JP3810116B2 - Ultra-high pressure high temperature generator and cBN synthesis method - Google Patents

Ultra-high pressure high temperature generator and cBN synthesis method Download PDF

Info

Publication number
JP3810116B2
JP3810116B2 JP01886196A JP1886196A JP3810116B2 JP 3810116 B2 JP3810116 B2 JP 3810116B2 JP 01886196 A JP01886196 A JP 01886196A JP 1886196 A JP1886196 A JP 1886196A JP 3810116 B2 JP3810116 B2 JP 3810116B2
Authority
JP
Japan
Prior art keywords
pressure
cbn
zirconia
temperature generator
cylinder body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01886196A
Other languages
Japanese (ja)
Other versions
JPH09206582A (en
Inventor
和幸 蛭田
雅昭 渡辺
正治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP01886196A priority Critical patent/JP3810116B2/en
Publication of JPH09206582A publication Critical patent/JPH09206582A/en
Application granted granted Critical
Publication of JP3810116B2 publication Critical patent/JP3810116B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超高圧高温発生装置、詳しくは高硬度、高熱伝導性を有し化学的にも安定であることから、機械加工用工具、半導体デバイス用放熱板等として利用が進められているダイヤモンドや立方晶窒化ほう素(cBN)等の合成に好適な超高圧高温発生装置及びそれを用いたcBNの合成法に関するものである。
【0002】
【従来の技術】
従来、cBNは、低圧相BNである六方晶BN(hBN)や乱層構造BN(tBN)等を各種金属元素の窒化物、ホウ化物、ホウ窒化物を触媒とし、cBNの熱力学的安定条件下、例えば圧力5〜6.5GPa、温度1400℃〜1600℃で保持する触媒法、又は触媒を使用せずに上記条件よりも高圧高温下、例えば圧力7.5GPa以上、温度2000℃程度で保持する直接転換法で合成されている。直接転換法によれば、合成されたcBNは微細粒子からなる多結晶体となり、高硬度、高純度、高熱伝導性、高靭性となることから、より高性能の工具材料、放熱基板等としての利用が期待できる。
【0003】
従来、高圧高温発生装置としては、一対のアンビル体の間にシリンダー体を設け、上記シリンダー体と上記アンビル体との間にガスケットを挿入することによって、上記シリンダ体と上記アンビル体との中央空間部に反応室を形成し、該反応室と上記アンビル体の間にジルコニアからなる増圧板が挿入されてなるものが知られている(特公昭59ー5547号公報)。
【0004】
ジルコニアが増圧板として用いられている理由は、ジルコニアは熱伝導性が低いために断熱性に優れていることや、高弾性率を有するため圧力伝達板としての機能を果たすからである。しかしながら、このような高圧高温発生装置であっても、十分に高い圧力を安定して発生させることが難しく、高品質のダイヤモンドやcBN等を安定に合成することは困難であった。
【0005】
本発明は、安定して高い圧力を発生することができ、高品質なダイヤモンド、cBN等を合成することのできる超高圧高温発生装置、及び直接転換法によって転換度合の高いcBNの合成法を提供することを目的とするものである。
【0006】
すなわち、本発明は、以下を要旨とするものである。
(請求項1)一対のアンビル体2間にシリンダー体1を設け、上記シリンダー体と上記アンビル体との間にガスケット7が挿入されることによって上記シリンダー体と上記アンビル体との中央空間部に反応室が形成され、上記反応室と上記アンビル体との間には増圧板3が、また上記反応室と上記シリンダー体との間には圧力媒体9がそれぞれ設置されてなる高圧高温発生装置において、上記増圧板が、立方晶及び/又は正方晶と単斜晶からなり(1)式で算出されたXm値が0.3以下(0を含む)のジルコニアからなるものであることを特徴とする超高圧高温発生装置。
【数2】

Figure 0003810116
(請求項2)低圧相BNを請求項1記載の超高圧高温発生装置によりcBNの熱力学的安定条件下で保持することを特徴とするcBNの合成法。
【0007】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
【0008】
本発明が対象としている超高圧高温発生装置は、一対のアンビル体の間にシリンダー体を設け、上記シリンダー体と上記アンビル体との間にガスケットが挿入されることによって、上記シリンダー体と上記アンビル体との中央空間部に反応室が形成され、上記反応室と上記アンビル体の間に増圧板が挿入されてなる高圧高温発生装置であって、これにはフラットベルト型(例えば特公昭59ー5547号公報)とガードル型(例えば特開昭61ー215293号公報)があるが、以下、フラットベルト型を例にとって説明する。
【0009】
図1にフラットベルト型高圧高温発生装置の概略断面図を示した。図1において、1はシリンダー体、2は一対のアンビル体、3は増圧板、4は通電リング、5は黒鉛製等のヒーター、6はMo電極板、7はパイロフィライト等のガスケット、8は紙等のガスケット、9は圧力媒体、10、11は塩化ナトリウム等からなる試料容器である。圧力発生は、一対のアンビル体に荷重を負荷することにより行われる。その際、荷重は増圧板を通して反応室に負荷される荷重とガスケットに負荷される荷重とに分配されるが、同一荷重をかけた場合、増圧板に負荷される力量が大きいほど反応室内の圧力は高くなる。加熱は、一対のアンビル体より通電リング、Mo電極板を経てヒーターに交流を印加して行われる。
【0010】
本発明の最大の特徴は、増圧板として使用するジルコニアは単斜晶を全く含ませないか所定量以下に抑えた点にある。その理由は以下の通りである。単斜晶は、高圧高温下で正方晶に相転移する際に体積収縮を伴うため発生圧力を小さくする。したがって、cBNを安定に合成するのに必要な高い圧力を発現させるには、その相転移による収縮量を小さくすること、すなわち単斜晶量を少なくすることが重要となるからである。
【0011】
本発明で使用される増圧板は、上記(1)式で算出されたXm値が0.3以下(0を含む)好ましくは0.15以下(0を含む)のジルコニアで構成されているものである。ここで、Xm値が0ということは単斜晶を含まないジルコニアを意味している。このようなXm値を有するジルコニアであれば、立方晶のみからなる安定化ジルコニア、立方晶と正方晶からなる部分安定化ジルコニア、正方晶のみからなるジルコニア、さらにはこれらに少量の単斜晶を含有したジルコニアのいずれであってもよい。
【0012】
ここでジルコニアについて概説すると、ジルコニアは、安定化剤の種類・量によりその微構造が異なる。ジルコニア単体の焼結体は、室温下で単斜晶であるが、1000℃付近まで加熱すると正方晶に相転移し、その際の体積変化により破壊する。しかし、ジルコニアにY2 3 、MgO、CaO等の酸化物を固溶させると最高温相の立方晶が低温まで安定相として存在できる。これがいわゆる安定化ジルコニアである。
【0013】
一方、立方晶ジルコニアの安定化に必要な酸化物の最小モル%は、1500℃で固溶させたときにMgO:13.8%、CaO:11.2%、Y2 3 :6%程度である。添加量がこれより少ないと、100%の立方晶にはならず、立方晶と正方晶、立方晶と単斜晶、立方晶と正方晶と単斜晶、正方晶と単斜晶といった混合相又は正方晶単体となる。これらは部分安定化ジルコニアと呼ばれているものであり、高強度、高靭性を示す。一般にジルコニアセラミックスと呼ばれているものはこの部分安定化ジルコニアであり、機械的特性を向上させることを目的としてある程度の単斜晶を含ませてある。このような部分安定化ジルコニアのXm値は0.5程度であり、本発明で使用されるジルコニアのXm値0.3以下(0を含む)よりも大きなものである。
【0014】
本発明において、ジルコニアのXm値が0.3をこえると高圧高温下における変形量が大きくなって高い圧力を発生させることができなくなる。また、本発明においては、増圧板の気孔率が小さいものほど高圧高温下における変形量が小さく発生圧力も高くなるので、その気孔率は6%未満特に3%未満であることが好ましい。
【0015】
本発明で使用されるジルコニアは次のようにして製造することができる。基本的には、ジルコニア粉末と上記酸化物粉末とを目的とするXm値となるように所定量混合しその混合粉末を成形した後焼成するものであるが、気孔率を小さくするためには共沈法等の液相法で調製された混合粉末を使用することが望ましい。成形はCIP成形が好ましく、また焼成は1700℃程度で行われる。
【0016】
酸化物粉末として、MgOを用いた場合についてさらに具体的に説明する。まず、立方晶ジルコニアは、MgOを含有したZrO2 が立方晶の単相で存在できる領域で焼成し急冷することによって製造することができる。通常は、温度1700℃程度で焼成するので、この温度で立方晶が安定なMgO量は9〜13.8モル%である。この場合において、MgO量を9モル%よりも少なくすると、立方晶と正方晶からなるジルコニアが得られやすい。また、単斜晶を含むジルコニアは、MgO量を1.5〜13.8モル%とし、1700℃程度で焼成後徐冷するか、又は焼成温度を1000〜1200℃程度にすることによって製造することができる。
【0017】
次に、本発明のcBNの合成法について説明する。原料hBNは、粉末又は成形体のいずれでもよいが、好ましくは熱分解BN(P−BN)板である。特に、直接転換法にあっては、P−BN板の使用が好適である。原料hBNは上記した黒鉛製等のヒ−タ−内の反応室に入れられ、cBNの熱力学的安定条件下で保持することによって合成される。圧力・温度条件としては、cBNの熱力学的条件下とすればよく、それについては例えば特公昭59−5547号公報第5欄第28〜37行に記載されている。直接転換法においては、圧力7GPa以上、温度1800℃以上が望ましく、合成速度を速くするには圧力7.5GPa以上、温度2000℃程度とするのがよい。
【0018】
本発明のcBNの合成は、直接転換法に限られることはなく、触媒法であってもよい。その際に使用されるの触媒については、特開昭61−215203号公報第3頁右上欄第13行〜左下欄第4行に記載されている。
【0019】
本発明のcBNの合成において、加熱は電力制御において行うことができる。すなわち、電力と温度の関係を、反応室内に白金−白金・ロジウム(13%)熱電対、白金・ロジム(6%)−白金・ロジウム(30%)熱電対、タングステン・レニウム(5%)−タングステン・レニウム(26%)熱電対等を挿入し、予め測定しておくことによって行うことができる。なお、反応室内の圧力は、反応室内に装填した銀の溶融温度を測定し、圧力と銀の溶融温度の対照表から判断することができる。
【0020】
【実施例】
以下、実施例及び比較例をあげて具体的に説明する。
【0021】
実施例1
図1に示すシリンダ−体の内径が20mmの超高圧高温発生装置に、MgOを安定化剤として添加した、気孔率3.0%で、立方晶及び単斜晶を主相とし若干の正方晶を含有してなるXm値0.15の部分安定化ジルコニアを増圧板とし、反応室にP−BN板を充填した。その後、500トンの荷重を負荷して、銀溶融法により発生圧力を求めたところ、7.5GPaであった。
【0022】
このような500トンの荷重を負荷した状態で2000℃まで昇温し、その温度で30分間保持してcBNの合成を行った。得られた試料について、X線回折によるhBN(002)面及びcBN(111)面の積分強度から、Ic/(Ih+Ic)で定義されるcBNへの転換度合Fcを測定したところ、0.99であった。
【0023】
実施例2
安定化剤をY2 3 とした気孔率2.5%で正方晶のみからなる部分安定化ジルコニアを増圧板としたこと以外は、実施例1と同様な方法で発生圧力の評価とcBNの合成を行った。その結果を表1に示す。
【0024】
実施例3
安定化剤をMgOとし、気孔率が4.0%で立方晶のみからなる安定化ジルコニアを増圧板とし、合成温度を1800℃としたこと以外は、実施例1と同様にして発生圧力の評価とcBNの合成を行った。その結果を表1に示す。
【0025】
実施例4〜5
安定化剤をMgOとし、表1に示される気孔率、ジルコニア相及び単斜晶量の指標Xmを有してなる部分安定化ジルコニアを増圧板としたこと以外は、実施例1と同様にして発生圧力の評価とcBNの合成を行った。その結果を表1に示す。
【0026】
実施例6
安定化剤をMgOとし、気孔率が3.0%で立方晶と正方晶からなるXm値0の部分安定化ジルコニアを増圧板としたこと以外は、実施例3と同様にして発生圧力の評価とcBNの合成を行った。その結果を表1に示す。
【0027】
比較例1〜3
安定化剤をMgOとし、表1に示される気孔率、ジルコニア相及び単斜晶量の指標Xmを有してなる部分安定化ジルコニアを増圧板としたこと以外は、実施例1と同様にして発生圧力の評価とcBNの合成を行った。その結果を表1に示す。
【0028】
【表1】
Figure 0003810116
注:ジルコニア相の「C」は立方晶、「M」は単斜晶、「T」は正方晶である。
【0029】
【発明の効果】
本発明によれば、安定した高い圧力の発生が可能な超高圧高温発生装置が提供される。また、直接転換法によるcBNを合成する場合、その転換度合が向上する。
【図面の簡単な説明】
【図1】フラットベルト型高圧高温発生装置の概略断面図。
【符号の説明】
1 シリンダー体
2 アンビル体
3 増圧板
4 通電リング
5 黒鉛製等のヒーター
6 Mo電極板
7 パイロフィライト等のガスケット
8 紙等のガスケット
9 圧力媒体
10 塩化ナトリウム等の試料容器
11 塩化ナトリウム等の試料容器[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention relates to an ultra-high pressure and high temperature generator, in particular, diamond having been used as a machining tool, a heat sink for semiconductor devices, etc. because it has high hardness, high thermal conductivity and is chemically stable. The present invention relates to an ultra-high pressure and high-temperature generator suitable for the synthesis of, for example, cubic boron nitride (cBN), and a method for synthesizing cBN using the same.
[0002]
[Prior art]
Conventionally, cBN uses the low-pressure phase BN hexagonal BN (hBN), the turbulent layer structure BN (tBN), etc. as nitrides of various metal elements, borides, and boronitrides as catalysts, and thermodynamic stability conditions of cBN. Under, for example, a catalyst method of holding at a pressure of 5 to 6.5 GPa and a temperature of 1400 ° C. to 1600 ° C., or a pressure higher than the above conditions without using a catalyst, for example, holding at a pressure of 7.5 GPa or more and a temperature of about 2000 ° C. It is synthesized by direct conversion method. According to the direct conversion method, the synthesized cBN becomes a polycrystalline body composed of fine particles, and has high hardness, high purity, high thermal conductivity, and high toughness. Therefore, as a higher performance tool material, a heat dissipation substrate, etc. Can be used.
[0003]
Conventionally, as a high-pressure and high-temperature generator, a cylinder body is provided between a pair of anvil bodies, and a gasket is inserted between the cylinder body and the anvil body, whereby a central space between the cylinder body and the anvil body is obtained. It is known that a reaction chamber is formed in a part and a pressure increasing plate made of zirconia is inserted between the reaction chamber and the anvil body (Japanese Patent Publication No. 59-5547).
[0004]
The reason why zirconia is used as a pressure-intensifying plate is that zirconia has excellent heat insulation properties because of its low thermal conductivity, and functions as a pressure transmission plate because of its high elastic modulus. However, even with such a high-pressure and high-temperature generator, it is difficult to stably generate a sufficiently high pressure, and it has been difficult to stably synthesize high-quality diamond, cBN, and the like.
[0005]
The present invention provides an ultra-high pressure and high temperature generator that can synthesize high-quality diamond, cBN, and the like, and a method for synthesizing cBN having a high degree of conversion by a direct conversion method. It is intended to do.
[0006]
That is, the gist of the present invention is as follows.
(Claim 1) A cylinder body 1 is provided between a pair of anvil bodies 2, and a gasket 7 is inserted between the cylinder body and the anvil body, whereby a central space between the cylinder body and the anvil body is formed. In a high-pressure and high-temperature generator in which a reaction chamber is formed, a pressure increasing plate 3 is installed between the reaction chamber and the anvil body, and a pressure medium 9 is installed between the reaction chamber and the cylinder body. The pressure-intensifying plate is made of zirconia having cubic and / or tetragonal and monoclinic crystals and having an Xm value calculated by the formula (1) of 0.3 or less (including 0). Super high pressure high temperature generator.
[Expression 2]
Figure 0003810116
(Claim 2) A method for synthesizing cBN, characterized in that the low-pressure phase BN is maintained under the thermodynamic stability condition of cBN by the ultra-high pressure and high temperature generator according to claim 1.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0008]
An ultra-high pressure and high temperature generator to which the present invention is directed is provided with a cylinder body between a pair of anvil bodies, and a gasket is inserted between the cylinder body and the anvil body, thereby the cylinder body and the anvil. A high-pressure and high-temperature generating apparatus in which a reaction chamber is formed in a central space with a body, and a pressure increasing plate is inserted between the reaction chamber and the anvil body. No. 5547) and girdle type (for example, Japanese Patent Application Laid-Open No. Sho 61-215293), the flat belt type will be described below as an example.
[0009]
FIG. 1 shows a schematic cross-sectional view of a flat belt type high-pressure and high-temperature generator. In FIG. 1, 1 is a cylinder body, 2 is a pair of anvil bodies, 3 is a pressure increasing plate, 4 is an energizing ring, 5 is a heater made of graphite, 6 is a Mo electrode plate, 7 is a gasket such as pyrophyllite, 8 Is a gasket such as paper, 9 is a pressure medium, and 10 and 11 are sample containers made of sodium chloride or the like. Pressure generation is performed by applying a load to a pair of anvil bodies. At that time, the load is distributed to the load applied to the reaction chamber through the pressure intensifying plate and the load applied to the gasket. When the same load is applied, the pressure in the reaction chamber increases as the force applied to the pressure intensifying plate increases. Becomes higher. Heating is performed by applying alternating current to the heater from the pair of anvil bodies through the energization ring and the Mo electrode plate.
[0010]
The greatest feature of the present invention is that zirconia used as a pressure intensifying plate does not contain monoclinic crystals at all or is suppressed to a predetermined amount or less. The reason is as follows. Monoclinic crystals reduce the generated pressure because they undergo volumetric shrinkage during phase transition to tetragonal crystals under high pressure and high temperature. Therefore, in order to develop a high pressure necessary for stably synthesizing cBN, it is important to reduce the amount of shrinkage due to the phase transition, that is, to reduce the amount of monoclinic crystal.
[0011]
The pressure increasing plate used in the present invention is composed of zirconia having an Xm value calculated by the above formula (1) of 0.3 or less (including 0), preferably 0.15 or less (including 0). It is. Here, an Xm value of 0 means zirconia containing no monoclinic crystal. In the case of zirconia having such an Xm value, stabilized zirconia consisting only of cubic crystals, partially stabilized zirconia consisting of cubic crystals and tetragonal crystals, zirconia consisting only of tetragonal crystals, and a small amount of monoclinic crystals. Any of the contained zirconia may be sufficient.
[0012]
Here, when zirconia is outlined, the microstructure of zirconia varies depending on the type and amount of stabilizer. The sintered body of simple zirconia is monoclinic at room temperature, but when heated to around 1000 ° C., it transforms into tetragonal crystal and breaks due to volume change at that time. However, when an oxide such as Y 2 O 3 , MgO, or CaO is dissolved in zirconia, the highest temperature cubic crystal can exist as a stable phase up to a low temperature. This is so-called stabilized zirconia.
[0013]
On the other hand, the minimum mol% of oxide required for stabilizing cubic zirconia is about MgO: 13.8%, CaO: 11.2%, Y 2 O 3 : 6% when dissolved at 1500 ° C. It is. If the amount added is less than this, it does not become 100% cubic, but a mixed phase such as cubic and tetragonal, cubic and monoclinic, cubic and tetragonal and monoclinic, tetragonal and monoclinic. Or it becomes a tetragonal single-piece | unit. These are called partially stabilized zirconia and exhibit high strength and high toughness. What is generally called zirconia ceramics is this partially stabilized zirconia, which contains a certain amount of monoclinic crystals for the purpose of improving mechanical properties. The Xm value of such partially stabilized zirconia is about 0.5, which is larger than the Xm value of 0.3 or less (including 0) of zirconia used in the present invention.
[0014]
In the present invention, when the Xm value of zirconia exceeds 0.3, the amount of deformation under high pressure and high temperature becomes large, and a high pressure cannot be generated. In the present invention, the smaller the porosity of the pressure increasing plate, the smaller the deformation amount at high pressure and high temperature and the higher the generated pressure. Therefore, the porosity is preferably less than 6%, particularly less than 3%.
[0015]
The zirconia used in the present invention can be produced as follows. Basically, zirconia powder and the above oxide powder are mixed in a predetermined amount so as to achieve the desired Xm value, and the mixed powder is molded and fired. However, in order to reduce the porosity, it is common. It is desirable to use a mixed powder prepared by a liquid phase method such as a precipitation method. The molding is preferably CIP molding, and firing is performed at about 1700 ° C.
[0016]
The case where MgO is used as the oxide powder will be described more specifically. First, cubic zirconia can be produced by firing and quenching in a region where ZrO 2 containing MgO can exist in a cubic single phase. Usually, since baking is performed at a temperature of about 1700 ° C., the amount of MgO in which cubic crystals are stable at this temperature is 9 to 13.8 mol%. In this case, when the amount of MgO is less than 9 mol%, it is easy to obtain zirconia composed of cubic crystals and tetragonal crystals. Moreover, the zirconia containing a monoclinic crystal is manufactured by setting the MgO amount to 1.5 to 13.8 mol% and gradually cooling after firing at about 1700 ° C. or setting the firing temperature to about 1000 to 1200 ° C. be able to.
[0017]
Next, a method for synthesizing cBN of the present invention will be described. The raw material hBN may be either a powder or a molded body, but is preferably a pyrolytic BN (P-BN) plate. In particular, in the direct conversion method, it is preferable to use a P-BN plate. The raw material hBN is synthesized by being put in a reaction chamber in a heater made of graphite or the like and held under the thermodynamic stability conditions of cBN. The pressure / temperature condition may be the thermodynamic condition of cBN, which is described, for example, in JP-B-59-5547, column 5, lines 28-37. In the direct conversion method, a pressure of 7 GPa or higher and a temperature of 1800 ° C. or higher are desirable, and a pressure of 7.5 GPa or higher and a temperature of about 2000 ° C. are preferred to increase the synthesis rate.
[0018]
The synthesis of cBN of the present invention is not limited to the direct conversion method, but may be a catalytic method. The catalyst used in that case is described in JP-A 61-215203, page 3, upper right column, line 13 to lower left column, line 4.
[0019]
In the synthesis of cBN of the present invention, heating can be performed in power control. That is, the relationship between the electric power and the temperature is changed to platinum-platinum rhodium (13%) thermocouple, platinum-rhodium (6%)-platinum-rhodium (30%) thermocouple, tungsten-rhenium (5%)- This can be done by inserting a tungsten-rhenium (26%) thermocouple or the like and measuring it in advance. The pressure in the reaction chamber can be determined by measuring the melting temperature of silver loaded in the reaction chamber and comparing the pressure and the melting temperature of silver.
[0020]
【Example】
Hereinafter, specific examples will be described with reference to examples and comparative examples.
[0021]
Example 1
A cylinder body shown in FIG. 1 having an inner diameter of 20 mm and an ultrahigh pressure and high temperature generator, MgO added as a stabilizer, with a porosity of 3.0%, cubic crystals and monoclinic crystals as the main phase, and some tetragonal crystals Partially stabilized zirconia having an Xm value of 0.15 and containing Pt was used as a pressure intensifying plate, and the reaction chamber was filled with a P-BN plate. Then, when 500 tons of load was loaded and the generated pressure was calculated | required with the silver melting method, it was 7.5 GPa.
[0022]
In such a state that a load of 500 tons was applied, the temperature was raised to 2000 ° C. and held at that temperature for 30 minutes to synthesize cBN. With respect to the obtained sample, the degree of conversion Fc to cBN defined by Ic / (Ih + Ic) was measured from the integrated intensity of the hBN (002) plane and cBN (111) plane by X-ray diffraction. there were.
[0023]
Example 2
Except that a partially stabilized zirconia composed only of tetragonal crystals with a porosity of 2.5% with a stabilizer of Y 2 O 3 was used as a pressure-intensifying plate, evaluation of the generated pressure and cBN were carried out in the same manner as in Example 1. Synthesis was performed. The results are shown in Table 1.
[0024]
Example 3
The generated pressure was evaluated in the same manner as in Example 1 except that the stabilizer was MgO, the stabilized zirconia having a porosity of 4.0% and only cubic crystals was used as the pressure increasing plate, and the synthesis temperature was 1800 ° C. And cBN were synthesized. The results are shown in Table 1.
[0025]
Examples 4-5
Except that the stabilizing agent was MgO, and the partially stabilized zirconia having the porosity, zirconia phase and monoclinic crystal index Xm shown in Table 1 was used as the pressure increasing plate, the same as in Example 1. The generated pressure was evaluated and cBN was synthesized. The results are shown in Table 1.
[0026]
Example 6
The generated pressure was evaluated in the same manner as in Example 3 except that the stabilizing agent was MgO, and a partially stabilized zirconia having a porosity of 3.0% and an Xm value of 0 consisting of cubic crystals and tetragonal crystals was used as a pressure increasing plate. And cBN were synthesized. The results are shown in Table 1.
[0027]
Comparative Examples 1-3
Except that the stabilizing agent was MgO, and the partially stabilized zirconia having the porosity, zirconia phase and monoclinic crystal index Xm shown in Table 1 was used as the pressure increasing plate, the same as in Example 1. The generated pressure was evaluated and cBN was synthesized. The results are shown in Table 1.
[0028]
[Table 1]
Figure 0003810116
Note: “C” in the zirconia phase is cubic, “M” is monoclinic, and “T” is tetragonal.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the ultrahigh pressure high temperature generator which can generate | occur | produce the stable high pressure is provided. In addition, when cBN is synthesized by the direct conversion method, the degree of conversion is improved.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view of a flat belt type high-pressure and high-temperature generator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder body 2 Anvil body 3 Booster plate 4 Current supply ring 5 Heater made of graphite 6 Mo electrode plate 7 Gasket such as pyrophyllite 8 Gasket such as paper 9 Pressure medium 10 Sample container 11 such as sodium chloride Sample such as sodium chloride container

Claims (2)

一対のアンビル体(2)の間にシリンダー体(1)を設け、上記シリンダー体と上記アンビル体との間にガスケット(7)が挿入されることによって上記シリンダー体と上記アンビル体との中央空間部に反応室が形成され、上記反応室と上記アンビル体との間には増圧板(3)が、また上記反応室と上記シリンダー体との間には圧力媒体(9)がそれぞれ設置されてなる高圧高温発生装置において、上記増圧板が、立方晶及び/又は正方晶と単斜晶からなり(1)式で算出されたXm値が0.3以下(0を含む)のジルコニアからなるものであることを特徴とする超高圧高温発生装置。
Figure 0003810116
A cylinder body (1) is provided between a pair of anvil bodies (2), and a gasket (7) is inserted between the cylinder body and the anvil body, whereby a central space between the cylinder body and the anvil body is obtained. A reaction chamber is formed in the part, a pressure increasing plate (3) is installed between the reaction chamber and the anvil body, and a pressure medium (9) is installed between the reaction chamber and the cylinder body. In the high pressure and high temperature generator, the pressure increasing plate is made of zirconia having a cubic crystal and / or a tetragonal crystal and a monoclinic crystal and having an Xm value calculated by the formula (1) of 0.3 or less (including 0). An ultra-high pressure and high temperature generator characterized by
Figure 0003810116
低圧相BNを請求項1記載の超高圧高温発生装置によりcBNの熱力学的安定条件下で保持することを特徴とするcBNの合成法。A method for synthesizing cBN, characterized in that the low-pressure phase BN is maintained under the thermodynamically stable condition of cBN by the ultrahigh-pressure high-temperature generator according to claim 1.
JP01886196A 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method Expired - Fee Related JP3810116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01886196A JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01886196A JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Publications (2)

Publication Number Publication Date
JPH09206582A JPH09206582A (en) 1997-08-12
JP3810116B2 true JP3810116B2 (en) 2006-08-16

Family

ID=11983332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01886196A Expired - Fee Related JP3810116B2 (en) 1996-02-05 1996-02-05 Ultra-high pressure high temperature generator and cBN synthesis method

Country Status (1)

Country Link
JP (1) JP3810116B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7125453B2 (en) 2002-01-31 2006-10-24 General Electric Company High temperature high pressure capsule for processing materials in supercritical fluids
US20030140845A1 (en) * 2002-01-31 2003-07-31 General Electric Company Pressure vessel
US7063741B2 (en) 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
US7704324B2 (en) 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
US7942970B2 (en) 2005-12-20 2011-05-17 Momentive Performance Materials Inc. Apparatus for making crystalline composition

Also Published As

Publication number Publication date
JPH09206582A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP4275896B2 (en) Polycrystalline diamond and method for producing the same
Wang et al. Effect of in-situ formed Y2O3 by metal hydride reduction reaction on thermal conductivity of β-Si3N4 ceramics
JPS61158871A (en) Silicon nitride sintered body
Ewais et al. Investigation of the effect of ZrO2 and ZrO2/Al2O3 additions on the hot-pressing and properties of equimolecular mixtures of α-and β-Si3N4
KR890006336A (en) Ceramic cutting tool insert
Abovyan et al. Synthesis of alumina–silicon carbide composites by chemically activated self-propagating reactions
JP3810116B2 (en) Ultra-high pressure high temperature generator and cBN synthesis method
JPH02302371A (en) Production of cubic boron nitride-containing inorganic composite sintered material
He et al. Oxidation of Zr 2 [Al (Si)] 4 C 5 and Zr 3 [Al (Si)] 4 C 6 in air
Lee et al. Effect of β-Si3N4 seed particles on the property of sintered reaction-bonded silicon nitride
JP3550587B2 (en) Method for manufacturing fine diamond sintered body
JP3444678B2 (en) Ultra high pressure and high temperature generator and synthesis method of cBN
Perevislov Investigation of the phase composition and analysis of the properties of sintered and hot-pressed materials based on silicon nitride
Wu et al. High-pressure synthesis of Al2O3-cBN composites: Effect of thermodynamic condition and cBN volume fraction on their microstructure and properties
JP3223275B2 (en) Method for producing cubic boron nitride sintered body
JPH0478335B2 (en)
CN101486576B (en) In situ reaction heat pressing synthesized V2AlC bulk ceramic and preparation thereof
Attia et al. Hot Pressed Si 3 N 4 Ceramics Using MgO–Al 2 O 3 as Sintering Additive for Vehicle Engine Parts
JP2782685B2 (en) High hardness high density composite sintered body containing diamond and method for producing the same
Zenotchkine et al. Effect of Heating Schedule on the Microstructure and Fracture Toughness of α‐SiAlON—Cause and Solution
JP2794079B2 (en) High-pressure high-hardness high-density composite sintered body containing boron nitride and method for producing the same
Maschio et al. Synthesis and sintering of chemically derived BaO–ZrO2 solid solutions
JPH08309175A (en) Pressure medium for ultrahigh pressure generation and device using the same
KR910005023B1 (en) Ceramic composite and preparation method thereof
JPH0455144B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees