JP3809536B2 - Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings - Google Patents

Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings Download PDF

Info

Publication number
JP3809536B2
JP3809536B2 JP09429298A JP9429298A JP3809536B2 JP 3809536 B2 JP3809536 B2 JP 3809536B2 JP 09429298 A JP09429298 A JP 09429298A JP 9429298 A JP9429298 A JP 9429298A JP 3809536 B2 JP3809536 B2 JP 3809536B2
Authority
JP
Japan
Prior art keywords
steel
reinforced concrete
shaped steel
lightweight
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09429298A
Other languages
Japanese (ja)
Other versions
JPH11293950A (en
Inventor
洋文 金子
雅彦 藤村
靖昌 宮内
徹 宇佐見
崇博 毛井
磬 大谷
耕司 村田
牧人 沢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP09429298A priority Critical patent/JP3809536B2/en
Publication of JPH11293950A publication Critical patent/JPH11293950A/en
Application granted granted Critical
Publication of JP3809536B2 publication Critical patent/JP3809536B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、既存鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物における稼動しながらの耐震性強化がなし得る耐震壁構造に関する。
【0002】
【従来の技術】
大震災の経験から、既存の鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物についても単なる耐震性増加でなく地震による損傷を限定した部位に集中させ、それ以外の骨組みは無傷にする耐震設計が求められるようになった。その手段として、建物に作用する地震力を耐震壁に集中させ、そのエネルギーを損傷しながら吸収する提案がなされるようになった。この柱と梁に囲まれた構面の耐震性の強化を叙上趣旨のもとに図ろうとした提案として特開平9−228653号がある。その特徴は耐震壁が解体可能なブロック化されている点にある。
【0003】
なお、既存の補強耐震壁、例えば鉄筋コンクリート耐震壁を既存フレームに加設するとした場合には、
(1) 資材(鉄筋、型枠等)の搬入は既設エレベータを利用し難い。
(2) 現場打ちコンクリート施工のため、耐震壁の配置の自由度が少ない。
(3) 鉄筋コンクリート造建物の既存フレームに耐震壁を緊結する際にアンカー筋を既存フレームに新設するため、コンクリートのはつりに伴う騒音、粉塵が発生する。
(4) 施工現場での工数が多く、工期がかかる。
(5) 建物重量が増大し、既存基礎への影響が大きい。
等の難点があり、また、リブ付き鋼板を鉄骨フレームで囲んだ鋼板耐震壁を、既存鉄筋コンクリート造建物等のフレームにアンカー筋等で固定するとした場合には、
(1) 重量物で大がかりな揚重機を必要とするため、既存建築物への設置は外周部のフレームに限定される。
(2) 鉄筋コンクリート造建物の既存フレームに耐震壁を緊結する際にアンカー筋を既存フレームに新設するため、コンクリートのはつりに伴う騒音、粉塵が発生する。
(3) 鋼板を後で取り付ける際、鉄骨フレームへの固定やリブの設置に溶接を用いる場合には火気や有毒ガスの発生に十分対処する必要がある。
(4) 鋼板に補強リブを溶接接合するための工数が多く、製作のコストや工期がかかる。
等の難点があるために実用的でない。
【0004】
一方、叙上特開平9−228653号の耐震壁は、鉄骨造架構構面に適用されるもので、図7に示す如く、その寸法をモジュール化したところのフランジ1を周設の鋼板ブロック2同志をボルト3等で結合積層して構成した耐震壁Aを、鉄骨上梁4とは当該上梁4下面より垂下の垂れ鋼板5と該耐震壁A上端面に接合の逆T型鋼6とを鉛直荷重を伝えないよう縦長穴ボルト孔7aを穿孔の添板7、7を介してボルト8接合し、また、鉄骨下梁9とは当該下梁9上面に溶接のT型鋼10の上端フランジ10aに該耐震壁最下層ブロックの下辺フランジとをボルト11接合し、さらに、柱12との間は所定間隔Sを確保して非接合としたものであり、ブロック化によって製作、運搬、取り替えのいずれをも容易化、可能化されるものとなっている。
【0005】
【発明が解決しようとする課題】
しかし、叙上耐震壁では、もともと、鉄骨架構用であるうえに「逆T型鋼6」、「T型鋼10」が「鉄骨上梁4」、「鉄骨下梁9」に取付けてあることが前提なることから新築建物に限定されるものである。
【0006】
そして、構成要素を成している「鋼板ブロック」については、
(1) 周辺フランジの存在により、ブロック1個当たりの重量が増大し、ブロック単体の大きさに制約がある。
(2) ブロックを小さくすると必要個数が増え、工期が長くなる。
等の難点があり、又、その製作については、
(1) 周辺フランジとウェブそれぞれの板の切断が多い。
(2) 周辺フランジをウェブで構成されるブロックの組立溶接(平板フランジとウェブからの加工・組立、角形鋼管の輪切りフランジ部と平板ウェブの加工・組立)部が多い。
(3) ウェブ芯および各ブロックボルト孔位置の精度確保が難しい。
(4) 作業工数が多い。
等の難点がある。
【0007】
さらに、この技術を既存のRC、SRCへ適用しようとすると、
(1) ブロックを上下梁に固定するためのCT形鋼を既存梁に取付ける必要があるため耐火被覆の除去や溶接施工が必要となり、粉塵や有毒ガスが発生する。
(2) 外縁フランジ部に高軸力が作用するため、接着接合法が採用できない。
(3) 既存RCあるいはSRCフレームとはC形鋼を介してケミカルアンカー等の接合法を用いる必要があるが、ケミカルアンカー新設時に騒音、粉塵が発生する。
等の不都合が予想され、結局、既存のRC、SRCへの適用は全く不可能である。
【0008】
本発明は、叙上の事情に鑑みなされたもので、その目的とするところは単に既存のRC、SRCに適用可能とするのみでなく、
(a) 居ながら(居住、執務を中断することなく)にして耐震壁を構築する。
(b) 騒音、粉塵や有毒ガスの発生を抑える。
(c) 早期に地震入力に抵抗して既存建築物の水平保有耐力・変形能力を向上させる。
(d) 既存の柱梁部材の補強を不要・低減する。
(e) 耐震構成材を耐震性能を発揮して損傷した後は取り替え可能とする。
(f) 耐震構成材を軽量なブロックでユニット化し、既設のエレベーターでの資材搬入を可能とする。
(g) 施工性と低コストに優れた工法とする。
(h) 開口部(窓、通路等)を容易に設けられる耐震壁とする。
(i) 大幅な工期短縮を計る。
等の諸要望を充足することのできる耐震壁構造を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、本発明の耐震壁構造は、人的に持ち運び可能な長さに切断されたところの複数の軽量C形鋼ブロックをそのウェブが壁板面となるようにそのフランジの上にウェブが一致するよう鉛直方向に積み重ねかつ材軸方向に列配するものとし、また、上下の軽量C形鋼ブロックはそれぞれのフランジをファスナーで緊結するものとしかつ材軸方向の継ぎはCT鋼の介添縦材のフランジに前記の軽量C形鋼ブロックのウェブをファスナーで緊結してなる鋼板壁を、柱・梁架構フレーム内周面にCT鋼のフランジ面を延配接着接合してなる保持枠のウェブ部に対して該軽量C形鋼ブロックのウェブ部をファスナーで緊結するとしたものである。
【0010】
あるいは、人的に持ち運び可能な長さに切断されたところの複数の軽量C形鋼ブロックをそのウェブが壁板面となるようにそのフランジの上にウェブが一致するよう鉛直方向に積み重ねかつ材軸方向に列配するものとし、また、上下の軽量C形鋼ブロックはそれぞれのフランジをファスナーで緊結するものとしかつ材軸方向の継ぎはCT鋼の介添縦材のフランジに前記の軽量C形鋼ブロックのウェブをファスナーで緊結してなる鋼板壁を、柱・梁架構フレーム内周面の上下の梁位置にH形鋼のフランジ面をまた左右の柱位置にCT鋼のフランジ面を夫々延配接着接合してなる保持枠に対して、該上下梁部にあってはH形鋼のフランジ部と軽量C形鋼ブロックのフランジ部をファスナーで緊結し、また、該柱部にあってはCT鋼のウェブ部と軽量C形鋼ブロックのウェブ部をファスナーで緊結するとしたものである。
【0011】
叙上の鋼板壁にあっては、所定CT鋼の介添縦材の開口部側となるウェブを除くフランジの半幅カット処理をし、所定の軽量C形鋼ブロックの間引きをすると所望の開口部を形成することができる。
【0012】
【作用】
しかして、本発明の耐震壁構造にあっては、保持枠が柱・梁架構フレームに対し広い面で接着接合され、かつ、鋼板壁自体並びに鋼板壁と保持枠との一体結合はファスナーにより機械的に接合されるので、無騒音、無火気の施工が可能となり、居ながらにして耐震壁を構築することができる。
【0013】
また、保持枠の拘束により鋼板壁には一様なせん断応力度が生じるものとなり、保持枠から鉄筋コンクリートあるいは鉄骨鉄筋コンクリートの柱・梁架構フレームへ均等に力を伝達させ、その既存周辺フレームの急激な損傷を防止する。
【0014】
そして、軽量C形鋼ブロックのファスナー緊結で構成される鋼板壁は、フランジ部の局部変形やファスナーの滑り変位でエネルギーの吸収能に優れ、構成部品の交換が自在であり、耐震壁に早期に力を負担させ、地震エネルギーを吸収して損傷した後、取り替え工事を容易になすことができると共に開口部の形成も容易である。
【0015】
さらに、軽量C形鋼、CT鋼、H形鋼は全て人力で運搬可能なものであり、エレベーターでの搬入が可能で、かつ、規格化された汎用品の採用で済み、コスト安に仕上がる。
【0016】
なお、耐震壁の剛性・耐力の調整は、軽量C形鋼のウェブ板厚を変化させてなすが、このとき、軽量C形鋼のウェブの成と板厚の比、所謂ウェブ幅厚比を靱性を確保するための制限内におさめるためにウェブ成も変化させることとなる。
【0017】
【発明の実施の形態】
本発明の実施の形態を図1〜6に基づいて説明する。
【0018】
鋼板壁13は軽量C形鋼ブロック14,…を用いて組み立てられる。すなわち、人的に持ち運び可能な長さに切断された数個の軽量C形鋼ブロック14をウェブ14aが壁板になるように材軸方向に並べ、かつ、そのフランジ14bの上にウェブ14a芯が一致するように鉛直方向に積み重ね、上下の軽量C形鋼ブロック14、14のそれぞれのフランジ14bを高力ボルトなどのファスナー15,…で緊結する。適切な長さに切断した軽量C形鋼ブロック14を材軸方向にそれぞれを継ぐ場合には、鉛直ブロック耐震壁としての面外変形や捩れ変形を補強する効果のあるCT鋼16,…の縦材のフランジ16aにウェブ14aをファスナー15で緊結する。軽量C形鋼14,…を用いた鋼板壁13の外周には保持枠17が配設されて鋼板壁13の形状を保持している。既存の鉄筋コンクリートあるいは鉄骨鉄筋コンクリートの上下の梁18、18位置の保持枠17部にはCT鋼16を用い(図1)、CT鋼16のウェブ16bと軽量C形鋼14のウェブ14aを高力ボルトなどのファスナー15で緊結する。あるいはH形鋼19を用い(図3)、H形鋼19のフランジ19aと軽量C形鋼14のフランジ14bを高力ボルトなどのファスナー15で緊結する。既存の鉄筋コンクリートあるいは鉄骨鉄筋コンクリートの左右の柱20、20位置の保持枠17にはCT鋼16を用い、CT鋼16のウェブ16bと軽量C形鋼ブロック14のウェブ14aを高力ボルトなどのファスナー15で緊結する。上記の保持枠17のCT鋼16のフランジ16a、あるいはH形鋼19のフランジ19aのそれぞれの表面と鉄筋コンクリートあるいは鉄骨鉄筋コンクリートの柱20・梁18フレームの表面への接合は接着接合21とし、コンクリートのせん断強度より大きいせん断強度を有するエポキシ樹脂等の接着剤で行う。
【0019】
鋼板壁13に開口部を形成する場合を図5に示す。すなわち、開口部22は軽量C形鋼ブロック14の材軸方向の継ぎ手部に用いるCT鋼16、16相互の間(図示例)か、CT鋼16と既存の柱20に取り付く保持枠17との間に設ける。CT鋼16のフランジ16aの開口部側のウェブ16bを除く半幅をカット23して開口部22を形成することができる。既存の柱20に取り付く保持枠17のCT鋼16はウェブ16aが軽量C形鋼14のウェブ14aと緊結されるが、ウェブ16bは保持枠17の機能を保持するためにカットしない(この図示例は省略)。開口部22を通路用とする場合にも、既存の周辺フレーム(柱20、梁18)に均等に力を伝達させるために保持枠17を周辺フレーム(柱20、梁18)に連続して取付ける。
【0020】
なお、図3、5に示す如くH形鋼19の端部には予じめプレート19bを取付け(図4cに拡大示)、H形鋼19と既存柱20の接着接合21のための接合面とするを良しとし、図1の梁部18、18のCT鋼16の端部にあっても同様の処理をするを良しとする。
【0021】
図6は既存鉄筋コンクリート造又は鉄骨鉄筋コンクリート造建物の柱・梁架構面に本発明を適用した場合(開口部なしイ、開口部ありロ)と何んら適用しない場合ハとにおけるせん断力と層間変形角の関係の実験結果を示す。鉄骨ブロック耐震壁は耐震能を高めたうえ、開口の有無に関わらずせん断降伏した後、層間変形角の増大に対して耐力を低下すること無く優れた耐震性能を発揮することが判る。
【0022】
【発明の効果】
本発明は、以上の如く構成されるので、以下の如き効果を奏する。
(1) 構成資材の既存エレベーターによる搬入が可能で、無騒音、無火気で施工できるため、居住者が建物内に居ながらにして耐震壁を構築できる。
(2) 軽量C形鋼ブロックを用いた鉄骨ブロック耐震壁(鋼板壁13)は鉄筋コンクリート耐震壁に比べて軽いため、基礎に加わる荷重が小さく、既存基礎への影響を無視できる。
(3) 鉄骨ブロック耐震壁の周辺に取付ける鉄骨フレーム(保持枠17)の拘束により耐震壁(鋼板壁13)にはほぼ一様なせん断応力度が生ずる。
(4) 保持枠17(CT鋼16、H形鋼19)と鉄筋コンクリートフレームあるいは鉄骨鉄筋コンクリートフレームの面を接着接合により緊結してスムーズに力が伝達することにより、既存の周辺フレームの材軸方向に均等に応力を伝達することができるため、周辺フレームに急激な耐力劣化の支障をきたさない。
(5) 材軸方向の軽量C形鋼ブロック間のウェブを緊結するCT鋼の縦材は鉄骨ブロック耐震壁(鋼板壁13)の面外変形や捩れ変形を補強するため、鉄骨ブロック耐震壁(鋼板壁13)はレベル2地震時の大変形においても鉄骨フレームに均等に応力を伝達できる。
(6) 軽量C形鋼のウェブの局部変屈変形だけでなく鉄骨ブロック(軽量C形鋼14)を緊結するファスナー間における軽量C形鋼フランジの局部変形やファスナーの滑り変位を生じてエネルギーを吸収するため、鉄骨ブロック耐震壁(鋼板壁13)は鉄筋コンクリート耐震壁と比べて靱性が大きい。
【図面の簡単な説明】
【図1】開口部無しにて本発明適用の既存RC又はSRC架構面の説明図である。
【図2】aは図1中A−A矢視図、bはa図中一部の拡大図、cはa図中C−C線部の拡大図である。
【図3】開口部無しにて本発明適用の既存RC又はSRC架構面の説明図である。
【図4】aは図3中A−A矢視図、bはa図中一部の拡大図、cはa図中C−C線部の拡大図、dはa図中d−d線部の拡大図である。
【図5】開口部有りにて本発明適用の既存RC又はSRC架構面の説明図である。
【図6】本発明実施、不実施のせん断力と層間変形角の関係の実験結果図である。
【図7】a、bは鉄骨造架構構面に適用されるとした従来のブロック化された耐震壁の側面図、正面図である。
【符号の説明】
1 フランジ
2 鋼板ブロック
3 ボルト
4 鉄骨上梁
5 垂れ鋼板
6 逆T型鋼
7 添板
7a 縦長穴ボルト孔
8 ボルト
9 鉄骨下梁
10 T型鋼
10a フランジ
11 ボルト
12 柱
13 鋼板壁
14 軽量C形鋼ブロック
14a ウェブ
14b フランジ
15 ファスナー
16 CT鋼
16a フランジ
16b ウェブ
17 保持枠
18 梁
19 H形鋼
19a フランジ
19b プレート
20 柱
21 接着接合
22 開口部
23 カット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seismic wall structure capable of strengthening seismic resistance while operating in existing reinforced concrete buildings and steel reinforced concrete buildings.
[0002]
[Prior art]
From the experience of the Great East Japan Earthquake, existing reinforced concrete buildings and steel reinforced concrete buildings are not simply increased in seismic resistance, but are required to have seismic design that concentrates the damage caused by the earthquake in limited areas and leaves the other frames intact. It was. As a means of doing so, proposals have been made to concentrate the seismic force acting on the building on the seismic wall and absorb the energy while damaging it. Japanese Laid-Open Patent Application No. 9-228653 is a proposal for improving the seismic resistance of the structural surface surrounded by the columns and beams. The feature is that the seismic wall is made into a block that can be dismantled.
[0003]
If an existing reinforced earthquake resistant wall, such as a reinforced concrete earthquake resistant wall, is added to the existing frame,
(1) It is difficult to use existing elevators to carry materials (rebars, formwork, etc.).
(2) Due to the construction of cast-in-place concrete, there are few degrees of freedom in the placement of the seismic walls.
(3) When a seismic wall is connected to an existing frame of a reinforced concrete building, an anchor bar is newly installed on the existing frame, so noise and dust are generated due to the concrete hanging.
(4) There are many man-hours at the construction site and it takes a long construction period.
(5) The building weight will increase and the impact on the existing foundation will be great.
In addition, if the steel plate seismic wall surrounded by a steel frame with a ribbed steel plate is fixed to the frame of an existing reinforced concrete building with an anchor bar, etc.,
(1) Installation on existing buildings is limited to the outer frame because heavy and heavy lifting equipment is required.
(2) When anchoring a seismic wall to an existing frame of a reinforced concrete building, an anchor bar is newly installed in the existing frame, so noise and dust are generated due to the concrete hanging.
(3) When installing steel plates later, if welding is used for fixing to the steel frame or installing ribs, it is necessary to sufficiently deal with the generation of fire and toxic gases.
(4) There are many man-hours for welding and joining the reinforcing ribs to the steel plate, and the manufacturing cost and work period are high.
It is not practical because there are difficulties such as.
[0004]
On the other hand, the earthquake-resistant wall of JP-A-9-228653 is applied to a steel frame construction surface, and as shown in FIG. 7, a steel plate block 2 having a flange 1 around which the dimensions are modularized. The seismic wall A is constructed by joining and laminating comrades with bolts 3 or the like. The steel upper beam 4 includes a suspended steel plate 5 hanging from the lower surface of the upper beam 4 and an inverted T-shaped steel 6 joined to the upper end surface of the seismic wall A. A vertical hole bolt hole 7a is joined to a bolt 8 through perforated plates 7 and 7 so as not to transmit a vertical load, and the lower steel beam 9 is an upper end flange 10a of a welded T-shaped steel 10 on the upper surface of the lower beam 9. The bottom flange of the bottom wall of the earthquake-resistant wall is joined to the bolt 11 and further, the predetermined interval S is secured between the pillars 12 and is not joined. Is also made easier and possible.
[0005]
[Problems to be solved by the invention]
However, in the case of the above-mentioned seismic wall, it was originally assumed that it was for a steel frame and that “inverted T-shaped steel 6” and “T-shaped steel 10” were attached to “steel upper beam 4” and “steel lower beam 9”. Therefore, it is limited to new buildings.
[0006]
And about "steel plate block" which is a component,
(1) Due to the presence of the peripheral flange, the weight per block increases, and the size of a single block is limited.
(2) If the block is made smaller, the required number increases and the construction period becomes longer.
Etc., and about its production,
(1) There are many cuts on the peripheral flange and web.
(2) There are many assembly welds (processing and assembly from flat plate flanges and webs, processing and assembly of round flanges and flat webs of square steel pipes) of blocks that are composed of peripheral flanges made of webs.
(3) It is difficult to ensure the accuracy of the web core and each block bolt hole position.
(4) There are many work man-hours.
There are difficulties such as.
[0007]
Furthermore, when this technology is applied to existing RC and SRC,
(1) Since it is necessary to attach the CT section steel for fixing the block to the upper and lower beams to the existing beam, it is necessary to remove the fireproof coating and to perform welding work, and dust and toxic gas are generated.
(2) Adhesive bonding cannot be used because high axial force acts on the outer edge flange.
(3) The existing RC or SRC frame needs to use a joining method such as a chemical anchor through C-shaped steel, but noise and dust are generated when a chemical anchor is newly installed.
Inconveniences such as these are expected, and as a result, application to existing RC and SRC is completely impossible.
[0008]
The present invention has been made in view of the above circumstances, and the purpose thereof is not only applicable to existing RC and SRC,
(a) Build a seismic wall while staying (without interrupting residence and work).
(b) Reduce the generation of noise, dust and toxic gases.
(c) Improving the horizontal holding capacity and deformation capacity of existing buildings by resisting earthquake input at an early stage.
(d) Reinforcement of existing beam members is unnecessary / reduced.
(e) The seismic components can be replaced after they are damaged due to their seismic performance.
(f) Seismic components are unitized with lightweight blocks, and materials can be carried by existing elevators.
(g) A construction method with excellent workability and low cost.
(h) Seismic walls that can be easily provided with openings (windows, passages, etc.).
(i) Significantly shorten the construction period.
It is to provide a seismic wall structure that can satisfy various requests.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the seismic wall structure according to the present invention has a plurality of lightweight C-shaped steel blocks cut to a length that can be carried by a person, and a flange thereof so that the web becomes a wall plate surface. The webs are stacked vertically and aligned in the axial direction so that the webs coincide with each other, and the upper and lower lightweight C-shaped steel blocks shall be fastened with their respective fasteners with fasteners and the joints in the axial direction shall be A steel plate wall made by fastening the light weight C-shaped steel block web with a fastener to the flange of a CT steel intervening vertical member, and the CT steel flange surface extending and bonded to the inner peripheral surface of the column / beam frame. The web portion of the lightweight C-shaped steel block is fastened with a fastener to the web portion of the holding frame.
[0010]
Alternatively, a plurality of lightweight C-shaped steel blocks that have been cut to a length that can be carried by human beings are stacked in a vertical direction on the flange so that the web is a wall plate surface, and The upper and lower lightweight C-shaped steel blocks shall be fastened to each other with fasteners, and the joints in the axial direction shall be connected to the flanges of the CT steel interposing vertical members. A steel plate wall made by fastening steel block webs with fasteners extends the H-shaped steel flange surface at the upper and lower beam positions on the inner peripheral surface of the column / beam frame and the CT steel flange surface at the left and right column positions, respectively. for the holding frame formed by distributing adhesive bonding, in the upper and lower beam portion is Tightened the flange portion of the flange portion and the light C shaped steel block of H-steel fasteners, also, in the pillar portion CT steel web and light The web portion of the C-shaped steel block is obtained by that Tightened fasteners.
[0011]
In the above steel plate wall, the half-width cut processing of the flange excluding the web on the opening side of the longitudinal member of the predetermined CT steel is performed, and when a predetermined lightweight C-shaped steel block is thinned, a desired opening is formed. Can be formed.
[0012]
[Action]
In the seismic wall structure of the present invention, the holding frame is bonded and bonded to the column / beam frame on a wide surface, and the steel plate wall itself and the integral connection between the steel plate wall and the holding frame are machined by fasteners. Because they are joined together, it is possible to construct noise-free and fire-free, and it is possible to construct a seismic wall without leaving the house.
[0013]
In addition, due to the restraint of the holding frame, a uniform shear stress is generated on the steel plate wall, and the force is evenly transmitted from the holding frame to the reinforced concrete or steel-framed reinforced concrete column / beam frame, and the existing surrounding frames are abrupt. Prevent damage.
[0014]
And the steel plate wall made up of light weight C-shaped steel block fasteners has excellent energy absorption capability due to local deformation of the flange part and sliding displacement of the fastener, and the component parts can be exchanged easily. After damaging the force and absorbing the seismic energy, the replacement work can be easily performed and the opening can be easily formed.
[0015]
Furthermore, lightweight C-section steel, CT steel, and H-section steel can all be transported by human power, can be carried in by an elevator, and use only standardized general-purpose products, resulting in low cost.
[0016]
The stiffness and proof stress of the shear wall are adjusted by changing the web thickness of the lightweight C-shaped steel. At this time, the ratio of the web thickness and the thickness of the lightweight C-shaped steel, the so-called web width-thickness ratio, is adjusted. The web composition is also changed in order to keep it within the limits for ensuring toughness.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to FIGS.
[0018]
The steel plate wall 13 is assembled using lightweight C-shaped steel blocks 14,. That is, several lightweight C-shaped steel blocks 14 cut to a length that can be carried by people are arranged in the material axis direction so that the web 14a becomes a wall plate, and the web 14a core is placed on the flange 14b. Are stacked in the vertical direction so as to coincide with each other, and the flanges 14b of the upper and lower lightweight C-shaped steel blocks 14, 14 are fastened with fasteners 15,. When the lightweight C-shaped steel block 14 cut to an appropriate length is connected to each other in the axial direction, the vertical length of the CT steel 16,... Is effective for reinforcing out-of-plane deformation and torsional deformation as a vertical block earthquake-resistant wall. The web 14a is fastened with the fastener 15 to the flange 16a of the material. A holding frame 17 is disposed on the outer periphery of the steel plate wall 13 using the lightweight C-shaped steel 14... To hold the shape of the steel plate wall 13. CT steel 16 is used for the upper and lower beams 18 of the existing reinforced concrete or steel reinforced concrete and the holding frame 17 at the 18 position (FIG. 1). The web 16b of the CT steel 16 and the web 14a of the lightweight C-shaped steel 14 are connected to the high strength bolt. Tighten with fasteners 15 such as. Alternatively, the H-section steel 19 is used (FIG. 3), and the flange 19a of the H-section steel 19 and the flange 14b of the lightweight C-section steel 14 are fastened with a fastener 15 such as a high-strength bolt. CT steel 16 is used for the holding frames 17 at the left and right columns 20 and 20 of existing reinforced concrete or steel reinforced concrete, and the web 16b of the CT steel 16 and the web 14a of the lightweight C-shaped steel block 14 are fastened with fasteners 15 such as high strength bolts. Tighten with. The bonding of the holding frame 17 to the surface of the flange 16a of the CT steel 16 or the flange 19a of the H-shaped steel 19 and the surface of the reinforced concrete or steel reinforced concrete column 20 / beam 18 frame is an adhesive bond 21. An adhesive such as an epoxy resin having a shear strength greater than the shear strength is used.
[0019]
The case where an opening is formed in the steel plate wall 13 is shown in FIG. That is, the opening 22 is formed between the CT steels 16 and 16 (illustrated example) used for the joint in the material axis direction of the lightweight C-shaped steel block 14 or the holding frame 17 attached to the CT steel 16 and the existing column 20. Provide between. The opening 22 can be formed by cutting 23 a half width of the CT steel 16 except for the web 16b on the opening side of the flange 16a. The CT steel 16 of the holding frame 17 attached to the existing column 20 has a web 16a that is tightly coupled to the web 14a of the lightweight C-shaped steel 14, but the web 16b is not cut in order to maintain the function of the holding frame 17 (this illustrated example). Is omitted). Even when the opening 22 is used for a passage, the holding frame 17 is continuously attached to the peripheral frame (column 20, beam 18) in order to transmit force evenly to the existing peripheral frame (column 20, beam 18). .
[0020]
As shown in FIGS. 3 and 5, a pre-plate 19b is attached to the end of the H-section steel 19 (enlarged in FIG. 4c), and a joint surface for the adhesive joint 21 between the H-section steel 19 and the existing column 20 It is assumed that the same processing is performed even at the end portions of the CT steel 16 of the beam portions 18 and 18 in FIG.
[0021]
Fig. 6 shows the shear force and interlayer deformation when the present invention is applied to the columns and beam frames of existing reinforced concrete structures or steel-framed reinforced concrete buildings (without openings and without openings) and when nothing is applied. The experimental result of a corner relation is shown. It can be seen that the steel block shear wall has improved seismic capacity and exhibits excellent seismic performance without decreasing the yield strength against the increase in inter-layer deformation angle after yielding with or without opening.
[0022]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
(1) The building materials can be carried in by existing elevators, and can be constructed without noise and without fire, so that the seismic wall can be constructed while the resident is in the building.
(2) Steel block shear walls (steel wall 13) using lightweight C-shaped steel blocks are lighter than reinforced concrete shear walls, so the load applied to the foundation is small and the impact on existing foundations can be ignored.
(3) Due to the restraint of the steel frame (holding frame 17) attached to the periphery of the steel block seismic wall, a substantially uniform shear stress is generated on the seismic wall (steel plate wall 13).
(4) The holding frame 17 (CT steel 16, H-shaped steel 19) and the surface of the reinforced concrete frame or steel-framed reinforced concrete frame are tightly bonded by adhesive bonding to smoothly transmit the force in the direction of the material axis of the existing peripheral frame. Since stress can be transmitted evenly, the peripheral frame is not hindered from sudden deterioration in yield strength.
(5) The CT steel vertical member that connects the web between lightweight C-shaped steel blocks in the axial direction of the steel block is used to reinforce the steel block seismic wall (steel wall 13) in order to reinforce out-of-plane deformation and torsional deformation. The steel plate wall 13) can transmit stress evenly to the steel frame even in the case of large deformation during a level 2 earthquake.
(6) Not only local deformation deformation of the light C-shaped steel web but also the local deformation of the lightweight C-shaped steel flange and the sliding displacement of the fastener between the fasteners connecting the steel block (light weight C-shaped steel 14). In order to absorb, the steel block earthquake-resistant wall (steel plate wall 13) is tougher than the reinforced concrete earthquake-resistant wall.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an existing RC or SRC frame applied to the present invention without an opening.
2A is an AA arrow view in FIG. 1, b is a partial enlarged view in FIG. 1, and c is an enlarged view of a CC line portion in FIG.
FIG. 3 is an explanatory diagram of an existing RC or SRC frame applied to the present invention without an opening.
4A is an AA arrow view in FIG. 3, b is an enlarged view of a part of FIG. A, c is an enlarged view of a CC line portion in FIG. A, d is a dd line in FIG. It is an enlarged view of a part.
FIG. 5 is an explanatory diagram of an existing RC or SRC frame applied with the present invention with an opening.
FIG. 6 is an experimental result diagram showing a relationship between shear force and interlayer deformation angle when the present invention is not carried out and when it is not carried out.
FIGS. 7A and 7B are a side view and a front view, respectively, of a conventional block-type seismic wall that is applied to a steel structure frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Flange 2 Steel plate block 3 Bolt 4 Steel upper beam 5 Drooping steel plate 6 Reverse T type steel 7 Substituting plate 7a Long hole bolt hole 8 Bolt 9 Steel lower beam 10 T type steel 10a Flange 11 Bolt 12 Column 13 Steel plate wall 14 Lightweight C type steel block 14a Web 14b Flange 15 Fastener 16 CT steel 16a Flange 16b Web 17 Holding frame 18 Beam 19 H-section steel 19a Flange 19b Plate 20 Column 21 Adhesive joint 22 Opening 23 Cut

Claims (3)

人的に持ち運び可能な長さに切断されたところの複数の軽量C形鋼ブロックをそのウェブが壁板面となるようにそのフランジの上にウェブが一致するよう鉛直方向に積み重ねかつ材軸方向に列配するものとし、また、上下の軽量C形鋼ブロックはそれぞれのフランジをファスナーで緊結するものとしかつ材軸方向の継ぎはCT鋼の介添縦材のフランジに前記の軽量C形鋼ブロックのウェブをファスナーで緊結してなる鋼板壁を、柱・梁架構フレーム内周面にCT鋼のフランジ面を延配接着接合してなる保持枠のウェブ部に対して該軽量C形鋼ブロックのウェブ部をファスナーで緊結するとしてなることを特徴とする既存鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物における耐震壁構造。  A plurality of lightweight C-shaped steel blocks cut into lengths that can be carried by people are stacked vertically on the flange so that the web becomes a wall plate surface, and the material axis direction In addition, the upper and lower lightweight C-shaped steel blocks shall be fastened to their respective flanges with fasteners, and the joints in the axial direction of the material shall be connected to the flanges of CT steel interposing vertical members as described above. The lightweight C-shaped steel block is attached to the web part of the holding frame formed by connecting the steel plate wall of the steel plate with a fastener to the inner peripheral surface of the column / beam frame and the flange surface of CT steel. Seismic wall structures in existing reinforced concrete structures and steel reinforced concrete structures, characterized in that the web part is fastened with fasteners. 人的に持ち運び可能な長さに切断されたところの複数の軽量C形鋼ブロックをそのウェブが壁板面となるようにそのフランジの上にウェブが一致するよう鉛直方向に積み重ねかつ材軸方向に列配するものとし、また、上下の軽量C形鋼ブロックはそれぞれのフランジをファスナーで緊結するものとしかつ材軸方向の継ぎはCT鋼の介添縦材のフランジに前記の軽量C形鋼ブロックのウェブをファスナーで緊結してなる鋼板壁を、柱・梁架構フレーム内周面の上下の梁位置にH形鋼のフランジ面をまた左右の柱位置にCT鋼のフランジ面を夫々延配接着接合してなる保持枠に対して、該上下梁部にあってはH形鋼のフランジ部と軽量C形鋼ブロックのフランジ部をファスナーで緊結し、また、該柱部にあってはCT鋼のウェブ部と軽量C形鋼ブロックのウェブ部をファスナーで緊結するとしてなることを特徴とする既存鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物における耐震壁構造。A plurality of lightweight C-shaped steel blocks cut into lengths that can be carried by people are stacked vertically on the flange so that the web becomes a wall plate surface, and the material axis direction In addition, the upper and lower lightweight C-shaped steel blocks shall be fastened to their respective flanges with fasteners, and the joints in the axial direction of the material shall be connected to the flanges of CT steel interposing vertical members. The steel plate wall made by fastening the web with fasteners is extended and bonded with the H-shaped steel flange surface at the upper and lower beam positions on the inner peripheral surface of the column / beam frame and the CT steel flange surface at the left and right column positions, respectively. With respect to the holding frame formed by joining, the flange portion of the H-shaped steel and the lightweight C-shaped steel block are fastened with fasteners in the upper and lower beam portions, and CT steel is used in the column portion. Web part and lightweight C-shaped steel Shear wall structures in existing RC buildings and steel reinforced concrete buildings, characterized by comprising a web portion of the click as to Tightened fasteners. 請求項1又は2記載の既存鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物における耐震構造における鋼板壁の所定CT鋼の介添縦材の開口部側となるウェブを除くフランジの半幅カット処理をし、所定の軽量C形鋼ブロックの間引きをして所望の開口部を形成するとしたことを特徴とする既存鉄筋コンクリート造建物および鉄骨鉄筋コンクリート造建物における耐震構造。  Half-width cut processing of the flange excluding the web on the opening side of the predetermined longitudinal member of the predetermined CT steel of the steel plate wall in the seismic structure in the existing reinforced concrete building and steel reinforced concrete building according to claim 1 or 2, and a predetermined light weight A seismic resistant structure in an existing reinforced concrete structure and a steel reinforced concrete structure, wherein a desired opening is formed by thinning out a C-shaped steel block.
JP09429298A 1998-04-07 1998-04-07 Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings Expired - Lifetime JP3809536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09429298A JP3809536B2 (en) 1998-04-07 1998-04-07 Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09429298A JP3809536B2 (en) 1998-04-07 1998-04-07 Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings

Publications (2)

Publication Number Publication Date
JPH11293950A JPH11293950A (en) 1999-10-26
JP3809536B2 true JP3809536B2 (en) 2006-08-16

Family

ID=14106197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09429298A Expired - Lifetime JP3809536B2 (en) 1998-04-07 1998-04-07 Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings

Country Status (1)

Country Link
JP (1) JP3809536B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962974A (en) * 2010-09-30 2011-02-02 同济大学 Bifuntional combined steel plate shear wall

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4502484B2 (en) * 2000-09-05 2010-07-14 株式会社竹中工務店 Seismic reinforcement wall
JP2008156836A (en) * 2006-12-21 2008-07-10 Shimizu Corp Structure of earthquake-resistant wall and earthquake-resistant reinforcement construction method
JP5118686B2 (en) * 2009-12-14 2013-01-16 大成建設株式会社 Seismic reinforcement wall
JP2012031615A (en) * 2010-07-29 2012-02-16 Shimizu Corp Seismic strengthening structure
JP6240420B2 (en) * 2013-07-05 2017-11-29 株式会社竹中工務店 Seismic reinforcement structure
KR101942855B1 (en) * 2018-06-05 2019-04-17 (주)대들보구조안전기술단 Perforated steel plate shear wall system with dry connecting method applied outside RC structure
CN113529955B (en) * 2020-07-16 2022-10-28 姚井祥 Installation method of zipper type wall part
CN112982729B (en) * 2021-03-16 2022-03-29 北京工业大学 Modularized concrete-filled steel tube multidimensional energy dissipation wall with uniformly distributed stress under earthquake

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101962974A (en) * 2010-09-30 2011-02-02 同济大学 Bifuntional combined steel plate shear wall
CN101962974B (en) * 2010-09-30 2011-11-16 同济大学 Bifuntional combined steel plate shear wall

Also Published As

Publication number Publication date
JPH11293950A (en) 1999-10-26

Similar Documents

Publication Publication Date Title
KR101894917B1 (en) Structure for earthquake proofing and reinforcing RC structure using steel frame attached by steel plate
KR102079008B1 (en) E-z connecting structure for beam and column wherein the end-moment and bending resistibility are reinforced
JP3809536B2 (en) Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings
JP5201627B2 (en) Housing vibration control device
JP2006022639A (en) Aseismatic structure
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2009235817A (en) Repair and reinforcement structure of construction and method
JP3271239B2 (en) Steel shear wall
JP2013204270A (en) Reinforcement structure of building
JPH1096294A (en) Steel frame and reinforced concrete beam
JP3124515B2 (en) Building seismic reinforcement structure
JPH10292636A (en) Structure reinforcing brace of existing building
JPH0776953A (en) Damping structure
JP4071192B2 (en) Damping structure of building structure
JP4260736B2 (en) Steel house bearing wall structure
JP3346364B2 (en) Beam-column joint structure
JPH07207755A (en) Connection part structure of reinforced concrete column and steel structure beam
JP3371815B2 (en) Seismic control reinforcement structure of existing building
JP3552691B2 (en) Reinforcement structure of wooden building
JP3549488B2 (en) Brace for wooden framed houses
JP3942973B2 (en) Seismic control structure of concrete structure with fiber reinforced cementitious material
JPH10184031A (en) Method of earthquake-proof reinforcing for already constructed pillar beam construction
JP2000291289A (en) Joining structure of earthquake resistant member
JP5690771B2 (en) Trunk edge brace shear wall
JP2005179981A (en) Earthquake control construction of structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100602

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110602

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120602

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130602

Year of fee payment: 7

EXPY Cancellation because of completion of term