報と、非給湯側流体温度センサとして機能する風呂温度センサ21によって検出される非給湯側流体温度としての追い焚き循環流の温度(風呂温度)の情報と、データメモリ35に格納されている循環流量検出用の関係データとに基づき追い焚き循環路23を流れる循環流量を検出する。
【0039】
より具体的に説明すれば、データメモリ35にはバーナ5の燃焼停止(燃焼オフ)から次の燃焼開始(燃焼オン)までの時間と循環流量との関係データが追い焚き循環流の温度に応じて、つまり、追い焚き循環流の温度をパラメータとして与えられている。本発明者の実験による検討によれば、バーナ5のオン・オフ間欠燃焼を行ったときの給湯熱交湯温の変化は、追い焚き循環流路23内の循環流量が大の場合は図3に示すような変化を示し、追い焚き循環流路23内の循環流量が小のときには図6に示すような給湯熱交湯温の変化パターンを示すことが検証されている。
【0040】
すなわち、追い焚き循環流路23内の循環流量が小の場合には、バーナ5の燃焼区間においては、給湯熱交換器2側から追い焚き熱交換器3を通る流水側への吸熱量が小となるので、給湯熱交換器2側の湯水の温度上昇のスピードが早くなり、給湯熱交湯温は時間の経過に従い急速に立ち上がる。また、バーナ5の燃焼停止区間では、同様に追い焚き循環流路23の流水による吸熱量が小のため、給湯熱交換器2内の湯温は自然空冷に近い状態で低下するため、その湯温降下のスピードが遅く、追い焚き循環流路23内の循環流量が大の場合に比べ給湯熱交湯温はゆっくりと低下する。すなわち、図3と図6の温度変化パターンを比較すれば明らかな如く、バーナがオフしてから次にバーナがオンするまでの時間t1は追い焚き循環流路23内の循環流量が大の場合と小の場合とでは小の場合の方が遥かに大きくなる。また、このバーナがオフしてから次にバーナがオンするまでの時間t1は、追い焚き循環流の温度に依存し、循環流の温度が高いときには、給湯熱交換器2側から追い焚き循環流側への吸熱量が少なくなるので、循環流の温度が低い場合に比べ大きくなる。これらの点に着目し、本実施形態例では、予め実験等により追い焚き循環流路23内の循環流量の大きさと前記時間t1との関係を循環流の温度に応じて(温度を可変して)求め、そのデータを関係データとしてデータメモリ35に格納している。具体的には、この関係データは、図7の(a)に示す形態でデータメモリ35に与えられる。この図7の(a)に示す関係データは、横軸を循環流量とし、縦軸の流量検出用データは追い焚き単独運転時におけるバーナがオフしてから次にバーナがオンするまでの時間t1の値で与えられ、この循環流量と時間t1の関係データは循環流の温度TF1,TF2,TF3,…(TF1<TF2<TF3<…)をパラメータとして与えられる。
【0041】
時間計測手段33はタイマやクロック機構等の時間計測機能を備えた手段により構成されており、循環流量検出部34の指令によって時間の計測を行う。
【0042】
循環流量検出部34は、バーナオン・オフ燃焼制御部32によるバーナ5の間欠燃焼の制御信号に基づき、バーナ5の燃焼オフの時点と燃焼開始の時点とを検知し、バーナ5の燃焼オフの時点を検知したときから次の燃焼開始までの時間の計測指令を時間計測手段33に加え、そのバーナ燃焼停止から次のバーナ燃焼開始までの時間の検出情報を時間計測手段33から得る。
【0043】
そして、風呂温度センサ21から循環流の検出温度TFの情報を取り込み、計測時間t1と検出温度TFとデータメモリ35に予め格納されている前記関係データとを比較し、検出時間t1と検出温度TFに対応する追い焚き循環流路23内の循環流量を求める。そして、求めた循環流量が予め与えられている作動流量(例えば3リットル/分)未満のときは水無し検知信号(液無し検知信号)を水無し報知手段36と空焚き防止安全手段37に加える。
【0044】
液無し報知手段として機能する水無し報知手段36は、前記循環流量検出部34から水無し検知信号が出力されたときには、例えばリモコン28の表示部あるいはその他の適宜の手段によって追い焚き循環流路23内に水がないことをブザー等の音声、液晶画面へのメッセージ表示、合成音によるメッセージ表示、ランプ等による点灯、点滅によるランプ表示等の適宜の報知形態でもって水無し報知を行う。
【0045】
空焚き防止安全手段37は、前記循環流量検出部34から水無し検知信号が出力されたときに電磁弁7(8)を閉じてバーナ5の燃焼を強制的に停止ロックし、追い焚き熱交換器3の空焚きの危険を防止する。なお、バーナ燃焼の停止ロックは、リセット信号が加えられない限り、バーナ5の燃焼の開始指令を受けつけない動作状態を意味し、例えば、制御装置27の電源が一端切られてから再び電源がオンすることによりリセットがされるものである。
【0046】
この実施形態例においては、追い焚き単独運転中のバーナ5のオン・オフ間欠燃焼制御におけるバーナ燃焼停止時から燃焼開始までの時間計測データによって追い焚き循環流路23内の水の流水有無や流量が検出できるので、流水や流量を検出する図12に示す流水センサや流量センサ19を省略することが可能となり、その分、装置コストの低減化を図ることが可能である。
【0047】
また、本実施形態例では追い焚き循環流路23に流水や流量を検出するためのセンサを設けることなく流路23内の流水の有無および流量を判断できるので、追い焚き循環の流水や流量を検出するセンサに髪の毛等が絡みついて故障を起こすという問題は全く生じないので、追い焚き循環流路23内の流水の有無判断および流量検出を確実に、且つ、高信頼性のもとで検出することができ、追い焚き熱交換器3の空焚きによる危険防止を確実に図ることができる。
【0048】
流水センサや流量センサ19を用いて追い焚き循環流路23内の流水の有無や流量を判断する方式では、流水センサや流量センサ19は故障しやすいので、故障が生じたときには、追い焚き循環流路23内に循環湯水の流水が生じているにも拘わらずその検知信号が得られずに燃焼が停止されて追い焚きが出来なかったり、あるいは追い焚き循環流路23内に水(流水)がないにも拘わらずこれを検知することが出来ずに空焚き状態になるという危険発生の問題を確実に防止できるので、追い焚きの運転を円滑に行うことができるとともに、前記の如く空焚き防止を確実に図ることができるという優れた効果を奏することが可能となるものである。さらに、本実施形態例では循環流量検出部34により追い焚き循環流量が検出されるので、追い焚き運転中に、その検出された循環流量のデータを用いて、循環流量の制御を行うことが可能となり、例えば、循環流量が一定となるように循環ポンプ17の駆動入力を制御したり、あるいは追い焚き単独運転中に、給湯熱交湯温センサ31の検出温度が高くなってオフ温度に近づいたときには給湯熱交換器2側から追い焚き循環湯水への吸熱量を増加するために循環流量を大となる方向に制御する等の様々な循環流量の制御形態の展開が可能となるものである。
【0049】
次に、バーナ5の間欠燃焼制御の動作状態の時間計測情報に基づいて追い焚き循環流路23の通水流量を検出する第2の実施形態例を説明する。この第2の実施形態例の制御構成は前記図1に示すブロック構成と同様であり、この第2の実施形態例が前記第1の実施形態例と異なることは、追い焚き単独運転中におけるバーナ5のオン・オフ間欠燃焼によるバーナ5の燃焼開始時から次の燃焼停止までの時間t2の情報によって追い焚き循環流路23の通水流量を検出するように構成したことであり、それ以外の構成は前記第1の実施形態例と同様である。
【0050】
この第2の実施形態例においては、データメモリ35にはバーナ5の燃焼開始時から燃焼停止までの時間t2と循環流の温度によって追い焚き循環流路23の通水流量を検出するための関係データが格納される。そして、循環流量検出部34は、追い焚き単独運転中に、バーナ5の燃焼開始時から次の燃焼停止までの時間t2を時間計測手段33により計測し、その計測時間t2と風呂温度センサ21によって検出される循環流の温度TFをデータメモリ35に格納されている関係データと照合し、時間t2と温度TFに対応する循環流量を検出する。
【0051】
図3と図6の温度変化パターンから明らかな如く、追い焚き循環流路23内の通水流量小のときの図6に示すt2の値が、通水流量大の場合の図3に示すt2よりも小さな値となり、また、循環流の温度TFが大きくなるにつれ、時間t2の値は小さくなる。このことから、データメモリ35には図7の(b)に示す形態の関係データが予め実験等により求められて格納される。この図7の(b)のデータの流量検出用データは前記時間t2の値で与えられるものであり、TF1,TF2,TF3,…は循環流の温度(TF1<TF2<TF3<…)である。なお、水無し検知信号が加えられたときの水無し報知手段36と空焚き防止安全手段37の動作は前記第1の実施形態例の場合と同様であるのでその説明は省略する。
【0052】
この第2の実施形態例も、前記第1の実施形態例と同様の効果を奏するものである。
【0053】
次にバーナ5のオン・オフ間欠燃焼の動作状態の時間計測情報に基づいて追い焚き循環流路23内の通水流量検出を行う第3の実施形態例を説明する。この第3の実施形態例は追い焚き単独運転中におけるバーナ5の燃焼開始時から燃焼停止期間を介して再び燃焼開始されるまでの時間t3の情報と循環流温度TFに基づき追い焚き循環流路23内の通水流量を検出するように構成したものであり、それ以外の構成は前記第1および第2の各実施形態例と同様である。
【0054】
この第3の実施形態例においては、データメモリ35に追い焚き単独運転中におけるバーナ5の燃焼開始時から次の燃焼停止期間を介して再び燃焼が開始されるまでの時間t3と通水流量との関係データが循環流の温度に応じて(循環流の温度をパラメータとして)与えられる。このバーナ5の燃焼開始時から次の燃焼開始時までの時間t3は図3と図6を比較すれば明らかな如く、追い焚き循環流路23内の通水流量が大の状態の図3に示されるt3よりも追い焚き循環流路23の通水流量が小の状態を示す図6のt3の値が大きくなる。また、循環流の温度TFが低い場合よりも高い方が給湯熱交換器2側から追い焚き循環流側への吸熱量が小さくなるので、時間t3は大きくなり、このことから、データメモリ35には図7の(a)に示す形態の関係データが格納されることになる。なお、この図7(a)に示すデータで、流量検出用データとして、前記時間t3の値が与えられることになる。
【0055】
この第3の実施形態例では循環流量検出部34は時間計測手段33によって追い焚き単独運転中におけるバーナ5の燃焼開始時から次の燃焼停止期間を介して次にバーナの燃焼が開始されるまでの時間を検出し、その検出時間t3と風呂温度センサ21で検出される循環流の温度TFのデータをデータメモリ35に格納されている関係データと照合し、検出時間t3と循環流の温度TFに応じた循環流量を検出する。そして、この検出循環流が予め与えられている作動流量未満のときには追い焚き循環流路23内に水(流水)がない状態と判断して水無し検知信号を出力し、水無し報知手段36による水無しの報知と空焚き防止安全手段37による燃焼の強制的な停止ロック動作を行うものである。この第3の実施形態例も前記第1、第2の各実施形態例と同様な効果を奏するものである。
【0056】
次にバーナ5のオン・オフ燃焼動作状態の時間計測情報に基づいて追い焚き循環流路23内の流量を検出する第4の実施形態例を説明する。この第4の実施形態例は追い焚き単独運転中におけるバーナ5の燃焼停止時から次の燃焼期間を介して次に燃焼停止されるまでの時間t4と循環流の温度TFの情報に基づき追い焚き循環流路23内の通水流量の検出を行うように構成したものであり、それ以外の構成は前記第1、第2、第3の各実施形態例と同様である。
【0057】
この第4の実施形態例では、データメモリ35には追い焚き単独燃焼運転中のバーナ燃焼停止時から次の燃焼期間を介して再び燃焼停止されるまでの時間t4と循環流量との関係データが循環流の温度TFに応じて(循環流の温度TFをパラメータとして)与えられる。このt4の時間は図3と図6の動作状態を比較すれば明らかな如く、追い焚き循環流路23内の通水流量が大の場合の図3に示すt4の値よりも追い焚き循環流路23内の通水流量が小の場合の図6に示すt4の値が明らかに大きくなっている。また、循環流の温度TFが低い場合よりも高い場合の方が給湯熱交換器2側から循環流側への吸熱量が小さくなるので、前記時間t4の値が大きくなる。このことから、時間t4と循環流量との関係データは図7(a)に示す形態で与えられ、この図7(a)の流量検出用データとして、前記時間t4の値が与えられる。
【0058】
循環流量検出部34は追い焚き単独運転中におけるバーナ5の燃焼停止時から次の燃焼期間を介して再び燃焼停止されるまでの時間t4を時間計測手段33を用いて検出し、その検出時間t4と風呂温度センサ21で検出される循環流の温度TFの値をデータメモリ35に与えらている関係データと照合し、前記検出時間t4と循環流の温度TFに対応する循環流量を求める。そして、検出された(求められた)循環流量の大きさが予め与えられている作動流量未満のときには、追い焚き循環流路23内に水(流水)がない状態と判断して水無し検知信号を出力し、水無し報知手段36による水無し報知と空焚き防止安全手段37による燃焼の停止ロック動作を行わせるものである。
【0059】
この第4の実施形態例も前記第1〜第3の各実施形態例と同様な効果を奏するものである。
【0060】
次に給湯熱交湯温センサ31の給湯熱交湯温検出情報と循環流の温度情報に基づき追い焚き循環流路23内の通水流量の検出を行う本発明の第5の実施形態例について説明する。この実施形態例は図2に示すブロック構成を有するもので、バーナオン・オフ燃焼制御部32と、循環流量検出部34と、データメモリ35と、経時温度データ採取記憶部38と、液無し報知手段として機能する水無し報知手段36と、空焚き防止安全手段37とを有して構成されており、バーナオン・オフ燃焼制御部32と水無し報知手段36と空焚き防止安全手段37の構成は前記図1に示すものと同様であるのでその説明は省略する。
【0061】
経時温度データ採取記憶部38は給湯熱交湯温センサ31で検出される給湯熱交湯温の検出情報を例えば0.1秒あるいは1秒という如く所定のサンプリング時間ごとに取り込んでそのデータを記憶する。データメモリ35には追い焚き循環流路23内の通水流量を給湯熱交湯温の上側のピーク温度Puと循環流の温度TFによって検出するための関係データが格納される。本発明者の実験による検討によれば、給湯熱交湯温の経時変化のパターン上で、例えば図3に示される上側ピーク温度Puは追い焚き循環流路23内の通水流量が小の場合にはその循環流による給湯熱交換器2側からの吸熱(奪う熱)が少ないので、上側ピーク温度は追い焚き循環流路23内の通水量が大の場合に比べ高くなる。また、循環流の温度TFが低い場合よりも高い方が給湯熱交換器2側から循環流側への吸熱量が小さくなるので、給湯熱交湯温の上側のピーク温度Puは高くなる。このことから、データメモリ35には図7の(a)に示す形態の関係データが格納される。なお、この図7の(a)に示される流量検出用データは、上側ピーク温度Puの値で与えられる。
【0062】
循環流量検出部34は経時温度データ採取記憶部38で採取記憶された給湯熱交湯温のピーク温度Puと風呂温度センサ21で検出される循環流の温度TFとをデータメモリ35に格納されている関係データ等を照合し、前記ピーク温度Puと循環流温度TFに対応する循環流量を求める。そして、この求めた循環流量の値が予め与えられている作動流量未満のときには、追い焚き循環流路23内に流水がないものと判断し水無し検知信号を水無し報知手段36と空焚き防止安全手段37に加える。
【0063】
水無し報知手段36は前記図1に示される構成の場合と同様に水無し検知信号を受けて追い焚き循環流路23内に水(流水)がないことを報知する。また、空焚き防止安全手段37も前記図1に示す構成と同様に水無し検知信号を受けて電磁弁7(8)を閉じ、バーナ5の燃焼を強制的にロック停止する。
【0064】
この実施形態例においても、前記図12に示すような流水センサや流量センサ19によらずに、給湯熱交湯温センサ31の給湯熱交湯温の検出情報と風呂温度センサ21による循環流の温度情報に基づき追い焚き循環流路23内の通水流量が検出できるので、前記図1に示す第1〜第4の各実施形態例と同様な効果を奏するものである。
【0065】
次に給湯熱交湯温センサ31の給湯熱交湯温の検出情報と循環流温度の検出情報に基づき追い焚き循環流路23内の通水流量を検出する本発明の第6の実施形態例を説明する。この第6の実施形態例は給湯熱交湯温の経時変化データの下側ピーク温度PLと循環流の温度TFに基づいて追い焚き循環流路23内の通水流量を検出するように構成したものであり、それ以外の構成は前記第5の実施形態例と同様である。給湯熱交湯温の経時変化データの下側ピーク温度PLは追い焚き循環流路23内の通水流量が小の場合の方が大の場合に比べ、給湯熱交換器2側から追い焚き熱交換器3側に吸熱される熱量が小さいので、下側ピーク温度PLは高くなる。また、下側ピーク温度PLは、循環流の温度TFが高い方が低い場合に比べ高くなる。このことから、データメモリ35に与えられる関係データは図7の(a)に示す形態のデータとなり、この図7の(a)の流量検出用データとして、前記下側ピーク温度PLの値が与えられる。
【0066】
循環流量検出部34は、前記経時温度データ採取記憶部38で採取記憶された給湯熱交湯温の経時変化データの下側ピーク温度と風呂温度センサ21で検出される循環流の温度TFをデータメモリ35に格納されている関係データと照合し、下側ピーク温度PLと循環流の検出温度TFに対応する循環流量を検出する。そして、その検出した循環流量が予め与えられている作動流量未満のときには、追い焚き循環流路23内に流水がないものと判断して水無し検知信号を出力し、水無し報知手段36による水無し報知と空焚き防止安全手段37によるバーナ5の燃焼の停止ロック動作を行わせるものである。
【0067】
この第6の実施形態例も前記第1〜第5の各実施形態例と同様の効果を奏するものである。
【0068】
次に給湯熱交湯温の検出情報と循環流温度の検出情報に基づき追い焚き循環流路23内の通水流量を検出する本発明の第7の実施形態例を説明する。この第7の実施形態例は給湯熱交湯温の経時変化データにおける熱交検出湯温の上昇傾きと循環流の温度により追い焚き循環流路23内の通水流量を検出するように構成したものである。
【0069】
給湯熱交湯温の上昇傾きは、図3と図6を比較すれば明らかな如く、追い焚き循環流路23内の通水量が小の場合の方が大の場合よりも上昇傾きは大となる。また、循環流の温度TFが高い方が低い場合よりも給湯熱交湯温の上昇傾きは大きくなる。このことから、データメモリ35には図7の(a)に示す形態の関係データが格納される。この図7の(a)に示す流量検出用データとして、前記給湯熱交湯温の上昇傾きの値が与えられる。
【0070】
この第7の実施形態例では循環流量検出部34に演算部42が設けられ、演算部42は経時温度データ採取記憶部38で採取記憶された給湯熱交湯温の経時データから給湯熱交湯温の上昇の傾きを演算により求める。
【0071】
循環流量検出部34は演算された給湯熱交湯温の上昇の傾きと風呂温度センサ21で検出された循環流の温度TFをデータメモリ35に格納されている関係データと照合し、給湯熱交湯温の上昇傾きと循環流の検出温度TFに対応する追い焚き循環流路23を通る循環流量を検出する。そして、その検出した循環流量が予め与えられている作動流量未満のときには、追い焚き循環流路23内に流水がない状態と判断して水無し検知信号を出力し、水無し報知手段36による水無しの報知と空焚き防止安全手段37によるバーナ5の強制的な燃焼の停止ロックの動作を行わせるものである。この第7の実施形態例も前記第1〜第6の各実施形態例と同様な効果を奏するものである。
【0072】
次に給湯熱交湯温の検出情報と循環流温度の検出情報に基づき追い焚き循環流路23内の通水流量検出を行う第8の実施形態例を説明する。この第8の実施形態例は給湯熱交湯温の下降傾きと循環流温度により追い焚き循環流路23内の通水流量を検出するように構成したものである。給湯熱交湯温のバーナ燃焼の停止期間における下降傾きは図3と図6の温度変化パターンから明らかなように、追い焚き循環流路23内の通水流量が小の場合の方が大の場合に比べ緩やかとなる。
【0073】
また、給湯熱交湯温のバーナ燃焼の停止期間における下降傾きは循環流の温度が高い方が低い場合に比べ緩やか(小)となる。このことから、データメモリ35に格納される関係データは図7の()に示す形態となる。この図7の()に示す流量検出用データとして、給湯熱交湯温のバーナ燃焼の停止期間における下降傾きの値が与えられる。
【0074】
循環流量検出部34は演算部42で演算された前記給湯熱交湯温の下降傾きの値と風呂温度センサ21で検出される循環流の温度TFをデータメモリ35に与えられている関係データと照合し、前記給湯熱交湯温の下降傾きの値と循環流の検出温度に対応した追い焚き循環流路23内の通水流量(循環流量)を検出する。そして、この検出した通水流量が予め与えられている作動流量未満のときには、追い焚き循環流路23内に流水がないものと判断して水無し検知信号を出力し、水無し報知手段36により水無し報知を行わせ、空焚き防止安全手段37により燃焼の停止ロック動作を行わせるものである。
【0075】
この第8の実施形態例も前記第1〜第7の各実施形態例と同様な効果を奏するものである。
【0076】
次に給湯熱交湯温の経時変化データと循環流の温度データに基づき追い焚き循環流路23内の通水流量の検出を行う第9の実施形態例を説明する。この第9の実施形態例のブロック構成は前記図2に示すものと同様であり、演算部42は経時温度データ採取記憶部38により採取記憶されたデータから図4に示す如く、給湯熱交湯温の経時変化データ中の上側ピーク温度Puとその前側の第1の下側ピーク温度PL1と後側の第2の下側ピーク温度PL2のデータを取り込んで、これらのデータを横軸を時間軸とし、縦軸を温度軸としたグラフ上に表し、下側ピーク温度PL1とPL2を結ぶ線に上側ピーク温度Puから垂線を降ろした交点Qを求める。そして、両隣の下側ピーク温度PL1,PL2を結ぶ下側ピーク間結線の長さ(a+b)と、第1の下側ピーク温度PL1と交点Qまでの線分の長さaと、交点Qと第2の下側ピーク温度PL2を結ぶ線分の長さbと、前記上側ピーク温度Puと交点Q間の垂線の長さcとのうちのいずれか2つのデータの比を演算により求める。
【0077】
データメモリ35には前記演算部42で求められる比に対応した値と循環流量との関係データが循環流の温度TFに応じて(循環流の温度TFをパラメータとして)与えられている。
【0078】
循環流量検出部34は前記演算部42で求められる比の値と風呂温度センサ21で検出される循環流の温度TFをデータメモリ35に格納されている関係データと照合し、前記演算部42で求められる比の値と循環流の温度TFの値に対応した追い焚き循環流路23内の循環流量を検出する。そして、その検出流量が予め与えられている作動流量未満のときには、追い焚き循環流路23内に流水がないものと判断して水無し検知信号を出力し、水無し報知手段36による水無しの報知と空焚き防止安全手段37によるバーナ5の燃焼停止のロック動作を行わせる。
【0079】
次に図4に示す前記a,b,c、(a+b)のうちの2つのデータの組み合わせによる比に基づく関係データの形態例をより具体的に説明する。
【0080】
まず、演算部42によりb/aの演算が行われる構成としたときには、データメモリ35にはこのb/aに対応する判定比率値のデータと循環流量との関係データが循環流の温度TFに応じて(循環流の温度をパラメータとして)与えられる。この判定比率値b/aの値は、循環流量が小の方が大の場合よりも大きくなる。また、このb/aの比の値は循環流の温度が高い方が低い場合よりも大きくなる。このことから、関係データは図7の(a)に示す形態となり、この図7の(a)の流量検出用データとして、b/aの値が与えられる。
【0081】
また、演算部42によりb/cの値を演算して追い焚き循環流路23内の通水流量を検出する構成とする場合には、データメモリ35にはこのb/cの演算値に対応する判定比率値の値と循環流量との関係データが循環流の温度TFに応じて(循環流の温度TFをパラメータとして)データメモリ35に格納される。前記判定比率値b/cの値は、循環流量が小さい場合の方が大きい場合よりも大きくなり、また、循環流の温度が高い方が低い場合よりも大となることから、図7の(a)に示す形態のデータとして与えられる。この図7の(a)の流量検出用データとして、判定比率値b/cの値が与えられる。
【0082】
同様に、演算部42によりb/(a+c)の値を演算して追い焚き循環流路23内の通水流量を検出する構成とする場合には、データメモリ35にはb/(a+c)に対応する判定比率値と循環流量との関係データが循環流の温度TFに応じて、つまり、循環流の温度TFをパラメータとして与えられる。比率判定値b/(a+c)の値は、循環流量が小の場合が大の場合よりも大きく、また、循環流の温度は、高い方が低い場合よりも大きくなる。このことから、データメモリ35に与えられる関係データは図7の(a)に示す形態となり、この図7の(a)に示される流量検出用データとして比率判定値b/(a+c)の値が与えられる。
【0083】
同様に、演算部42によりa/b,c/b,(a+c)/b等の各演算値に基づき追い焚き循環流路23の循環流量の検出を行う構成とする場合には、それぞれa/b,c/b,(a+c)/bに対応する判定比率値と循環流量との関係データが循環流の温度に応じたデータとしてデータメモリ35に与えられる。
【0084】
このように、第9の実施形態例においては、図4に示すa,b,c,(a+b)の任意の2つのデータの組み合わせの比が演算部42により演算され、その演算値と風呂温度センサ21で検出される循環流の温度TFが関係データと照合され、この演算値と循環流の温度TFに対応する循環流量が求められる。そして、この求められた循環流量が予め与えられている作動流量未満のときには、追い焚き循環流路23に流水がないものと判断し、水無し検知信号が出力されて水無し報知手段36による水無し報知と空焚き防止安全手段37によるバーナ5の燃焼停止ロックが行われるものであり、この第9の実施形態例も前記第1〜第8の各実施形態例と同様の効果を奏するものである。
【0085】
次に給湯熱交湯温センサ31により検出される給湯熱交湯温と風呂温度センサ21により検出される循環流温度の情報に基づき追い焚き循環流路23内の通水流量検出を行う本発明の第10の実施形態例を説明する。この第10の実施形態例の制御構成は図2に示すものと同様であり、この第10の実施形態例では、演算部42により、経時温度データ採取記憶部38に採取記憶された給湯熱交湯温の経時データに基づき、図5に示すように横軸を時間軸とし、縦軸を温度軸したグラフ上に給湯熱交湯温の上側のピーク温度と下側のピーク温度の経時的に連続する4個のピーク温度位置Pu1,PL1,Pu2,PL2と、下側のピーク温度位置PL1からその両隣の上側のピーク温度Pu1,Pu2を結ぶ線に降ろした垂線の交点位置Q1と、上側のピーク温度位置Pu2からその両隣の下側のピーク温度PL1,PL2を結ぶ線に降ろした垂線の交点位置Q2のうち、予め定められる3点以上を結んで得られる図形の面積を求める。
【0086】
一方、データメモリ35にはその演算対象となる図形に対応した面積値と循環流量との関係データが循環流の温度TFに応じて、つまり、循環流の温度TFをパラメータとして与えられている。循環流量検出部34は、演算部42で演算された図形面積値と風呂温度センサ21で検出される循環流の温度TFのデータをデータメモリ35に格納されている関係データと照合し、その図形面積値と循環流温度に対応する追い焚き循環流路23内の循環流量を検出する。そして、検出した循環流量が予め与えられている作動流量未満のときには水無し検知信号を出力し、水無し報知手段36による水無し報知と、空焚き防止安全手段37によるバーナ5の燃焼停止のロック動作を行わせる。
【0087】
前記演算部42による図形面積の演算は、例えば、図5のPu1,PL1,Q1を結ぶ三角形の面積、PL1,Pu2,Q1を結ぶ三角形の面積、PL1,Pu2,Q2を結ぶ三角形の面積、Q2,Pu2,PL2を結ぶ三角形の面積、Pu1,Pu2,PL1を結ぶ三角形の面積、Pu2,PL1,PL2を結ぶ三角形の面積、Q1,PL1,Q2,Pu2を結ぶ四角形の面積、Pu1,PL1,PL2,Pu2を結ぶ四角形の面積等、予め定められた点を結んで図形の面積が求められる。また、データメモリ35には、これら求められる面積の図形に応じて、図7の(a),(a′),(b),(b′)に示す形態の関係データが格納されるものであり、この図7の流量検出用データとして、図形面積値の値が与えられる。
【0088】
そして、演算部42で演算される図形面積値と風呂温度センサ21で検出される循環流の温度のデータがデータメモリ35に与えられている関係データに照合されて、追い焚き循環流量が検出されるものであり、この第10の実施形態例においても、前記第1〜第9の各実施形態例と同様の効果を奏するものである。
【0089】
ところで、一缶二水路式給湯装置においては、給湯燃焼状態を示す給湯燃焼ランプと追い焚き燃焼状態を示す追い焚き燃焼ランプが設けられており、図12に示す如く追い焚き循環流路23に流水センサあるいは流量センサ19を備えた器具にあっては、給湯運転に際しては、流量検出センサ13で作動流量以上の流量を検出したときに、バーナ5の点火を行い、フレームロッド(図示せず)でバーナ5の炎が検出されたことを確認して給湯燃焼ランプをオンさせている。また、追い焚き単独運転に際しては、追い焚き指令が出されて流水センサあるいは流量センサ19で流水が確認された後、バーナ5を点火してバーナ5の燃焼を開始し、フレームロッドでそのバーナ5の炎が確認されたときに追い焚き燃焼状態を報知する追い焚き燃焼ランプをオンさせている。
【0090】
本発明では、流水センサや流量センサ19を省略して追い焚き循環流量を検出することができることから、本実施形態例では、追い焚き単独運転時に、追い焚き燃焼ランプをオンするまでの追い焚き開始動作のシーケンス制御構成を従来例とは異なる構成としている。
【0091】
図9はこの追い焚き単独運転時における本実施形態例の追い焚き開始動作制御の構成を示すもので、追い焚き指令が出されてから他機能燃焼ランプとしての追い焚き燃焼ランプをオン駆動するまでの制御は追い焚き開始動作制御部39により行われている。
【0092】
すなわち、追い焚き開始動作制御部39は、追い焚き指令が出されたときには、循環ポンプ17を直ちに起動し、点火器によりバーナ5の点火を行う。そして、前記各実施形態例における循環流量検出部34で追い焚き循環流路23内の循環流量が作動流量以上となったことを確認して、追い焚き燃焼ランプをオン駆動させるようにしている。
【0093】
このように、本実施形態例では、循環流量検出部34により、図12で示すような流量センサ19を設けることなく、循環流量を検出できることから、循環流量検出部34の循環流量の検出結果を利用して追い焚き燃焼ランプを的確に動作させることが可能となる。
【0094】
なお、本発明は上記各実施形態例に限定されることはなく、様々な実施の形態例を採り得る。例えば、上記実施形態例では、他機能運転を追い焚き運転とし、非給湯側熱交換器を追い焚き熱交換器3とし、流体の循環流路を追い焚き循環流路23としたが、他機能運転を追い焚き以外の運転とし、前記非給湯側熱交換器は追い焚き以外の熱交換器としてもよく、また、流体の循環流路を追い焚き循環流路以外の循環流路としてもよいものである。
【0095】
例えば、図8に示すように、非給湯側熱交換器を暖房用熱交換器44とし、流体の循環流路を暖房循環流路45としてもよいものである。この暖房と給湯の機能を有する一缶二水路式給湯装置では、エチレングリコールやプロピレングリコールに水を加えた流体が循環ポンプ17によって暖房循環流路45を循環し、その循環流体は暖房用熱交換器44で加熱され、その加熱流体は放熱器46を通るときに暖房ファン47の風を受けて放熱し、放熱器46を通った暖かい風が室内に導入されて室内暖房が行われるものである。
【0096】
なお、図8中48はバイパス流路、49はシスターンタンク、50は暖房オン・オフバルブをそれぞれ示している。また、40は非給湯側流体温度検出センサとして機能する循環流温度センサである。
【0097】
前述の如く、暖房運転を行うに際し、その暖房循環流量が分かるので、例えば、図13に示すように、複数台の放熱器46(46a,46b,46c)を選択的に運転稼動するような場合に、その運転台数を循環流量の検出値に基づき把握することが可能となる。すなわち、0台運転時には、放熱器(コンベクター)46のバルブ50は共に閉のため、循環流はバイパス通路48しか流れないのに対し、3台運転中は各放熱器46a,46b,46c側の流路とバイパス通路48の全流路に循環流が流れるため、ポンプ17と暖房熱交換器44を通る流量が一番多くなる。
【0098】
また、燃焼熱量とサーミスタ(温度センサ)51の温度情報から放熱器46の運転能力が分かる。例えば、放熱器46が1台しか運転されておらず、その能力がファン最大で運転しているとか、放熱器46が3台とも運転されているが3台ともファン能力が小でしか運転されていないかが分かる。
【0099】
風呂でも暖房でも循環配管長さは施工の工事後にならないと分からないが、本発明にて循環流量を検出した結果、エロージョン・コロージョンの発生する例えば2m/s以下の流速(熱交換器の配管径は予め分かっているので流量が分かれば流速が分かる)がある場合にはポンプ能力を落とす等の制御を行える。
【0100】
さらに、風呂循環金具のごみ詰まり具合も循環流量の変化で分かり、利用者に知らせることができる。
【0101】
また、図12に示すシステム構成では、湯張り通路24を設けたが、この湯張り通路24は省略してもよく、また、図12の破線で示すように給水管11と給湯管14間にバイパス通路43を設けたものでもよく、給湯熱交換器2と非給湯側の熱交換器とが一体化された一缶二水路式の構成を備えた器具であればよく、その給湯側と非給湯側のシステム構成は上記実施形態例以外の様々なシステム形態を採り得るものである。
【0102】
なお、上記実施形態例では、追い焚き単独運転中(給湯以外の他機能単独運転中)の動作中で循環流路内の流量を検出するようにしたが、給湯と他機能の同時運転時においても、循環流路に流量センサ19を設けることなく循環流路内の流量を検出する手段を他の特許出願で提案しており、循環流路内の流量検出が流量センサ19を設けることなく、他機能単独運転(例えば追い焚き単独運転)以外の動作においても支障なく行われるものである。
【0103】
【発明の効果】
本発明によれば、流水センサや流量センサ等の液体(流体)の流れや流量を検出するセンサを循環流路に設けることなくバーナのオン・オフ燃焼制御によるバーナのオン・オフの動作状態の時間情報により、あるいは給湯熱交湯温センサによって検出される給湯熱交湯温(熱交検出湯温)の情報によって循環流路内の流体(流体の流れ)の流量が検出できるので、例えば、髪の毛等のゴミが循環流体に混入して循環流路に流れたとしても、それらのゴミによって故障するという問題を起こすことなく循環流路内の流体の流れの有無や流量を確実、且つ、正確に検出することが可能となる。
【0104】
また、前記の如く、流体(液体)の循環流路に流水センサや流量センサ等の循環流体の流れを検出するセンサを省略できるので、その分、装置コストの低減化を図ることが可能である。
【0105】
さらに、前記の如く循環流路を流れるゴミ等に影響を受けずに循環流路内の流体の流量を検出して流体の流量が作動流量未満であることが検出されたときには、その液無し検知信号により、液無し状態を液無し報知手段により報知するように構成しているので、使用者に液無しの状態を確実に知らせて使用者に適切な措置を促すことができるという効果が得られる。
【0106】
さらに、液無し(流体の流量が作動流量未満の状態)が検出された液無し検知信号が出力されたときに空焚き防止安全手段により他機能単独運転(例えば追い焚き単独運転)の停止を行う構成としたことによって、循環流路に流体がない状態で空焚きが行われるという危険を確実に防止することができるので、その空焚きに対する危険の防止を確実に図ることが可能となる。特に、本発明では、前記の如く、循環流路に流れるゴミ等に影響を受けることなく循環流路内の流量を検出して空焚き防止が行われるので、その空焚き防止の安全動作の信頼性を格段に高めることが可能となるものである。
【0107】
さらに、従来例の如く、例えば風呂の追い焚き循環流路に流水センサや流量センサを設けて追い焚き循環流路内の水の流れの有無や流量を検出する構成の場合には、追い焚き循環流路に髪の毛等のゴミが流れてこれが流水センサや流量センサに絡みつく等してこれらのセンサが故障した場合には、流水が生じているにも拘わらず流水検出信号が出力されないことにより、器具が空焚き状態と判断して燃焼を停止させてしまったり、あるいは、追い焚き循環流路に水(流水)がないにも拘わらず前記流水センサや流量センサの故障により流水検出信号が出力されて空焚きが行われるという問題が発生するおそれがあるが、本発明では、前記の如く、追い焚き循環流路を流れる髪の毛等のゴミの影響を受けてセンサが故障を起こすということがないので、これら追い焚き循環流路に流水センサや流量センサを設けるという不具合を一気に解消できるという優れた効果を奏するものである。
【0108】
さらに、本発明においては、他機能開始動作制御部を設け、循環流量検出部で検出される循環流量が作動流量以上となったことを確認して他機能燃焼ランプ(例えば追い焚き燃焼ランプ)をオン駆動するように構成しているので、循環流路に流体の流れや流量を検出するセンサを設けることなく、他機能燃焼動作を報知する他機能燃焼ランプを的確にオン駆動させることができるという効果が得られるものである。
【図面の簡単な説明】
【図1】バーナの間欠燃焼動作状態の時間の情報に基づき追い焚き循環流路内の流量を検出する本実施形態例のブロック構成図である。
【図2】追い焚き単独運転中における給湯熱交湯温の情報に基づき追い焚き循環流路内の流量を検出する本実施形態例の構成を示すブロック図である。
【図3】バーナの間欠燃焼動作状態と給湯熱交湯温の関係を示す説明図である。
【図4】上側ピーク温度Puから両隣の下側ピーク温度PL1,PL2を結ぶ線に垂線を降ろして得られる線の長さa,b,c,(a+b)の任意の2つの組み合わせの比を利用して追い焚き循環流路内の流量を検出する実施形態例の説明図である。
【図5】給湯熱交湯温の上側ピーク温度Pu1,Pu2と下側ピーク温度PL1,PL2とPL1,Pu2の垂線の交点Q1,Q2の各点のうちの予め定められた3点以上を結んで得られる図形の面積に基づき追い焚き循環流路内の流量を検出する実施形態例の説明図である。
【図6】追い焚き循環流路内の流量が小の状態のときのバーナの間欠燃焼運転による給湯熱交湯温の経時変化パターンを示す説明図である。
【図7】本実施形態例における流量検出用データと循環流量との関係データの形態例を示す図である。
【図8】本発明が適用される給湯機能と暖房機能を備えた一缶二水路式給湯装置のシステム構成例を示す図である。
【図9】本実施形態例における追い焚き開始動作の制御構成を示すブロック図である。
【図10】給湯熱交湯温センサを用いてバーナの間欠燃焼動作を行う制御構成のブロック図である。
【図11】予め与えられるオフ温度とオン温度に基づき追い焚き単独運転中のバーナのオン・オフ間欠燃焼動作例を示す説明図である。
【図12】出願人が先に試作したバーナ間欠燃焼タイプの一缶二水路式給湯装置のシステム図である。
【図13】放熱器の複数台稼動タイプの暖房機能を備えた一缶二水路式給湯装置のシステム構成例の説明図である。
【符号の説明】
2 給湯熱交換器
3 追い焚き熱交換器
23 追い焚き循環流路
31 給湯熱交湯温センサ
32 バーナオン・オフ燃焼制御部
33 時間計測手段
34 循環流量検出部
36 水無し報知手段
37 空焚き防止安全手段
38 経時温度データ採取記憶部
39 追い焚き開始動作制御
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a canned and two-water channel type hot water supply apparatus having a hot water supply function and functions other than hot water supply.
[0002]
[Prior art]
FIG. 12 shows a system configuration of a single can / two water channel hot water supply apparatus developed by the applicant. In the figure, a hot water supply heat exchanger 2 having a hot water supply function and a reheating heat exchanger 3 that performs a reheating function other than hot water supply are integrated in the appliance case 1. That is, a hot water supply side water pipe is inserted through a plurality of common fin plates 4 to form a hot water supply heat exchanger 2, and a reheating side water pipe is similarly inserted through the fin plate 4 to reheat the heat exchanger 3. It is made.
[0003]
A burner 5 that heats the hot water supply heat exchanger 2 and the reheating heat exchanger 3 in common is disposed below the integrated heat exchanger, and a combustion fan that supplies and discharges the combustion of the burner 5. 6 is arranged below the burner. A gas passage 9 is connected to the burner 5. In this gas passage 9, electromagnetic valves 7 and 8 for opening and closing the passage and a proportional valve 10 for controlling the amount of gas supply (burner combustion heat amount) by the valve opening amount. Is installed. The valve opening amount control of the proportional valve 10 is specifically performed by variable control of the current (valve opening drive current) applied to the proportional valve 10.
[0004]
A water supply pipe 11 is connected to the inlet side of the hot water supply heat exchanger 2, and a water supply temperature detection sensor 12 for detecting an incoming water temperature (water supply temperature) of the hot water supply heat exchanger 2 and a water supply ( A flow rate detection sensor 13 for detecting a (hot water supply) flow rate (in the case of hot water filling) is provided. The inlet side of the water supply pipe 11 is connected to a water pipe.
[0005]
A hot water supply pipe 14 is connected to the outlet side of the hot water heat exchanger 2, and the hot water supply pipe 14 is led to a desired hot water supply place such as a kitchen via an external pipe. A hot water supply temperature sensor 15 for detecting a hot water supply temperature is provided in the flow path on the outlet side of the hot water supply heat exchanger 2. These passages from the water supply pipe 11 to the hot water supply pipe 14 via the hot water supply heat exchanger 2 constitute a hot water supply circuit.
[0006]
One end side of the pipe line 16 is connected to the inlet side of the reheating heat exchanger 3, and the other end side of the pipe line 16 is connected to the discharge side of the circulation pump 17. The suction side of the circulation pump 17 and the bathtub 18 are connected by a return pipe 20, and the return pipe 20 has a bath temperature sensor 21 that detects the temperature of the circulating hot water in the bathtub 18 as a bath temperature and running water that detects flowing water. A sensor (flow water switch) and a flow rate sensor 19 are provided. One side of the forward pipe 22 is connected to the outlet side of the reheating heat exchanger 3, and the other end side of the forward pipe 22 is connected to the bathtub 18, and the return pipe 20, the circulation pump 17, and the pipe line are connected from the bathtub 18. 16, the passage reaching the bathtub 18 via the reheating heat exchanger 3 and the outgoing pipe 22 constitutes a recirculation circulation passage 23 that functions as a circulation passage for the fluid.
[0007]
The hot water supply pipe 14 of the hot water supply heat exchanger 2 and the recirculation circuit 23 (the pipe 16 in FIG. 12) are connected to each other by a hot water filling passage 24, and the hot water filling passage 24 is electromagnetically connected to open and close the passage. A pouring valve 25 composed of a valve or the like is interposed, and a water level sensor (pressure sensor) 26 for detecting the water level of the bathtub 18 by water pressure is provided in the hot water filling passage 24 downstream of the pouring valve 25. Yes.
[0008]
Sensor detection signals such as the flow rate detection sensor 13, the temperature sensors 12, 15, 21 and the water level sensor 26 are applied to a control device 27, and a remote control 28 is connected to the control device 27. The remote controller 28 has hot water supply temperature setting means for setting hot water supply temperature, bath temperature setting means for setting bath temperature, various operation buttons for instructing automatic operation, reheating operation, hot water operation, and necessary information. A display unit or the like for displaying is provided.
[0009]
The control device 27 takes in various sensor detection signals and information from the remote controller 28, and controls the hot water supply operation, the hot water filling operation, and the reheating operation as follows in accordance with a sequence program provided therein.
[0010]
For example, when the faucet 30 of the hot water supply passage led to the kitchen or the like is opened and the operation flow rate is detected by the flow rate detection sensor 13, the combustion fan 6 is rotated and the solenoid valves 7 and 8 are opened. The fuel gas is supplied to the burner 5 and the burner 5 is combusted by ignition of an igniter (not shown), and the hot water temperature detected by the hot water temperature sensor 15 is set by the remote controller 28. The valve opening drive current to the proportional valve 10 is controlled so as to match the temperature, the water passing through the hot water supply heat exchanger 2 is heated by the flame of the burner 5 to produce hot water of a set temperature, and this hot water is supplied to the hot water supply pipe 14. Hot water is supplied to the hot water supply location. When the faucet 30 is closed and an off signal is output from the flow rate detection sensor 13, the burner combustion is stopped and the operation of the hot water supply operation mode is ended.
[0011]
Further, when an automatic operation mode or a hot water filling operation mode is instructed by the remote controller 28, the pouring valve 25 is opened. When the operating flow rate is detected by the flow rate detection sensor 13, combustion of the burner 5 starts in the same manner as in the hot water supply operation, and hot water produced by the hot water supply heat exchanger 2 passes through the hot water supply pipe 14 and the hot water filling passage 24. The hot water is dropped into the bathtub 18 from both sides of the passage passing through the pipe 16 and passing through the heat exchanger 3 and passing through the forward pipe 22 and the passage passing through the return pipe 20. When the amount of hot water up to the set water level is dropped, or when the set water level is detected by the water level sensor 26, the hot water solenoid valve 25 is closed and the combustion of the burner 5 is stopped, and the hot water filling operation mode is set. The operation ends.
[0012]
In the operation in the reheating operation mode, the circulation pump 17 is driven to rotate while the pouring valve 25 is closed, and the hot water in the bathtub 18 is circulated through the reheating circuit 23. The bath temperature of the bathtub is detected. When the bath detection temperature is lower than the bath set temperature, combustion is performed by spot ignition of the burner 5 in response to the running water ON signal from the running water sensor or the flow rate sensor 19 (this combustion state is the flame rod sensor flame detection sensor). The reheating combustion lamp for informing the reheating state when it is detected by the ON signal is turned on), and the hot water in the bathtub circulating through the recirculation circulation passage 23 is reheated by the reheating heat exchanger 3. When the bath temperature sensor 21 detects that the bath water temperature has reached the bath set temperature, the circulation pump 17 and the burner 5 are stopped, and the operation in the reheating operation mode is completed (burner). The combustion stop of 5 is detected by the off signal of the frame rod, and the reheating combustion lamp is turned off).
[0013]
As described above, the canned and two-channel bath water heater is a system in which the hot water supply heat exchanger 2 and the reheating heat exchanger 3 are heated using a common burner 5, so that the hot water supply heat provided separately is provided. Compared with the method in which the exchanger and the reheating heat exchanger are each heated by combustion using separate burners, the configuration of the apparatus can be simplified, and accordingly, the apparatus (equipment) can be reduced in size and cost can be reduced. .
[0014]
By the way, in this type of canned and two-water channel hot water supply apparatus, the hot water supply heat exchanger 2 and the reheating heat exchanger 3 are integrated, so that the reheating independent operation is performed and the burner 5 burns. When the reheating is performed, the hot water in the hot water supply heat exchanger 2 staying is heated and heated to boiling or a high temperature just before boiling. When the faucet 30 is opened and hot water supply is started, the high temperature There is a problem that the hot water of the water is in danger. The present applicant has proposed a drive system for intermittent combustion of the burner 5 in order to solve such a problem. This intermittent drive system of the burner 5 is provided with a hot water hot water hot water temperature sensor 31 for detecting the hot water temperature in the hot water heat exchanger 2 in the water pipe of the hot water heat exchanger 2, and as shown in FIG. The detection information of the temperature sensor 31 is added to the burner on / off combustion control unit 32, and the burner on / off combustion control unit 32 controls intermittent combustion of the burner 5.
[0015]
That is, the burner-on / off combustion control unit 32 confirms that the operation is in the reheating single operation mode (refreshing single-on operation), and is detected by the hot water supply / hot water temperature sensor 31 as shown in FIG. When the hot water supply hot water temperature exceeds the pre-off temperature given in advance, the solenoid valve 7 (8) is closed to stop the combustion of the burner 5 (combustion off). When the ON temperature given in advance is exceeded to the lower side, the intermittent combustion of the burner 5 is controlled such that the solenoid valve 7 (8) is opened and combustion of the burner 5 is started (combustion on). This prevents the hot water temperature on the hot water supply heat exchanger 2 side from being heated to a high temperature, thereby ensuring safety at the start of hot water supply.
[0016]
[Problems to be solved by the invention]
Generally, dust such as hair is likely to be mixed in the bathtub 18, and when the chasing operation is performed, these hairs and the like are entangled with the detection unit of the flow sensor or the flow sensor 19, and the flow sensor or the flow sensor 19 fails. The problem arises. If the running water sensor or the flow sensor 19 breaks down, for example, when a reheating operation is performed, the circulating pump 17 is driven and hot water in the bathtub 18 is recirculating through the recirculation circulation passage 23, but the running water or Since the flow rate is not detected, it is determined that the burner 5 is in an idle state, and a failure state occurs in which the burner 5 is not burned.
[0017]
The present inventor considered that the characteristics of the single-can two-channel heat exchanger, that is, during the operation of the reheating single operation, the heat on the hot water supply heat exchanger 2 side is absorbed by the recirculating hot water on the reheating side, and reheats. Focusing on the fact that the hot water / hot water temperature changes according to the magnitude of the flow rate, the detection information of the hot water / hot water temperature of the hot water / hot water temperature sensor 31 used for the intermittent combustion operation of the burner 5 is used to detect the failure. It is an object of the present invention to provide a single can / two water channel type hot water supply device capable of detecting a recirculation flow rate without using a water flow sensor or a flow rate sensor 19 that is likely to be generated.
[0018]
[Means for Solving the Problems]
In order to solve the above technical problem, the following measures are taken. That is, according to the first aspect of the present invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot-water supply side flow that detects internal fluid temperature as non-hot-water supply side fluid temperature The relationship between the temperature detection sensor and the time from when the burner combustion is stopped during the other function single operation to the start of the next burner combustion and the circulation flow rate flowing through the circulation flow path is given according to the non-hot water supply side fluid temperature. Data memory, time measuring means, and the time from the time when combustion of the burner is stopped until the next burner combustion start, which is measured by the time measuring means during the independent operation of other functions, and the non-hot water supply side fluid temperature detection sensor. A means for solving the problem is provided with a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path based on the relational data given to the data memory by the non-hot water supply side fluid temperature.
[0019]
In the second aspect of the invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water side fluid temperature that detects the internal fluid temperature as non-hot water side fluid temperature Data in which relational data between the detection sensor and the time from the start of burner combustion during the other function independent operation until the next burner combustion stop and the circulation flow rate flowing through the circulation flow path are given according to the non-hot water supply side fluid temperature The memory, the time measuring means, the time from the start of combustion of the burner measured by the time measuring means to the next burner combustion stop, and the non-hot water supply side fluid temperature detected by the non-hot water supply side fluid temperature detection sensor A means for solving the problems is provided with a configuration in which a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path based on relational data given to the data memory is provided.
[0020]
Furthermore, in the third aspect of the invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in the fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature The non-hot water supply side fluid temperature is the relationship data between the degree of detection sensor and the time from the start of burner combustion during other function single operation to the time when the burner starts to burn again after the next combustion stop and the circulation flow rate flowing through the circulation flow path. Data memory provided according to the time, time measuring means, time from the start of combustion of the burner measured by the time measuring means until the start of combustion again after the next combustion stop, and the non-hot water supply side There is a problem with a configuration in which a circulation flow rate detection unit that obtains the circulation flow rate of the fluid flowing through the circulation flow path based on the relational data given to the data memory based on the non-hot water supply side fluid temperature detected by the fluid temperature detection sensor is provided. As a means to solve the problem.
[0021]
Furthermore, the fourth aspect of the present invention integrates a hot water supply heat exchanger for heating hot water with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in the fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature The non-hot water supply side fluid temperature is the relationship data between the degree of detection sensor and the time from when the burner combustion is stopped during the other function single operation to the time when the burner stops again after the next combustion operation and the circulation flow rate through the circulation flow path. A data memory provided according to the time, a time measuring means, a time from the burner combustion stop time measured by the time measuring means until the burner stops combustion again through the next combustion operation, and the non-hot water supply side fluid There is a problem with a configuration in which a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path based on the relational data given to the data memory based on the non-hot water supply side fluid temperature detected by the temperature detection sensor is provided. As a means to solve.
[0022]
Further, according to a fifth aspect of the present invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature A data memory in which relational data between the upper peak temperature of the hot water temperature in the hot water supply heat exchanger during other function independent operation and the circulation flow rate flowing through the circulation flow path is given according to the non-hot water supply side fluid temperature And the relationship data given to the data memory by the upper peak temperature of the hot water temperature detected by the hot water hot water temperature sensor and the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor And a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path as means for solving the problem.
[0023]
Further, according to a sixth aspect of the present invention, a hot water supply heat exchanger for heating the hot water supply and a non-hot water supply side heat exchanger for operating other functions than the hot water supply interposed in the fluid circulation passage are integrated. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature Data in which relation data between the lower peak temperature of the hot water temperature in the hot water supply heat exchanger during other function independent operation and the circulating flow rate flowing through the circulation flow path is given according to the non-hot water supply side fluid temperature The data is provided to the data memory by a memory, a lower peak temperature of the hot water temperature detected by the hot water hot water temperature sensor, and a non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor. A means for solving the problem is provided with a configuration in which a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path based on the relational data is provided.
[0024]
Further, according to a seventh aspect of the present invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature A data memory in which relational data between the rising inclination of the hot water temperature in the hot water supply heat exchanger during other function independent operation and the circulation flow rate flowing through the circulation flow path is given in accordance with the non-hot water supply side fluid temperature; Based on the relational data given to the data memory by the rising slope of the hot water temperature detected by the hot water hot water temperature sensor and the non-hot water temperature detected by the non-hot water temperature sensor. A configuration in which a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation channel is provided as means for solving the problem.
[0025]
Further, according to an eighth aspect of the present invention, a hot water supply heat exchanger for heating hot water is integrated with a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature And a data memory in which relational data between the downward inclination of the hot water temperature in the hot water heat exchanger during other function independent operation and the circulation flow rate flowing through the circulation flow path is given in accordance with the non-hot water supply side fluid temperature; Based on the relationship data given to the data memory by the downward inclination of the hot water temperature detected by the hot water hot water temperature sensor and the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor A configuration in which a circulation flow rate detection unit for obtaining a circulation flow rate of the fluid flowing through the circulation channel is provided as means for solving the problem.
[0026]
Furthermore, the ninth aspect of the present invention integrates a hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water that is interposed in the fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot water supply side fluid that detects internal fluid temperature as non-hot water supply side fluid temperature Degree detection sensor and lower peak temperature on both sides that fluctuate in time on the basis of time-series data showing the upper peak temperature and lower peak temperature of hot water in the hot water heat exchanger during independent operation of other functions on the time axis From the data of the length (a + b) of the lower peak connection to be connected and the data of the length c of the perpendicular dropped from the upper peak temperature to the lower peak connection and the position of the intersection of the perpendicular to the lower peak temperature of the front side The data of the relationship between the ratio of any two of the data of the line length a and the data of the line length b from the position of the intersection of the perpendicular to the rear lower peak temperature and the circulating flow rate is the non-hot water side fluid. Data memory given according to temperature, time measuring means, time-dependent temperature at which at least the upper peak temperature and the lower peak temperature of the heat exchanger detection hot water temperature during the other function independent operation are taken in and stored as time-dependent data Data collection storage unit, data of the length (a + b) of the lower peak connection line connecting the lower peak temperatures on both sides when the captured and stored temporal data are represented on the time axis and temperature axis graphs, Data on the length c of the perpendicular line from the upper peak temperature to the connection between the lower peaks and the data on the line length a from the intersection point of the perpendicular line to the lower peak temperature on the front side and the position of the intersection point of the perpendicular line The ratio of any two of the data of the line length b up to the lower peak temperature is obtained, and the value of the obtained ratio and the information on the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor Thus, the circuit is provided with a circulation flow rate detecting unit for obtaining the circulation flow rate of the fluid flowing through the circulation flow path based on the relational data given to the data memory.
[0027]
Furthermore, the tenth aspect of the present invention is an integration of a hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water that is interposed in a fluid circulation passage. The hot water supply heat exchanger and the non-hot water supply side heat exchanger are combusted and heated by a common burner, and a hot water hot water / hot water temperature sensor for detecting the hot water temperature in the hot water heat exchanger is provided. When the heat exchange detected hot water temperature detected by the hot water supply hot water temperature sensor exceeds the pre-applied off temperature during the function independent operation, combustion of the burner is stopped and the heat exchange detected hot water temperature is given in advance. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the on-temperature is exceeded downward, and is a circulation channel on the inlet side of the non-hot-water side heat exchanger Non-hot-water supply side flow that detects internal fluid temperature as non-hot-water supply side fluid temperature The time of the upper peak temperature and the lower peak temperature based on the time detection data on the time axis showing the upper peak temperature and lower peak temperature of the hot water temperature in the hot water heat exchanger during other functions independent operation The four consecutive peak temperature positions and the lower peak temperature position to the line connecting the upper peak temperatures on both sides to the intersection of perpendicular lines and the upper peak temperature position to the lower peak temperatures on both sides A data memory in which relational data between the area of the figure obtained by connecting three or more intersecting positions of perpendicular lines drawn down to the line and the circulation flow rate flowing through the circulation flow path is given according to the non-hot water supply side fluid temperature; A time measurement means, a time-dependent temperature data collection storage unit for capturing and storing at least the upper peak temperature and the lower peak temperature of the heat exchanger detection hot water temperature during the other function independent operation as time-dependent data, and the capture When the stored time-dependent data is represented on the time-axis and temperature-axis graphs, the upper peak temperature and the lower peak temperature are continuously measured over time from the four peak temperature positions and the lower peak temperature position. A figure obtained by connecting three or more points of the intersection point of the perpendicular line down to the line connecting the upper peak temperatures on both sides and the intersection point of the perpendicular line drawn from the upper peak temperature position to the line connecting the lower peak temperatures on both sides Of the fluid flowing through the circulation flow path based on the relational data given to the data memory based on the obtained area of the figure and information on the non-hot water side fluid temperature detection sensor detected by the non-hot water side fluid temperature detection sensor. A configuration in which a circulation flow rate detection unit for obtaining a circulation flow path is provided as means for solving the problem.
[0028]
Furthermore, an eleventh aspect of the invention includes the configuration of any one of the first to tenth aspects of the invention, wherein the circulating flow rate obtained by the circulating flow rate detection unit is less than a pre-given working flow rate. A means for solving the problem is provided with a liquid absence notification means for notifying the absence of liquid in the circulation path.
[0029]
Furthermore, in a twelfth aspect of the invention having the configuration of any one of the first to eleventh aspects of the invention, when the circulating flow rate obtained by the circulating flow rate detection unit is less than a pre-given working flow rate. A structure that is provided with a safety measure that prevents the other function from being operated independently is provided as means for solving the problem.
[0030]
Furthermore, a thirteenth aspect of the invention includes the configuration of any one of the first to twelfth aspects of the invention, and is provided with a different function combustion lamp for notifying the combustion state of the other function operation, so When it is started, the circulation pump provided in the circulation flow path is started to drive the combustion of the burner, and it is confirmed that the circulation flow rate obtained by the circulation flow rate detection unit is equal to or higher than the pre-given operating flow rate. The other function starting operation control unit for turning on the other function combustion lamp is provided as means for solving the problem.
[0031]
Furthermore, in the fourteenth aspect of the invention having the configuration of any one of the first to thirteenth aspects of the invention, the operation of the other function is a reheating operation, and the circulation channel is connected to the bathtub. The non-hot water supply side heat exchanger is configured as a reheating heat exchanger that recirculates the hot water in the circulating bath, and serves as a means for solving the problem.
[0032]
In the present invention, during the operation of the independent function other than the hot water supply, the hot water temperature in the hot water heat exchanger is detected by the hot water hot water temperature sensor, and the burner is turned on / off based on the hot water temperature. The intermittent hot combustion is performed and the temperature of the accumulated hot water in the hot water supply heat exchanger is prevented from reaching a high temperature.
[0033]
On the other hand, the burner on / off intermittent combustion burner off to on, on to off, on to on, off to off, etc. Detection information on the hot-water supply hot water temperature detected by the temperature sensor is added to the circulating flow rate detection unit. Further, the temperature detection value of the circulating fluid flowing through the circulation flow path detected by the non-hot water supply side fluid temperature detection sensor is added to the circulation flow rate detection unit as data of the non-hot water supply side fluid temperature.
[0034]
The circulation flow rate detection unit detects the circulation flow rate flowing through the circulation flow path with reference to the added information and the relational data corresponding to the information given to the data memory.
[0035]
When this detected circulation flow rate is less than the pre-applied operation flow rate, it is notified that there is no liquid (fluid) in the circulation flow path, or burner combustion is stopped to prevent emptying (stop of independent operation of other functions) ) Is performed to ensure safe operation of the appliance.
[0036]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention are described below with reference to the drawings. FIG. 1 shows a block configuration of a main part of an embodiment in which a flow rate flowing in a circulation flow path is detected based on time measurement information of an on / off intermittent combustion operation state of the burner 5. The system of the single can two-channel hot water supply apparatus of the present embodiment is the same as that shown in FIG. 12 except that the water flow sensor and the flow sensor 19 shown in FIG. The duplicate description is omitted using reference numerals.
[0037]
The characteristic control configuration of the first embodiment shown in FIG. 1 is provided in the control device 27, and is a burner on / off combustion control unit 32, a time measuring means 33, a circulating flow rate detecting unit 34, a data memory. 35, a water absence notification means 36 functioning as a liquid absence notification means, and an airing prevention safety means 37. The burner-on / off combustion control unit 32 takes in hot water hot water temperature detection data from the hot water hot water temperature sensor 31 in the same manner as described with reference to FIG. 10, and sets the hot water hot water temperature to a preset off temperature. The burner 5 is turned on and off intermittently such that the combustion of the burner 5 is stopped when it exceeds the upper side, and the combustion of the burner 5 is restarted when the hot water supply hot water temperature exceeds the predetermined ON temperature. The temperature of the accumulated hot water in the hot water supply heat exchanger 2 is prevented from becoming high during the single operation after being burned and chased.
[0038]
The circulating flow rate detection unit 34 takes in the on / off intermittent combustion control signal of the burner 5 by the burner on / off combustion control unit 32 to detect whether the burner 5 is in the combustion state or the combustion stop state, and measures the time. In the data memory 35, the time measurement information of the means 33, the information of the recirculation flow temperature (bath temperature) as the non-hot water side fluid temperature detected by the bath temperature sensor 21 functioning as the non-hot water side fluid temperature sensor, and Based on the stored relational data for detecting the circulating flow rate, the circulating flow rate flowing through the recirculation circuit 23 is detected.
[0039]
More specifically, in the data memory 35, relational data between the time from the combustion stop (combustion off) of the burner 5 to the start of the next combustion (combustion on) and the circulation flow rate depends on the temperature of the recirculation circulation flow. In other words, the temperature of the recirculating circulation is given as a parameter. According to the examination by the present inventor, the change of the hot water supply hot water temperature when the burner 5 is intermittently turned on / off is shown in FIG. 3 when the circulation flow rate in the recirculation circulation passage 23 is large. It has been verified that when the circulating flow rate in the recirculation circulation channel 23 is small, a change pattern of the hot water supply hot water temperature as shown in FIG. 6 is shown.
[0040]
That is, when the circulation flow rate in the recirculation circulation passage 23 is small, the amount of heat absorbed from the hot water supply heat exchanger 2 side to the flowing water side passing through the reheating heat exchanger 3 is small in the combustion section of the burner 5. Therefore, the temperature rise speed of the hot water on the hot water supply heat exchanger 2 side is increased, and the hot water hot water temperature rises rapidly as time passes. Similarly, in the combustion stop section of the burner 5, the amount of heat absorbed by the flowing water in the recirculation circulation passage 23 is small, so the hot water temperature in the hot water supply heat exchanger 2 decreases in a state close to natural air cooling. Compared to the case where the temperature drop speed is low and the circulation flow rate in the recirculation circulation passage 23 is large, the hot water supply hot water temperature gradually decreases. That is, as apparent from a comparison of the temperature change patterns in FIGS. 3 and 6, the time t from when the burner is turned off until the next burner is turned on. 1 Is much larger when the circulation flow rate in the recirculation circulation channel 23 is large or small. Also, the time t from when this burner is turned off until the next burner is turned on 1 Depends on the temperature of the recirculating circulation flow, and when the temperature of the recirculation flow is high, the amount of heat absorbed from the hot water supply heat exchanger 2 side to the recirculation circulation flow side is small. growing. Paying attention to these points, in the present embodiment, the magnitude of the circulating flow rate in the recirculation flow path 23 and the time t in advance by experiments or the like. 1 Is obtained according to the temperature of the circulating flow (by varying the temperature), and the data is stored in the data memory 35 as related data. Specifically, the relation data is given to the data memory 35 in the form shown in FIG. In the relational data shown in FIG. 7 (a), the horizontal axis indicates the circulating flow rate, and the vertical axis flow rate detection data indicates the time t from when the burner is turned off to the next time the burner is turned on at the time of independent operation. 1 This circulation flow rate and time t 1 The relational data of is the temperature T of the circulating flow F1 , T F2 , T F3 , ... (T F1 <T F2 <T F3 <...) is given as a parameter.
[0041]
The time measuring means 33 is constituted by means having a time measuring function such as a timer or a clock mechanism, and measures time according to a command from the circulating flow rate detection unit 34.
[0042]
The circulation flow rate detector 34 detects the burn-off time and the combustion start time of the burner 5 based on the intermittent combustion control signal of the burner 5 by the burner-on / off combustion control unit 32, and the burn-off time of the burner 5. A time measurement command from the time when the combustion is detected to the next combustion start is added to the time measurement means 33, and detection information of the time from the burner combustion stop to the next burner combustion start is obtained from the time measurement means 33.
[0043]
And the detection temperature T of the circulating flow from the bath temperature sensor 21 F Information, and the measurement time t 1 And detection temperature T F And the relation data stored in advance in the data memory 35, and the detection time t 1 And detection temperature T F The circulation flow rate in the recirculation circulation channel 23 corresponding to is obtained. When the obtained circulation flow rate is less than a predetermined working flow rate (for example, 3 liters / minute), a water absence detection signal (liquid absence detection signal) is added to the water absence notification means 36 and the airing prevention safety means 37. .
[0044]
When there is no water detection signal output from the circulating flow rate detection unit 34, the water absence notification unit 36 functioning as a liquid absence notification unit is repelled by the display unit of the remote controller 28 or other appropriate means, for example. The absence of water is notified in an appropriate notification form such as a buzzer sound, a message display on the liquid crystal screen, a message display by a synthesized sound, a lighting by a lamp, a lamp display by blinking, and the like.
[0045]
The air-burning prevention safety means 37 closes the electromagnetic valve 7 (8) to forcibly stop and lock the combustion of the burner 5 when the circulating flow detection unit 34 outputs a waterless detection signal, and reheats heat exchange. Preventing the risk of emptying the vessel 3. Note that the burner combustion stop lock means an operating state in which the burner 5 does not receive a combustion start command unless a reset signal is applied. For example, the power of the control device 27 is turned off and then turned on again. By doing so, it is reset.
[0046]
In this embodiment, the presence or flow rate of water in the recirculation circulation passage 23 and the flow rate are determined based on the time measurement data from the burner combustion stop to the start of combustion in the on / off intermittent combustion control of the burner 5 during the reheating independent operation. Therefore, it is possible to omit the running water sensor and the flow rate sensor 19 shown in FIG. 12 for detecting running water and the flow rate, and accordingly, the apparatus cost can be reduced.
[0047]
Further, in the present embodiment example, the presence / absence of the flowing water in the flow path 23 and the flow rate can be determined without providing a sensor for detecting the flowing water or the flow rate in the recirculation circulation channel 23. Since there is no problem that the sensor to be detected is entangled with hair or the like, the detection of the flow of water in the recirculation circulation channel 23 and the detection of the flow rate are detected reliably and with high reliability. Therefore, it is possible to reliably prevent danger due to emptying of the reheating heat exchanger 3.
[0048]
In the method of determining the presence or flow rate of flowing water in the recirculation circulation passage 23 using the flow sensor or flow sensor 19, the flow sensor or flow sensor 19 is likely to break down. Despite the occurrence of circulating hot water flowing in the passage 23, the detection signal is not obtained, combustion is stopped and reheating cannot be performed, or water (running water) is in the recirculating circulation channel 23. Although it is not possible to detect this, it is possible to surely prevent the problem of danger of being in a flying state. It is possible to achieve an excellent effect of ensuring the above. Furthermore, in this embodiment, the recirculation flow rate is detected by the recirculation flow rate detection unit 34, so that the recirculation flow rate can be controlled using the data of the recirculation flow rate detected during the renewal operation. For example, the drive input of the circulation pump 17 is controlled so that the circulation flow rate is constant, or the detected temperature of the hot water supply hot water temperature sensor 31 becomes high and approaches the off temperature during the reheating independent operation. In some cases, it is possible to develop various control modes for the circulation flow rate, such as controlling the circulation flow rate to increase in order to increase the amount of heat absorbed from the hot water supply heat exchanger 2 side to the recirculation hot water.
[0049]
Next, a description will be given of a second embodiment in which the water flow rate of the recirculation circulation passage 23 is detected based on the time measurement information of the operation state of the intermittent combustion control of the burner 5. The control configuration of the second embodiment is the same as the block configuration shown in FIG. 1, and the difference between the second embodiment and the first embodiment is that the burner during the reheating single operation is different. Time t from the start of combustion of the burner 5 to the next stop of combustion due to intermittent on / off combustion of 5 2 It is configured to detect the water flow rate of the recirculation circulation channel 23 based on the above information, and the other configuration is the same as that of the first embodiment.
[0050]
In the second embodiment, the data memory 35 stores the time t from the start of combustion of the burner 5 to the stop of combustion. 2 The relationship data for detecting the water flow rate of the recirculation flow path 23 according to the temperature of the circulation flow is stored. Then, the circulating flow rate detection unit 34 performs the time t from the start of combustion of the burner 5 to the next stop of combustion during the reheating independent operation. 2 Is measured by the time measuring means 33, and the measurement time t 2 And the temperature T of the circulating flow detected by the bath temperature sensor 21 F Is compared with the relational data stored in the data memory 35, and the time t 2 And temperature T F The circulating flow rate corresponding to is detected.
[0051]
As is apparent from the temperature change patterns of FIGS. 3 and 6, t shown in FIG. 6 when the water flow rate in the recirculation circulation passage 23 is small. 2 Is t shown in FIG. 3 when the water flow rate is large. 2 And the circulating flow temperature T F As time increases, time t 2 The value of becomes smaller. For this reason, the data memory 35 stores the relationship data in the form shown in FIG. The flow rate detection data of the data in FIG. 7B is the time t. 2 Given by the value of T F1 , T F2 , T F3 , ... is the temperature of the circulating flow (T F1 <T F2 <T F3 <...) The operations of the water absence notification means 36 and the airing prevention safety means 37 when the water absence detection signal is applied are the same as in the case of the first embodiment, and the description thereof is omitted.
[0052]
This second embodiment also has the same effect as the first embodiment.
[0053]
Next, a description will be given of a third embodiment in which the water flow rate in the recirculation circulation passage 23 is detected based on the time measurement information of the on / off intermittent combustion operation state of the burner 5. In the third embodiment, the time t from the start of combustion of the burner 5 during the reheating independent operation until the start of combustion again through the combustion stop period is shown. Three Information and circulating flow temperature T F Is configured to detect the water flow rate in the recirculation circulation channel 23, and other configurations are the same as those of the first and second embodiments.
[0054]
In this third embodiment, the time t from the start of combustion of the burner 5 to the start of the combustion again through the next combustion stop period during the single operation after being relegated to the data memory 35. Three And the flow rate of water flow are given according to the temperature of the circulating flow (with the temperature of the circulating flow as a parameter). Time t from the start of combustion of this burner 5 to the start of the next combustion Three As apparent from a comparison between FIG. 3 and FIG. 6, t shown in FIG. 3 where the water flow rate in the recirculation circulation passage 23 is large. Three 6 shows a state in which the water flow rate of the recirculation circulation passage 23 is smaller than that in FIG. Three The value of increases. Also, the circulating flow temperature T F Since the heat absorption amount from the hot water supply heat exchanger 2 side to the recirculation flow side is smaller when the temperature is higher than when the temperature is low, the time t Three Therefore, the data memory 35 stores the relational data in the form shown in FIG. In the data shown in FIG. 7A, the time t is used as flow rate detection data. Three The value of will be given.
[0055]
In this third embodiment, the circulating flow rate detection unit 34 uses the time measuring means 33 until the combustion of the burner is started through the next combustion stop period from the start of combustion of the burner 5 during the follow-up single operation. , And the detection time t Three And the temperature T of the circulating flow detected by the bath temperature sensor 21 F Is compared with related data stored in the data memory 35, and the detection time t Three And circulating flow temperature T F Detects the circulation flow rate according to. When the detected circulating flow is less than the pre-applied operating flow rate, it is determined that there is no water (running water) in the recirculation circulation passage 23, and a water absence detection signal is output. Forcibly stopping and locking the combustion by the waterless notification and the airing prevention safety means 37. This third embodiment also has the same effects as the first and second embodiments.
[0056]
Next, a description will be given of a fourth embodiment in which the flow rate in the recirculation circulation passage 23 is detected based on the time measurement information of the on / off combustion operation state of the burner 5. In the fourth embodiment, the time t from when the burner 5 stops combustion during the refueling single operation until the next combustion is stopped through the next combustion period. Four And circulating flow temperature T F Based on this information, the water flow rate in the recirculation circulation channel 23 is detected, and other configurations are the same as those in the first, second, and third embodiments. .
[0057]
In the fourth embodiment, the data memory 35 stores in the time t from when the burner combustion is stopped during the reheating single combustion operation until the combustion is stopped again through the next combustion period. Four Is the relationship between the circulation flow rate and the circulation flow temperature T F Depending on the temperature of the circulating flow T F As a parameter). This t Four As is apparent from a comparison of the operation states of FIGS. 3 and 6, the time of t shown in FIG. 3 when the water flow rate in the recirculation circulation passage 23 is large is shown. Four T shown in FIG. 6 when the water flow rate in the recirculation circulation channel 23 is smaller than the value of Four The value of is clearly larger. Also, the circulating flow temperature T F Since the amount of heat absorbed from the hot water supply heat exchanger 2 side to the circulating flow side is smaller when the temperature is higher than when the temperature is low, the time t Four The value of increases. From this, time t Four The relationship data between the flow rate and the circulation flow rate is given in the form shown in FIG. 7A. As the flow rate detection data in FIG. Four The value of is given.
[0058]
The circulation flow rate detection unit 34 is the time t from when the burner 5 stops combustion during the refueling single operation until the combustion is stopped again through the next combustion period. Four Is detected using the time measuring means 33, and the detection time t Four And the temperature T of the circulating flow detected by the bath temperature sensor 21 F Is compared with the relational data given to the data memory 35, and the detection time t Four And circulating flow temperature T F The circulation flow rate corresponding to is obtained. When the detected (obtained) circulating flow rate is less than the pre-given operating flow rate, it is determined that there is no water (running water) in the recirculation circulation channel 23, and no water detection signal Is output, and the water stop notification by the water stop notification means 36 and the combustion stop lock operation by the airing prevention safety means 37 are performed.
[0059]
The fourth embodiment also has the same effects as the first to third embodiments.
[0060]
Next, a fifth embodiment of the present invention for detecting the flow rate of water in the recirculation circulation passage 23 based on the hot water supply hot water temperature detection information of the hot water supply hot water temperature sensor 31 and the temperature information of the circulation flow will be described. explain. This embodiment has a block configuration shown in FIG. 2, and is a burner-on / off combustion control unit 32, a circulation flow rate detection unit 34, a data memory 35, a time-dependent temperature data collection / storage unit 38, and a no-liquid notification means. The no-water-informing means 36 and the air-burning prevention safety means 37 functioning as Since it is the same as that shown in FIG. 1, its description is omitted.
[0061]
The time-dependent temperature data collection storage unit 38 captures detection information of the hot water / hot water temperature detected by the hot water / hot water temperature sensor 31 every predetermined sampling time such as 0.1 second or 1 second, and stores the data. To do. In the data memory 35, the water flow rate in the recirculation circulation channel 23 is set to the peak temperature P above the hot water supply hot water temperature. u And circulating flow temperature T F The relationship data for detection by is stored. According to the examination by the inventor's experiment, the upper peak temperature P shown in FIG. u When the water flow rate in the recirculation circulation channel 23 is small, there is little endotherm (heat to be taken away) from the hot water supply heat exchanger 2 side by the circulation flow, so the upper peak temperature is in the recirculation circulation channel 23. Compared to the case where the water flow rate is large. Also, the circulating flow temperature T F Since the heat absorption amount from the hot water supply heat exchanger 2 side to the circulating flow side is smaller when the temperature is higher than when the temperature is low, the upper peak temperature P of the hot water supply hot water temperature is lower. u Becomes higher. Therefore, the data memory 35 stores the relational data in the form shown in FIG. It should be noted that the flow rate detection data shown in FIG. u Is given by the value of.
[0062]
The circulating flow rate detection unit 34 collects and stores the peak temperature P of the hot water supply hot water temperature collected and stored in the temporal temperature data collection storage unit 38. u And the temperature T of the circulating flow detected by the bath temperature sensor 21 F And the related data stored in the data memory 35 are collated, and the peak temperature P u And circulating flow temperature T F The circulation flow rate corresponding to is obtained. When the calculated circulation flow rate is less than the pre-given operating flow rate, it is determined that there is no running water in the recirculation circulation channel 23, and the no water detection signal is sent to the no water notification means 36 and the emptying prevention. Add to safety means 37.
[0063]
In the same manner as in the configuration shown in FIG. 1, the water absence notification means 36 receives the water absence detection signal and notifies that there is no water (running water) in the recirculation circulation channel 23. Further, as in the configuration shown in FIG. 1, the airing prevention safety means 37 receives the water absence detection signal and closes the solenoid valve 7 (8) to forcibly stop the combustion of the burner 5.
[0064]
Also in this embodiment, the detection information of the hot water / hot water temperature sensor 31 of the hot water / hot water temperature sensor 31 and the circulation flow by the bath temperature sensor 21 are not used, instead of the flowing water sensor and the flow rate sensor 19 as shown in FIG. Since the water flow rate in the recirculation circulation channel 23 can be detected based on the temperature information, the same effects as those of the first to fourth embodiments shown in FIG. 1 can be obtained.
[0065]
Next, the sixth embodiment of the present invention detects the water flow rate in the recirculation circulation passage 23 based on the detection information of the hot water supply hot water temperature detection information and the detection information of the circulating flow temperature of the hot water supply hot water temperature sensor 31. Will be explained. In the sixth embodiment, the lower peak temperature P of the temporal change data of the hot water supply hot water temperature is shown. L And circulating flow temperature T F Is configured to detect the water flow rate in the recirculation circulation channel 23, and the other configuration is the same as that of the fifth embodiment. Lower peak temperature P of hot water hot water temperature change data over time L Since the amount of heat absorbed from the hot water supply heat exchanger 2 side to the reheating heat exchanger 3 side is small compared to the case where the water flow rate in the recirculation circulation channel 23 is smaller, the lower side Peak temperature P L Becomes higher. Also, the lower peak temperature P L Is the temperature T of the circulating flow F The higher is higher than the lower. From this, the relational data given to the data memory 35 is data in the form shown in FIG. 7A, and the lower peak temperature P is used as the flow rate detection data in FIG. L The value of is given.
[0066]
The circulating flow rate detection unit 34 has a lower peak temperature of the temporal change data of the hot water supply hot water temperature collected and stored in the temporal temperature data collection storage unit 38 and a circulating flow temperature T detected by the bath temperature sensor 21. F Is compared with related data stored in the data memory 35, and the lower peak temperature P L And circulating flow detection temperature T F The circulating flow rate corresponding to is detected. When the detected circulation flow rate is less than the pre-applied operation flow rate, it is determined that there is no running water in the recirculation circulation channel 23, and a no-water detection signal is output. The stop-locking operation of the burner 5 is performed by the absence notification and the airing prevention safety means 37.
[0067]
The sixth embodiment also has the same effects as the first to fifth embodiments.
[0068]
Next, a description will be given of a seventh embodiment of the present invention in which the flow rate of water in the recirculation circulation passage 23 is detected based on the detection information of the hot water supply / hot water temperature and the detection information of the circulating flow temperature. The seventh embodiment is configured to detect the flow rate of water in the recirculation circulation passage 23 based on the rising slope of the heat exchange detection hot water temperature and the temperature of the circulating flow in the time-dependent data of the hot water supply hot water temperature. Is.
[0069]
As is apparent from a comparison of FIG. 3 and FIG. 6, the rising slope of the hot water supply hot water temperature is larger when the amount of water passing through the recirculation circulation passage 23 is smaller than when it is larger. Become. Also, the circulating flow temperature T F The higher slope of the hot water supply hot water hot water temperature becomes larger than the lower one. Therefore, the data memory 35 stores the relational data in the form shown in FIG. As the flow rate detection data shown in FIG. 7A, a value of the rising slope of the hot water supply hot water temperature is given.
[0070]
In the seventh embodiment, the circulation flow rate detection unit 34 is provided with a calculation unit 42, which calculates the hot water hot water hot water from the temporal data of the hot water hot water temperature collected and stored in the temporal temperature data collection storage unit 38. The slope of the temperature rise is calculated.
[0071]
The circulation flow rate detection unit 34 calculates the gradient of the rise in the calculated hot water supply hot water temperature and the temperature T of the circulation flow detected by the bath temperature sensor 21. F Are compared with the relational data stored in the data memory 35, and the rising gradient of the hot water supply hot water temperature and the detected temperature T of the circulating flow are detected. F The circulation flow rate passing through the recirculation circulation channel 23 corresponding to is detected. When the detected circulation flow rate is less than the pre-applied operating flow rate, it is determined that there is no running water in the recirculation circulation channel 23, and a no-water detection signal is output. The notification of the absence and the operation of forcibly stopping the combustion of the burner 5 by the airing prevention safety means 37 are performed. The seventh embodiment also has the same effects as the first to sixth embodiments.
[0072]
Next, a description will be given of an eighth embodiment in which the flow rate of water in the recirculation circulation passage 23 is detected based on the detection information of the hot water supply / hot water temperature and the detection information of the circulating flow temperature. In the eighth embodiment, the flow rate of water in the recirculation circulation passage 23 is detected by the downward slope of the hot water supply hot water temperature and the circulating flow temperature. As is apparent from the temperature change patterns of FIGS. 3 and 6, the downward slope of the hot water supply hot water temperature during the burner combustion stop period is larger when the water flow rate in the recirculation circulation passage 23 is small. It becomes moderate compared to the case.
[0073]
Moreover, the downward inclination of the hot water supply hot water temperature during the burner combustion stop period is gentler (smaller) when the temperature of the circulating flow is lower than when the temperature is lower. Therefore, the relational data stored in the data memory 35 is shown in FIG. b ). This ( b As the flow rate detection data shown in (2), the value of the downward slope of the hot water supply hot water temperature during the burner combustion stop period is given.
[0074]
The circulation flow rate detection unit 34 is a value of the descending slope of the hot water supply hot water temperature calculated by the calculation unit 42 and the temperature T of the circulation flow detected by the bath temperature sensor 21. F Is compared with the relational data given to the data memory 35, and the water flow rate (circulation flow rate) in the recirculation circulation passage 23 corresponding to the value of the downward slope of the hot water supply hot water temperature and the detected temperature of the circulation flow. Is detected. When the detected water flow rate is less than the pre-given operating flow rate, it is determined that there is no running water in the recirculation circulation passage 23, and a no-water detection signal is output. The absence of water notification is performed, and the combustion stop lock operation is performed by the airing prevention safety means 37.
[0075]
The eighth embodiment also has the same effects as the first to seventh embodiments.
[0076]
Next, a description will be given of a ninth embodiment in which the flow rate of water in the recirculation circulation passage 23 is detected based on the temporal change data of the hot water supply hot water temperature and the temperature data of the circulation flow. The block configuration of the ninth embodiment is the same as that shown in FIG. 2, and the calculation unit 42 uses the data collected and stored by the time-dependent temperature data collection storage unit 38 as shown in FIG. Upper peak temperature P in temperature change data u And the first lower peak temperature P in front of it L1 And second lower peak temperature P on the rear side L2 These data are represented on a graph with the horizontal axis as the time axis and the vertical axis as the temperature axis, and the lower peak temperature P L1 And P L2 The upper peak temperature P on the line connecting u Find the intersection point Q where the vertical line is dropped. And the lower peak temperature P on both sides L1 , P L2 The length (a + b) of the lower peak-to-peak connection connecting the first lower peak temperature P L1 And the length a of the line segment to the intersection Q, the intersection Q and the second lower peak temperature P L2 The length b of the line connecting the two and the upper peak temperature P u And the ratio of any two data of the length c of the perpendicular between the intersection points Q is obtained by calculation.
[0077]
In the data memory 35, relational data between the value corresponding to the ratio obtained by the calculation unit 42 and the circulating flow rate is stored in the circulating flow temperature T F Depending on the temperature of the circulating flow T F As a parameter).
[0078]
The circulating flow rate detection unit 34 determines the ratio value obtained by the calculation unit 42 and the circulating flow temperature T detected by the bath temperature sensor 21. F Are compared with the relational data stored in the data memory 35, and the ratio value obtained by the calculation unit 42 and the circulating flow temperature T F The circulation flow rate in the recirculation circulation channel 23 corresponding to the value of is detected. When the detected flow rate is less than the pre-applied operating flow rate, it is determined that there is no running water in the recirculation circulation channel 23, and a no-water detection signal is output. A lock operation for stopping the combustion of the burner 5 by the notification and airing prevention safety means 37 is performed.
[0079]
Next, an example of the form of relational data based on the ratio of the two data combinations of a, b, c and (a + b) shown in FIG. 4 will be described more specifically.
[0080]
First, when the calculation unit 42 is configured to calculate b / a, the data memory 35 stores the relationship data between the determination ratio value corresponding to b / a and the circulation flow rate, and the temperature T of the circulation flow. F Depending on (the temperature of the circulating flow as a parameter). This determination ratio value b / a is larger than when the circulating flow rate is small. Further, the value of the ratio b / a is larger when the temperature of the circulating flow is higher than when the temperature is low. Accordingly, the relational data is in the form shown in FIG. 7A, and the value b / a is given as the flow rate detection data in FIG. 7A.
[0081]
Further, when the calculation unit 42 calculates the b / c value and detects the water flow rate in the recirculation circulation passage 23, the data memory 35 corresponds to the calculated value of b / c. The relationship data between the judgment ratio value and the circulation flow rate is the temperature T of the circulation flow F Depending on the temperature of the circulating flow T F Is stored in the data memory 35). The determination ratio value b / c is larger when the circulating flow rate is small than when the circulating flow rate is large, and is larger than when the circulating flow temperature is high. It is given as data in the form shown in a). As the flow rate detection data in FIG. 7A, the determination ratio value b / c is given.
[0082]
Similarly, when the calculation unit 42 calculates the value of b / (a + c) and detects the water flow rate in the recirculation circulation passage 23, the data memory 35 stores b / (a + c). The relationship data between the corresponding judgment ratio value and the circulation flow rate is the temperature T of the circulation flow. F Depending on the temperature of the circulating flow T F Is given as a parameter. The value of the ratio determination value b / (a + c) is larger when the circulating flow rate is small than when it is large, and the temperature of the circulating flow is higher when it is lower than when it is lower. Therefore, the relational data given to the data memory 35 has the form shown in FIG. 7A, and the ratio determination value b / (a + c) is the flow rate detection data shown in FIG. Given.
[0083]
Similarly, when the calculation unit 42 is configured to detect the circulating flow rate of the recirculation circulation channel 23 based on each calculation value such as a / b, c / b, (a + c) / b, etc., each a / Relation data between the determination ratio value corresponding to b, c / b, (a + c) / b and the circulating flow rate is given to the data memory 35 as data corresponding to the temperature of the circulating flow.
[0084]
Thus, in the ninth embodiment, the ratio of any two data combinations a, b, c, (a + b) shown in FIG. 4 is calculated by the calculation unit 42, and the calculated value and the bath temperature are calculated. The temperature T of the circulating flow detected by the sensor 21 F Is collated with related data, and the calculated value and the temperature T of the circulating flow F The circulation flow rate corresponding to is required. When the obtained circulation flow rate is less than the pre-given operating flow rate, it is determined that there is no running water in the recirculation circulation passage 23, and a water absence detection signal is output and the water absence notification means 36 supplies water. The combustion stop lock of the burner 5 is performed by the absence notification and the airing prevention safety means 37, and the ninth embodiment also has the same effect as the first to eighth embodiments. is there.
[0085]
Next, the present invention detects the water flow rate in the recirculation circulation channel 23 based on the information of the hot water hot water temperature detected by the hot water hot water temperature sensor 31 and the circulating flow temperature detected by the bath temperature sensor 21. A tenth embodiment will be described. The control configuration of the tenth embodiment is the same as that shown in FIG. 2. In the tenth embodiment, the hot water heat exchange collected and stored in the time-dependent temperature data collection storage unit 38 by the calculation unit 42 is used. As shown in FIG. 5, the horizontal axis is the time axis and the vertical axis is the temperature axis, and the upper peak temperature and the lower peak temperature of the hot water supply hot water temperature are shown on the graph. 4 consecutive peak temperature positions P u1 , P L1 , P u2 , P L2 And the lower peak temperature position P L1 To the upper peak temperature P on both sides u1 , P u2 Intersection position Q of the perpendicular line dropped to the line connecting 1 And the upper peak temperature position P u2 To the lower peak temperature P on both sides L1 , P L2 Intersection position Q of the perpendicular line dropped to the line connecting 2 Of these, the area of a figure obtained by connecting three or more predetermined points is obtained.
[0086]
On the other hand, in the data memory 35, the relationship data between the area value corresponding to the figure to be calculated and the circulating flow rate is stored in the circulating flow temperature T. F Depending on the temperature of the circulating flow T F Is given as a parameter. The circulation flow rate detector 34 is a graphic area value calculated by the calculator 42 and a circulating flow temperature T detected by the bath temperature sensor 21. F Is compared with the relational data stored in the data memory 35, and the circulation flow rate in the recirculation circulation passage 23 corresponding to the graphic area value and the circulation flow temperature is detected. When the detected circulating flow rate is less than the pre-applied operating flow rate, a no-water detection signal is output, and the no-water notification unit 36 notifies the absence of water and the burner 5 safety stop 37 locks the combustion stop of the burner 5. Let the action take place.
[0087]
The calculation of the figure area by the calculation unit 42 is, for example, P in FIG. u1 , P L1 , Q 1 The area of the triangle connecting L1 , P u2 , Q 1 The area of the triangle connecting L1 , P u2 , Q 2 Area of triangle connecting 2 , P u2 , P L2 The area of the triangle connecting u1 , P u2 , P L1 The area of the triangle connecting u2 , P L1 , P L2 Area of triangle connecting 1 , P L1 , Q 2 , P u2 The area of the rectangle connecting u1 , P L1 , P L2 , P u2 The area of the figure is obtained by connecting predetermined points, such as the area of a quadrangle connecting the two. Further, in the data memory 35, relational data in the form shown in FIGS. 7A, 7A, 7B, and 7B 'is stored in accordance with the figure of the required area. There is a figure area value as the flow rate detection data in FIG.
[0088]
Then, the graphic area value calculated by the calculation unit 42 and the circulating flow temperature data detected by the bath temperature sensor 21 are collated with the relational data given to the data memory 35 to detect the recirculation circulating flow rate. In the tenth embodiment, the same effects as in the first to ninth embodiments can be obtained.
[0089]
By the way, in the canned two-water channel type hot water supply apparatus, a hot water supply combustion lamp indicating a hot water supply combustion state and a reheating combustion lamp indicating a reheating combustion state are provided. As shown in FIG. In an appliance equipped with a sensor or a flow rate sensor 19, during a hot water supply operation, when the flow rate detection sensor 13 detects a flow rate equal to or higher than the operating flow rate, the burner 5 is ignited and a frame rod (not shown) is used. After confirming that the flame of the burner 5 has been detected, the hot water supply combustion lamp is turned on. Further, in the reheating independent operation, after the reheating command is issued and the flowing water is confirmed by the flowing water sensor or the flow rate sensor 19, the burner 5 is ignited to start burning of the burner 5, and the burner 5 is started by the frame rod. When the flame is confirmed, the reheating combustion lamp for notifying the reheating combustion state is turned on.
[0090]
In the present invention, since the recirculation flow rate can be detected by omitting the running water sensor and the flow rate sensor 19, in this embodiment, the reheating start until the reheating combustion lamp is turned on during the reheating independent operation is started. The sequence control configuration of the operation is different from the conventional example.
[0091]
FIG. 9 shows the configuration of the reheating start operation control of the present embodiment during this reheating independent operation, from when the reheating command is issued until the reheating combustion lamp as the other function combustion lamp is turned on. This control is performed by the chasing start operation control unit 39.
[0092]
That is, when the reheating command is issued, the reheating start operation control unit 39 immediately starts the circulation pump 17 and ignites the burner 5 by the igniter. Then, the circulating flow rate detector 34 in each of the above embodiments confirms that the circulating flow rate in the recirculation circulation passage 23 is equal to or higher than the operation flow rate, and drives the reheating combustion lamp on.
[0093]
Thus, in this embodiment, the circulating flow rate detection unit 34 can detect the circulating flow rate without providing the flow rate sensor 19 as shown in FIG. This makes it possible to operate the reheating combustion lamp accurately.
[0094]
The present invention is not limited to the above embodiments, and various embodiments can be adopted. For example, in the above-described embodiment, the other function operation is the reheating operation, the non-hot water supply side heat exchanger is the reheating heat exchanger 3, and the fluid circulation path is the reheating circulation path 23. The non-hot water supply side heat exchanger may be a heat exchanger other than reheating, and the fluid circulation channel may be a circulation channel other than the recirculation circulation channel. It is.
[0095]
For example, as shown in FIG. 8, the non-hot water supply side heat exchanger may be a heating heat exchanger 44, and the fluid circulation channel may be a heating circulation channel 45. In the single-can two-water channel hot water supply device having the heating and hot water supply functions, a fluid obtained by adding water to ethylene glycol or propylene glycol circulates in the heating circulation passage 45 by the circulation pump 17, and the circulating fluid is heat exchange for heating. The heating fluid is heated by the radiator 44, and the heated fluid receives the heat of the heating fan 47 when passing through the radiator 46 to dissipate heat, and warm air passing through the radiator 46 is introduced into the room to perform indoor heating. .
[0096]
In FIG. 8, 48 is a bypass flow path, 49 is a cistern tank, and 50 is a heating on / off valve. Reference numeral 40 denotes a circulating flow temperature sensor that functions as a non-hot water supply side fluid temperature detection sensor.
[0097]
As described above, since the heating circulation flow rate is known when performing the heating operation, for example, as shown in FIG. 13, when a plurality of radiators 46 (46a, 46b, 46c) are selectively operated. In addition, the number of operating units can be grasped based on the detected value of the circulating flow rate. That is, when the zero unit is operated, both the valves 50 of the radiator (convector) 46 are closed, so that the circulating flow only flows through the bypass passage 48. Therefore, the flow rate through the pump 17 and the heating heat exchanger 44 is the largest.
[0098]
Further, the operating capacity of the radiator 46 can be understood from the combustion heat quantity and the temperature information of the thermistor (temperature sensor) 51. For example, only one radiator 46 is operated and its capacity is operating at the maximum fan, or all three radiators 46 are operated, but all three are operated only with a small fan capacity. You can see if it is not.
[0099]
Although the length of the circulating piping is not known after the construction work, whether it is a bath or heating, the flow rate of the erosion / corrosion as a result of detecting the circulating flow rate in the present invention is, for example, 2 m / s or less (the piping diameter of the heat exchanger). Since the flow rate is known if the flow rate is known, the pump capacity can be reduced.
[0100]
In addition, the amount of clogging of the bath circulation fittings can be identified by the change in the circulation flow rate and can be notified to the user.
[0101]
In the system configuration shown in FIG. 12, the hot water filling passage 24 is provided. However, this hot water filling passage 24 may be omitted, and as shown by the broken line in FIG. A device provided with a bypass passage 43 may be used as long as it has a single-can two-water channel configuration in which the hot water supply heat exchanger 2 and the non-hot water supply side heat exchanger are integrated. The system configuration on the hot water supply side can take various system forms other than the above embodiment.
[0102]
In the above embodiment example, the flow rate in the circulation channel is detected during the operation of the reheating isolated operation (in addition to the independent operation of other functions other than the hot water supply), but during the simultaneous operation of the hot water supply and other functions. In other patent applications, a means for detecting the flow rate in the circulation channel without providing the flow rate sensor 19 in the circulation channel has been proposed. The operation is performed without any trouble even in operations other than the other-function single operation (for example, the follow-up single operation).
[0103]
【The invention's effect】
According to the present invention, the on / off operation state of the burner by the on / off combustion control of the burner without providing a sensor for detecting the flow or flow rate of the liquid (fluid) such as a flowing water sensor or a flow rate sensor in the circulation flow path. Since the flow rate of the fluid (fluid flow) in the circulation channel can be detected by the time information or by the information of the hot water hot water temperature (heat exchanger temperature detection hot water temperature) detected by the hot water hot water temperature sensor, for example, Even if dust such as hair mixes into the circulating fluid and flows into the circulation channel, the presence or flow rate of the fluid in the circulation channel and the flow rate are ensured and accurate without causing the problem of failure due to the dust. Can be detected.
[0104]
Further, as described above, a sensor for detecting the flow of the circulating fluid, such as a flowing water sensor or a flow rate sensor, can be omitted from the fluid (liquid) circulation flow path, so that the apparatus cost can be reduced accordingly. .
[0105]
Further, when the flow rate of the fluid in the circulation flow path is detected without being affected by the dust flowing through the circulation flow path as described above, and the flow rate of the fluid is detected to be less than the operating flow rate, the absence of liquid is detected. Since it is configured so that the absence of liquid is notified by the signal by the absence of liquid notification means, it is possible to reliably notify the user of the absence of liquid and to prompt the user to take appropriate measures. .
[0106]
Further, when a no-liquid detection signal is output when no liquid (the flow rate of the fluid is lower than the operating flow rate) is output, the other function single operation (for example, the reheating single operation) is stopped by the safety prevention means. By adopting the configuration, it is possible to reliably prevent the danger that air is blown in a state where there is no fluid in the circulation flow path, so it is possible to reliably prevent the danger against that air. In particular, in the present invention, as described above, airflow prevention is performed by detecting the flow rate in the circulation flow path without being affected by dust flowing in the circulation flow path. It becomes possible to raise the sex dramatically.
[0107]
Further, as in the conventional example, in the case of a configuration in which, for example, a flowing water sensor or a flow rate sensor is provided in the recirculation flow path of the bath to detect the presence or flow rate of water in the recirculation flow path, the recirculation circulation When dust such as hair flows in the flow path and entangles it with the flow sensor or flow sensor, etc., and these sensors fail, the flowing water detection signal is not output despite the occurrence of flowing water. The engine is judged to be in an empty state and combustion is stopped, or the flowing water detection signal is output due to a failure of the flowing water sensor or the flow sensor even though there is no water (running water) in the recirculation circulation channel. However, in the present invention, as described above, the sensor may fail due to the influence of dust such as hair flowing in the recirculation circulation channel. Since, in which an excellent effect of being able to stretch solve a problem of providing a water flow sensor or a flow sensor in the circulation flow path these reheating.
[0108]
Further, in the present invention, the other function start operation control unit is provided, and after confirming that the circulating flow rate detected by the circulating flow rate detecting unit is equal to or higher than the operating flow rate, the other function combustion lamp (for example, the reheating combustion lamp) is installed. Since it is configured to be turned on, the other function combustion lamp for notifying the other function combustion operation can be accurately turned on without providing a sensor for detecting the flow or flow rate of the fluid in the circulation channel. An effect is obtained.
[Brief description of the drawings]
FIG. 1 is a block diagram of an embodiment of the present invention that detects a flow rate in a recirculation circulation channel based on time information of an intermittent combustion operation state of a burner.
FIG. 2 is a block diagram showing a configuration of an embodiment of the present invention that detects a flow rate in a recirculation circulation channel based on information on hot water supply hot / cold hot water temperature during reheating independent operation.
FIG. 3 is an explanatory diagram showing a relationship between an intermittent combustion operation state of a burner and a hot water supply hot water temperature.
FIG. 4 Upper peak temperature P u To the next lower peak temperature P L1 , P L2 In the embodiment, the flow rate in the recirculation circulation channel is detected using the ratio of any two combinations of the line lengths a, b, c, and (a + b) obtained by dropping the perpendicular to the line connecting It is explanatory drawing.
[Fig. 5] Upper peak temperature P of hot water supply hot water temperature u1 , P u2 And lower peak temperature P L1 , P L2 And P L1 , P u2 Intersection point Q 1 , Q 2 It is explanatory drawing of the embodiment which detects the flow volume in a recirculation circulation flow path based on the area of the figure obtained by connecting 3 or more predetermined points of each of these points.
FIG. 6 is an explanatory view showing a temporal change pattern of hot water supply hot water temperature by intermittent burn operation of a burner when the flow rate in the recirculation circulation channel is small.
FIG. 7 is a diagram showing a form example of relationship data between flow rate detection data and circulating flow rate in the embodiment.
FIG. 8 is a diagram showing a system configuration example of a single can two-water channel type hot water supply apparatus having a hot water supply function and a heating function to which the present invention is applied.
FIG. 9 is a block diagram showing a control configuration of a chasing start operation in the embodiment.
FIG. 10 is a block diagram of a control configuration for performing an intermittent combustion operation of a burner using a hot water supply hot water temperature sensor.
FIG. 11 is an explanatory diagram showing an example of intermittent on / off combustion operation of a burner during a reheating independent operation based on an off temperature and an on temperature given in advance.
FIG. 12 is a system diagram of a burner intermittent combustion type single-can two-water-type hot-water supply device that the applicant previously prototyped;
FIG. 13 is an explanatory diagram of a system configuration example of a single can / two water channel type hot water supply apparatus having a heating function of a plurality of radiators operating type.
[Explanation of symbols]
2 Hot water heat exchanger
3 Reheating heat exchanger
23 Recirculation flow path
31 Hot water supply hot water temperature sensor
32 Burner-on / off combustion controller
33 Time measurement means
34 Circulating flow rate detector
36 Waterless notification means
37 Safety measures to prevent air blow
38 Aging temperature data collection and storage
39 Chasing start motion control

Claims (14)

給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼停止時から次のバーナ燃焼開始までの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、他機能単独運転中に前記時間計測手段によって計測されるバーナの燃焼停止時から次のバーナ燃焼開始までの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply side fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between the time from when the burner combustion is stopped during the single operation to the start of the next burner combustion and the circulation flow rate flowing through the circulation flow path is given in accordance with the non-hot water supply side fluid temperature; And the non-hot water supply side fluid temperature detected by the non-hot water supply side fluid temperature detection sensor and the time from the combustion stop of the burner measured by the time measuring means during the other function single operation to the start of the next burner combustion. A one-can two-water channel hot water supply apparatus provided with a circulation flow rate detection unit for obtaining a circulation flow rate of a fluid flowing through a circulation channel based on relational data given to a data memory. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼開始時から次のバーナ燃焼停止までの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナの燃焼開始時から次のバーナ燃焼停止までの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between the time from the start of burner combustion during the independent operation to the next burner combustion stop and the circulation flow rate flowing through the circulation flow path are given in accordance with the non-hot water supply side fluid temperature, and time measurement means And the time from the start of combustion of the burner measured by the time measuring means to the next burner combustion stop and the non-hot-water supply side fluid temperature detected by the non-hot-water supply side fluid temperature detection sensor are given to the data memory. One can two water channel type hot water supply device provided with a circulating flow rate detecting unit for obtaining a circulating flow rate of the fluid flowing through the circulating flow path based on the relational data. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼開始時から次の燃焼停止を経てバーナが再び燃焼開始するまでの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナの燃焼開始時から次の燃焼停止を経てバーナが再び燃焼開始するまでの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine The relational data between the time from the start of burner combustion during a single operation to the start of combustion again after the next combustion stop and the circulation flow rate flowing through the circulation flow path is given according to the non-hot water supply side fluid temperature. Data memory, time measuring means, and the time from the start of combustion of the burner measured by the time measuring means until the start of combustion of the burner again through the next combustion stop and the non-hot water supply side fluid temperature detection sensor. A canned and two-channel hot-water supply device provided with a circulation flow rate detecting unit for obtaining a circulation flow rate of the fluid flowing through the circulation flow path based on relational data given to the data memory according to the non-hot water supply side fluid temperature. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中のバーナ燃焼停止時から次の燃焼動作を経てバーナが再び燃焼停止するまでの時間と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記時間計測手段によって計測されるバーナ燃焼停止時から次の燃焼動作を経てバーナが再び燃焼停止するまでの時間と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine The relational data between the time from when the burner combustion is stopped during the single operation to the time when the burner is stopped again after the next combustion operation and the circulation flow rate flowing through the circulation flow path are given according to the non-hot water supply side fluid temperature. Data memory, time measuring means, and the time from the burner combustion stop time measured by the time measuring means to the time when the burner stops combustion again through the next combustion operation and the non-hot water supply side fluid temperature detection sensor A canned and two-water channel type hot water supply apparatus provided with a circulation flow rate detection unit for obtaining a circulation flow rate of a fluid flowing through a circulation flow path based on relational data given to the data memory by a non-hot water supply side fluid temperature. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の上側ピーク温度と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の上側ピーク温度と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between the upper peak temperature of the hot water temperature in the hot water heat exchanger and the circulating flow rate flowing through the circulation flow path during independent operation are given according to the non-hot water side fluid temperature; and the hot water hot water hot water An upper peak temperature of the hot water temperature detected by the temperature sensor and a non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor flow through the circulation flow path based on relational data given to the data memory. A canned and two-water channel type hot water supply device provided with a circulating flow rate detection unit for obtaining a circulating flow rate of fluid. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の下側ピーク温度と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の下側ピーク温度と前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between a lower peak temperature of the hot water temperature in the hot water supply heat exchanger during a single operation and a circulation flow rate flowing through the circulation flow path is given in accordance with the non-hot water supply side fluid temperature; and the hot water heat exchange A circulation flow path based on relational data given to the data memory by the lower peak temperature of the hot water temperature detected by the hot water temperature sensor and the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor A can and two water channel type hot water supply device provided with a circulation flow rate detection unit for obtaining a circulation flow rate of a fluid flowing through the water. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の上昇傾きと循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の上昇傾きと前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between the rising slope of the hot water temperature in the hot water heat exchanger during a single operation and the circulating flow rate flowing through the circulation flow path is given in accordance with the non-hot water side fluid temperature; and the hot water hot water temperature The rise of the hot water temperature detected by the sensor and the non-hot water side fluid temperature detection sensor detected by the non-hot water side fluid temperature detection sensor based on the relational data given to the data memory, A can and two water channel hot water supply device provided with a circulating flow rate detection unit for obtaining a circulating flow rate. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の前記給湯熱交換器内湯温の下降傾きと循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、前記給湯熱交湯温センサによって検出される熱交湯温の下降傾きと前記非給湯側流体温度検出センサで検出される非給湯側流体温度により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine A data memory in which relational data between the downward slope of the hot water temperature in the hot water heat exchanger during the single operation and the circulating flow rate flowing through the circulation flow path is given in accordance with the non-hot water side fluid temperature; and the hot water hot water temperature Based on the relational data given to the data memory by the downward inclination of the hot water temperature detected by the sensor and the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor, A can and two water channel hot water supply device provided with a circulating flow rate detection unit for obtaining a circulating flow rate. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の給湯熱交換器内湯温の上側ピーク温度と下側ピーク温度を時間軸上に表した経時データをベースとして時間的に前後する両隣の下側ピーク温度を結ぶ下側ピーク間結線の長さ(a+b)のデータと上側ピーク温度から前記下側ピーク間結線に下した垂線の長さcのデータとこの垂線の交点の位置から前側の下側ピーク温度までの線長aのデータと前記垂線の交点の位置から後方の下側ピーク温度までの線長bのデータのうちのいずれか2つのデータの比と循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間の計測手段と、前記他機能単独運転中の少なくとも前記熱交検出湯温の上側ピーク温度と下側ピーク温度を経時データとして取り込み記憶する経時温度データ採取記憶部と、前記取り込み記憶された経時データを時間軸と温度軸のグラフ上に表したときの両隣の下側ピーク温度を結ぶ下側ピーク間結線の長さ(a+b)のデータと上側ピーク温度から前記下側ピーク間結線に下した垂線の長さcのデータとこの垂線の交点の位置から前側の下側ピーク温度までの線長aのデータと前記垂線の交点の位置から後方の下側ピーク温度までの線長bのデータのうちのいずれか2つのデータの比を求めこの求めた比の値と前記非給湯側流体温度検出センサによって検出された非給湯側流体温度の情報により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流量を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine The lower peak connection between the lower peak temperatures of both sides adjacent to each other on the basis of the time-dependent data representing the upper peak temperature and lower peak temperature of the hot water temperature in the hot water heat exchanger during single operation on the time axis. Data of length (a + b), data of the length c of the perpendicular drawn from the upper peak temperature to the lower peak connection, and data of the line length a from the intersection of the perpendicular to the front lower peak temperature Data on the relationship between the ratio of any two of the data of the line length b from the position of the intersection of the perpendicular to the lower peak temperature at the rear and the circulation flow rate is given according to the non-hot water supply side fluid temperature. A data memory, a time measuring means, a time-dependent temperature data collection and storage unit for capturing and storing at least the upper peak temperature and the lower peak temperature of the heat exchanger detection hot water temperature during the other function independent operation as time-dependent data, When the captured time-lapse data is represented on the graph of the time axis and the temperature axis, the lower peak is calculated from the data of the length (a + b) of the lower peak connection line connecting the lower peak temperatures on both sides and the upper peak temperature. The data of the length c of the perpendicular to the connection line, the data of the line length a from the intersection of this perpendicular to the front lower peak temperature, and the line from the intersection of the perpendicular to the rear lower peak temperature The ratio of any two data of the length b data is obtained and given to the data memory based on the obtained ratio value and information on the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor. One can two water channel type hot water supply device provided with a circulating flow rate detecting unit for obtaining a circulating flow rate of the fluid flowing through the circulating flow path based on the relational data. 給湯加熱用の給湯熱交換器と、流体の循環流路に介設され給湯以外の他機能運転用の非給湯側熱交換器とが一体化され、この一体化された給湯熱交換器と非給湯側熱交換器とが共通のバーナにより燃焼加熱される構成とし、前記給湯熱交換器内湯温を検出する給湯熱交湯温センサが設けられ、給湯以外の他機能単独運転中に前記給湯熱交湯温センサによって検出される熱交検出湯温が予め与えられるオフ温度を上側に越えたときにバーナの燃焼を停止し前記熱交検出湯温が予め与えられるオン温度を下側に越えたときにバーナの燃焼を再開させるバーナオン・オフ燃焼制御部を備えた一缶二水路式給湯装置であって、前記非給湯側熱交換器の入側の循環流路内流体温度を非給湯側流体温度として検出する非給湯側流体温度検出センサと、他機能単独運転中の給湯熱交換器内湯温の上側ピーク温度と下側ピーク温度を時間軸上に表した経時データをベースとして上側のピーク温度と下側ピーク温度との経時的に連続する4個のピーク温度位置と下側のピーク温度位置から両隣の上側のピーク温度を結ぶ線に下ろした垂線の交点位置と上側のピーク温度位置から両隣の下側のピーク温度を結ぶ線に下ろした垂線の交点位置の3点以上を結んで得られる図形の面積と循環流路を流れる循環流量との関係データが前記非給湯側流体温度に応じて与えられているデータメモリと、時間計測手段と、前記他機能単独運転中の少なくとも前記熱交検出湯温の上側ピーク温度と下側ピーク温度を経時データとして取り込み記憶する経時温度データ採取記憶部と、前記取り込み記憶された経時データを時間軸と温度軸のグラフ上に表したときの上側のピーク温度と下側のピーク温度との経時的に連続する4個のピーク温度位置と下側のピーク温度位置から両隣の上側のピーク温度を結ぶ線に下ろした垂線の交点位置と上側のピーク温度位置から両隣の下側のピーク温度を結ぶ線に下ろした垂線の交点位置の3点以上を結んで得られる図形の面積を求めこの求めた図形の面積と前記非給湯側流体温度検出センサによって検出された非給湯側流体温度の情報により前記データメモリに与えられている関係データに基づき循環流路を流れる流体の循環流路を求める循環流量検出部とが設けられている一缶二水路式給湯装置。A hot water supply heat exchanger for heating hot water and a non-hot water supply side heat exchanger for operation other than hot water provided in the circulation path of the fluid are integrated. The hot water supply side heat exchanger is configured to be combusted and heated by a common burner, and a hot water supply hot / cold hot water temperature sensor for detecting the hot water temperature in the hot water supply heat exchanger is provided, and the hot water supply heat during the independent operation of functions other than hot water supply When the heat exchange detection hot water temperature detected by the hot water temperature sensor exceeds the pre-applied off temperature, combustion of the burner is stopped, and the heat exchange detection hot water temperature exceeds the pre-given on temperature. A one-can two-water channel hot water supply device having a burner on / off combustion control unit that restarts combustion of the burner when the non-hot water side fluid temperature in the circulation channel on the inlet side of the non-hot water side heat exchanger is Non-hot water supply fluid temperature detection sensor that detects as temperature and other machine Based on the time-dependent data representing the upper and lower peak temperatures of the hot water temperature in the hot water supply heat exchanger during the single operation on the time axis, the upper peak temperature and the lower peak temperature are continuously changed over time. The intersection of the perpendicular line drawn from the peak temperature position and the lower peak temperature position to the line connecting the adjacent upper peak temperatures and the perpendicular line drawn from the upper peak temperature position to the line connecting the adjacent lower peak temperatures A data memory in which relational data between the area of the figure obtained by connecting three or more positions and the circulation flow rate flowing through the circulation flow path is given in accordance with the non-hot water supply side fluid temperature, a time measuring means, the other A time-dependent temperature data collection and storage unit that captures and stores at least the upper peak temperature and the lower peak temperature of the heat exchanger detection hot water temperature as time-dependent data during the function independent operation, and The upper peak temperature on both sides from the four peak temperature positions and the lower peak temperature positions that are continuous over time, represented by the upper peak temperature and the lower peak temperature as shown on the inter-axis and temperature axis graphs. The area of the figure obtained by connecting three or more points of the intersection point of the perpendicular line drawn from the intersection point of the perpendicular line down to the line connecting the vertical line and the lower peak temperature of the adjacent side from the upper peak temperature position is obtained and obtained. Circulation for obtaining a circulation channel of the fluid flowing through the circulation channel based on the relational data given to the data memory based on the area of the figure and the information of the non-hot water side fluid temperature detected by the non-hot water side fluid temperature detection sensor One can two water channel type hot water supply device provided with a flow rate detection unit. 循環流量検出部で求められた循環流量が予め与えられている作動流量未満のときに循環路内の液無し状態を報知する液無し報知手段が設けられている請求項1乃至請求項10のいずれか1つに記載の一缶二水路式給湯装置。11. A liquid absence informing means for informing the absence of liquid in the circulation path when the circulation flow rate obtained by the circulation flow rate detection unit is less than a predetermined working flow rate. One can two water channel type hot water supply apparatus as described in one. 循環流量検出部で求められた循環流量が予め与えられている作動流量未満のときに他機能単独運転の停止を行う空焚き防止安全手段が設けられている請求項1乃至請求項11のいずれか1つに記載の一缶二水路式給湯装置。12. An airing prevention safety means for stopping the independent operation of other functions when the circulating flow rate obtained by the circulating flow rate detecting unit is less than a predetermined working flow rate is provided. One can two water channel type hot water supply apparatus as described in one. 他機能運転の燃焼状態を報知する他機能燃焼ランプが設けられ、他機能単独運転が開始されたときに循環流路に設けられる循環ポンプを起動してバーナの燃焼駆動を行い循環流量検出部で求められる循環流量が予め与えられている作動流量以上となったことを確認して前記他機能燃焼ランプをオン駆動する他機能開始動作制御部が設けられている請求項1乃至請求項12のいずれか1つにの記載の一缶二水路式給湯装置。The other function combustion lamp that notifies the combustion state of the other function operation is provided, and when the other function single operation is started, the circulation pump provided in the circulation flow path is activated to drive the burner to perform combustion. The other function start operation control part which confirms that the calculated | required circulating flow volume became more than the working flow rate given previously, and turns on the said other function combustion lamp is provided. One can two water channel type hot water supply apparatus as described in one. 他機能の運転は追い焚き運転と成し、循環流路は浴槽に接続されて浴槽湯水を循環する追い焚き循環流路と成し、非給湯側熱交換器は循環浴槽湯水を追い焚きする追い焚き熱交換器と成した請求項1乃至請求項13のいずれか1つに記載の一缶二水路式給湯装置。The operation of other functions is a reheating operation, the circulation channel is connected to the bathtub and a recirculation circulation channel that circulates the hot water in the bathtub, and the non-hot water side heat exchanger is a reheating operation that recirculates the circulating bath water. The canned two-water channel type hot water supply apparatus according to any one of claims 1 to 13, which is a soaking heat exchanger.
JP34444997A 1997-11-28 1997-11-28 One can two water channel type water heater Expired - Fee Related JP3811561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34444997A JP3811561B2 (en) 1997-11-28 1997-11-28 One can two water channel type water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34444997A JP3811561B2 (en) 1997-11-28 1997-11-28 One can two water channel type water heater

Publications (2)

Publication Number Publication Date
JPH11159862A JPH11159862A (en) 1999-06-15
JP3811561B2 true JP3811561B2 (en) 2006-08-23

Family

ID=18369356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34444997A Expired - Fee Related JP3811561B2 (en) 1997-11-28 1997-11-28 One can two water channel type water heater

Country Status (1)

Country Link
JP (1) JP3811561B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326650B2 (en) * 2009-02-25 2013-10-30 株式会社ノーリツ Heating control device
JP5734677B2 (en) * 2011-01-21 2015-06-17 株式会社ガスター One can two water bath water heater

Also Published As

Publication number Publication date
JPH11159862A (en) 1999-06-15

Similar Documents

Publication Publication Date Title
JP6101180B2 (en) Water heater
JP3811561B2 (en) One can two water channel type water heater
JP3810197B2 (en) One can two water channel type water heater
KR100709581B1 (en) Error sensing method of 3-way valve in boiler
JP5516138B2 (en) Hot water system
JP3242053B2 (en) Water heater
JP3822739B2 (en) One can two water channel combustion equipment
KR950009122B1 (en) Boiler safety operation method
JP2515068B2 (en) Water heater controller
JP3788529B2 (en) Combustion control device
JP2507239B2 (en) Water heater
JP2515069B2 (en) Water heater controller
JP3848728B2 (en) One can two water bath hot water heater
KR950004504B1 (en) Gas boiler
JP3844568B2 (en) Bath equipment
KR940000134B1 (en) Fluid heating device
JPH07294005A (en) Detecting device of leak in drain cock of water heater
JP3273005B2 (en) Water heater
JP2515056B2 (en) Water heater controller
JPH1194355A (en) Bath device
JPH0719600A (en) Freezing preventing device in hot water boiler system
KR20000032720A (en) Method for controlling boiler when three-way valve is out of order
JPH1183157A (en) Bathtub water heater
JPH11141980A (en) Single-can two-water channel water heater
JPH11173664A (en) 1 can/2 waterway water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090602

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees