JP3807173B2 - Intake air amount detection device and fuel injection control device for variable valve engine - Google Patents

Intake air amount detection device and fuel injection control device for variable valve engine

Info

Publication number
JP3807173B2
JP3807173B2 JP34355699A JP34355699A JP3807173B2 JP 3807173 B2 JP3807173 B2 JP 3807173B2 JP 34355699 A JP34355699 A JP 34355699A JP 34355699 A JP34355699 A JP 34355699A JP 3807173 B2 JP3807173 B2 JP 3807173B2
Authority
JP
Japan
Prior art keywords
intake
intake air
air amount
valve
closing timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34355699A
Other languages
Japanese (ja)
Other versions
JP2001159323A (en
Inventor
浩史 矢野
基宏 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP34355699A priority Critical patent/JP3807173B2/en
Publication of JP2001159323A publication Critical patent/JP2001159323A/en
Application granted granted Critical
Publication of JP3807173B2 publication Critical patent/JP3807173B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁駆動式など開閉時期を任意に可変制御できる吸気弁を備えた可変動弁エンジンのトルクを調整する制御装置に関する。
【0002】
【従来の技術】
従来一般のエンジンでは、スロットル弁の開度によって吸入空気量を制御するが、近年、電磁駆動式の吸・排気弁を備え、主として吸気弁の開閉時期の制御によって吸入空気量を制御するようにしたものが提案されている(特開平8−200025号公報参照) 。
【0003】
【発明が解決しようとする課題】
この種の吸気弁の開閉時期で吸入空気量を制御するものでは、通常のエアフロメータによって吸入空気量を検出すると、少なくとも所定の運転条件では吸気脈動の影響や過渡時の応答遅れなどにより良好な吸入空気量の検出が行えず、ひいては良好な燃料噴射量、空燃比の制御が行えないことがあった。
【0004】
本発明は、このような従来の課題に着目してなされたもので、吸入空気量の検出を高精度に行え、また、これにより、燃料噴射量制御を高精度に行えるようにした可変動弁エンジンの吸入空気量検出装置及び燃料噴射制御装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、請求項1に係る発明は、図1に示すように、
任意の開閉時期に可変制御でき、開時期及び閉時期のそれぞれについて目標時期が設定される吸気弁を備えた可変動弁エンジンにおいて、
吸気弁の開閉時期を検出する吸気弁開閉時期検出手段と、
エンジン回転速度を検出するエンジン回転速度検出手段と、
吸気弁の閉時期の変化に対して最大体積吸入空気量、吸気弁の閉時期及びエンジン回転速度に基づいて設定される係数を乗じて体積吸入空気量を算出する体積吸入空気量算出手段と、
吸気温度を検出する吸気温度検出手段と、
吸気圧力を検出する吸気圧力検出手段と、
前記体積吸入空気量を吸気温度と吸気圧力とで補正して質量吸入空気量を算出する質量吸入空気量算出手段と、
を含んで構成したことを特徴とする。
【0006】
請求項1に係る発明によると、
吸気弁開閉時期検出手段が吸気弁の閉時期を検出し、エンジン回転速度検出手段によってエンジン回転速度を検出する。
【0007】
ここで、エンジン回転速度一定の条件では吸気弁の閉時期が所定の時期であるときに体積吸入空気量が最大となり、それより閉時期が早い場合、遅い場合は体積吸入空気量が最大値より減少する。一方、エンジン回転速度が高くなるほど、吸気弁からの吸気の遅れが大きくなるため、前記吸入空気量が最大となる吸気弁の閉時期は遅れ側にシフトする。
そこで、体積吸入空気量算出手段が、前記最大となる体積吸入空気量(すなわち、吸気弁の閉時期の変化に対して最大の体積吸入空気量)に、吸気弁の時期及びエンジン回転速度に基づいて設定される係数を乗じて体積吸入空気量を算出する。これにより、体積吸入空気量を高精度に算出することができる。
【0008】
また、質量吸入空気量は、吸気温度,吸気圧力によって変化するので、質量吸入空気量算出手段により、前記体積吸入空気量を、吸気温度検出手段によって検出した吸気温度と吸気圧力検出手段によって検出した吸気圧力とに基づいて補正して質量吸入空気量を算出する。
【0009】
これにより、吸気脈動の影響や過渡時の応答遅れの影響を無くした良好な吸入空気量の検出が行える。
また、請求項2に係る発明は、
前記吸気弁開閉時期検出手段は、気筒毎に吸気弁開閉時期を検出し、該気筒毎の吸気弁の開閉時期に基づいて気筒毎に質量吸入空気量を算出することを特徴とする。
【0010】
請求項2に係る発明によると、
吸気弁開閉時期を気筒毎に検出し、気筒毎に求めた体積吸入空気量を吸気温度と吸気圧力とで補正して気筒毎の質量吸入空気量を算出する。これにより、気筒毎に開閉時期のバラツキがあっても高精度に吸入空気量を検出することができる。
【0011】
【0012】
【0013】
【0014】
また、請求項3に係る発明は、請求項1は請求項2に記載の吸入空気量検出装置によって検出された吸入空気量に基づいてエンジンに供給される燃料噴射量を設定し、該設定された燃料噴射量をエンジンに供給することを特徴とする。
【0015】
請求項3に係る発明によると、
上記の吸入空気量検出装置によって高精度に検出された質量吸入空気量に基づいて、エンジンに供給される燃料噴射量を高精度に制御することができる。
【0016】
【発明の実施の形態】
以下に本発明の実施の形態について説明する。
図2は本発明の一実施形態を示す可変動弁エンジンのシステム図である。
【0017】
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火栓4を囲むように、電磁駆動式の吸気弁5及び排気弁6を備えている。7は吸気通路、8は排気通路である。
【0018】
吸気弁5及び排気弁6の電磁駆動装置の基本構造を図3に示す。弁体20の弁軸21にプレート状の可動子22が取付けられており、この可動子22はスプリング23,24により中立位置に付勢されている。そして、この可動子22の下側に開弁用電磁コイル25が配置され、上側に閉弁用電磁コイル26が配置されている。
【0019】
従って、開弁させる際は、上側の閉弁用電磁コイル26への通電を停止した後、下側の開弁用電磁コイル25に通電して、可動子22を下側へ吸着することにより、弁体20をリフトさせて開弁させる。逆に、閉弁させる際は、下側の開弁用電磁コイル25への通電を停止した後、上側の閉弁用電磁コイル26に通電して、可動子22を上側へ吸着することにより、弁体20をシート部に着座させて閉弁させる。
【0020】
また、吸気弁5の弁軸21の上端に検出ロッド31を係合させてハウジングの上端にリフトセンサ32が配置される。該リフトセンサ32は、検出ロッド31の移動量を、弁体20のリフト量として検出する。リフトセンサとしてはこの他、赤外線,超音波等による無接点方式の距離測定センサ等も使用できる。また、本発明で要求されるのは、吸・排気弁のリフト量自体の検出は不要であり、開閉時期を検出すればよいから、圧電ピックアップのように開閉時に可動子22の着座振動音を検出するものを使用することもできる。
【0021】
図2に戻って、吸気通路7には、各気筒毎の吸気ポート部分に、電磁式の燃料噴射弁9が設けられている。
ここにおいて、吸気弁5、排気弁6、燃料噴射弁9及び点火栓4の作動は、コントロールユニット10により制御され、このコントロールユニット10には、エンジン回転に同期してクランク角信号を出力しこれによりエンジン回転速度を検出可能なクランク角センサ11、アクセル開度(アクセルペダルの踏込み量)を検出するアクセルペダルセンサ12、吸気温度を検出する吸気温度センサ(吸気温度検出手段) 13、吸気圧力を検出する吸気圧力センサ(吸気圧力検出手段) 14の他、前記吸気弁5,排気弁6の開閉時期を検出するリフトセンサ(吸気弁開閉時期検出手段) 32等から、信号が入力されている。
【0022】
そして、アクセル開度,エンジン回転速度等のエンジンの運転条件に基づいて目標トルクを発生するように吸気弁5と排気弁6の目標開閉時期が設定され、該目標開閉時期が得られるように吸気弁5,排気弁6の開閉時期が制御される。
【0023】
一方、前記各種センサ類により検出された値に基づいて、質量吸入空気量が検出され、該質量吸入空気量に基づいて前記燃料噴射弁9からの燃料噴射量が制御される。
【0024】
以下に、前記質量吸入空気量及び燃料噴射量を検出するルーチンを、図4のフローチャートに従って詳細に説明する。
ステップ1では、アクセルペダルセンサ12によて検出されたアクセル開度及びクランク角センサ11によって検出されたエンジン回転速度を読み込む。
【0025】
ステップ2では、前記アクセル開度,エンジン回転速度に応じた各運転状態毎の目標トルクを発生する吸気弁5と排気弁5の目標開閉時期をマップ(図5参照) から検索する。
【0026】
ステップ3では、吸気弁5と排気弁5の開閉を前記目標開閉時期に応じて制御する。
ステップ4では、前記リフトセンサ32によって検出される吸気弁5の実際の開閉時期を読み込む。
【0027】
ステップ5では、前記吸気弁5の開閉時期とエンジン回転速度とに基づいてシリンダに吸入される体積吸入空気量Qvを算出する。
具体的には、エンジン回転速度一定の条件では図6に示すように、吸気弁の閉時期が所定の時期であるときに吸入空気量が最大となり、それより閉時期が早い場合、遅い場合は吸入空気量が最大値より減少する。一方、エンジン回転速度が高くなるほど、吸気弁からの吸気の遅れが大きくなるため、前記吸入空気量が最大となる吸気弁の閉時期は遅れ側にシフトする。即ち、吸気弁5を下死点より前に閉じる早閉じ制御の場合には、図7に示すように、吸気弁の閉時期を遅らせるほど、目標トルクしたがって吸入空気量は増大するが、エンジン回転速度が高くなるほど、同一の吸入空気量を得るのに吸気弁閉時期を遅らせる必要がある。
【0028】
そこで、体積吸入空気量Qvを次式により算出する。このステップ5の機能が、体積吸入空気量算出手段を構成する。
Qiv=QiMAX×IVCt
ここで、Qivは#i気筒の体積吸入空気量、QiMAX#i気筒の最大体積吸入空気量、IVCtは、吸気弁の閉時期とエンジン回転速度(例えば400rpm毎) とに基づいて設定される係数を乗じることにより、体積吸入空気量Qivを高精度に算出することができる。
【0029】
ステップ6では、吸気温度センサ13により検出された吸気温度T及び吸気圧力センサ14により検出された吸気圧力Pを読み込む。
ステップ7では、前記体積吸入空気量Qivを前記吸気温度T及び吸気圧力Pによって補正して質量吸入空気量Qimを算出する。このステップ7の機能が、質量吸入空気量算出手段を構成する。
【0030】
Qim=R・T/P・Qiv(但し、Rはガス定数)
ステップ8では、前記気筒iの質量吸入空気量Qimに比例的に基本燃料噴射量TPi=k・Qimを算出し、該基本燃料噴射量Tiをエンジン冷却水温度や燃料噴射弁9を駆動するバッテリの電圧などで補正して、最終的な燃料噴射量TIiを算出する。
【0031】
このようにすれば、最大体積吸入空気量、吸気弁の閉時期及びエンジン回転速度により高精度に算出した体積吸入空気量を、吸気温度と吸気圧力とで補正して質量吸入空気量を算出することにより、吸気脈動の影響や過渡時の応答遅れの影響を無くした良好な吸入空気量の検出が行える。
【0032】
なお、前記の実施の形態では、気筒毎に吸入空気量を検出して気筒毎に燃料噴射量を設定する構成としたため、気筒毎に高精度な燃料噴射量制御を行えるが、気筒毎の吸入空気量Qimの平均値QmAV[例えば4気筒エンジンの場合、QmAV=1/4(Q1m+Q2m+Q3m+Q4m) ]を算出し、該平均値QmAVに対応して各気筒共通の燃料噴射量TIを設定してもよく、気筒毎の吸入空気量のバラツキによるトルク変動を抑制することができる。
【0033】
また、吸気弁の閉時期とエンジン回転速度とをパラメータとした体積吸入空気量の3次元マップを作成し、該マップからの検索により体積吸入空気量を算出する構成としてもよい。
【0034】
さらに、目標トルクを微調整するため、吸気弁の開閉時期を調整したり、スロットル弁を備えたものでは、スロットル弁開度を調整する構成を備えていてもよい。
【図面の簡単な説明】
【図1】本発明の構成を示す機能ブロック図。
【図2】本発明の一実施形態を示す可変動弁エンジンのシステム図。
【図3】吸排気弁の電磁駆動装置の基本構造図
【図4】燃料噴射量設定ルーチンのフローチャート
【図5】吸・排気弁の目標開閉時期を示す図。
【図6】吸気弁の閉時期と吸入空気量との関係を示す線図。
【図7】吸気弁の閉時期を及びエンジン回転速度をパラメータとした目標トルク特性を示す図。
【符号の説明】
1 エンジン
2 ピストン
3 燃焼室
4 点火栓
5 電磁駆動式の吸気弁
7 吸気通路
8 排気通路
9 燃料噴射弁
10 コントロールユニット
11 クランク角センサ
12 アクセルペダルセンサ
13 吸気温度センサ
14 吸気圧力センサ
31 検出ロッド
32 リフトセンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device that adjusts the torque of a variable valve engine having an intake valve that can be variably controlled to open and close, such as an electromagnetic drive type.
[0002]
[Prior art]
In a conventional general engine, the intake air amount is controlled by the opening degree of the throttle valve. Recently, however, an electromagnetically driven intake / exhaust valve is provided, and the intake air amount is controlled mainly by controlling the opening / closing timing of the intake valve. This has been proposed (see JP-A-8-200025).
[0003]
[Problems to be solved by the invention]
In this type of control of the intake air amount at the opening and closing timing of the intake valve, if the intake air amount is detected by a normal air flow meter, it is good due to the influence of the intake pulsation and the delay in response at the time of transition at least under predetermined operating conditions. The amount of intake air cannot be detected, and as a result, the fuel injection amount and the air-fuel ratio cannot be controlled properly.
[0004]
The present invention has been made by paying attention to such a conventional problem, and can detect the intake air amount with high accuracy, and can thereby control the fuel injection amount with high accuracy. An object of the present invention is to provide an intake air amount detection device and a fuel injection control device for an engine.
[0005]
[Means for Solving the Problems]
For this reason, as shown in FIG.
Can be varied arbitrarily controlled opening and closing timing, the variable valve engine target timing with an intake valve that will be set for each of the opening timing and closing timing,
Intake valve opening / closing timing detection means for detecting the opening / closing timing of the intake valve;
Engine speed detecting means for detecting the engine speed;
The maximum volumetric intake air amount to changes in the closing timing of the intake valve, the volume intake air amount calculating means for calculating the closing timing and volume intake air quantity by multiplying a coefficient set based on the engine rotational speed of the intake valve When,
An intake air temperature detecting means for detecting the intake air temperature;
Intake pressure detection means for detecting intake pressure;
A mass intake air amount calculating means for calculating the mass intake air amount by correcting the volume intake air amount with an intake temperature and an intake pressure;
It is characterized by including.
[0006]
According to the invention of claim 1,
The intake valve opening / closing timing detection means detects the closing timing of the intake valve, and the engine rotation speed detection means detects the engine rotation speed.
[0007]
Here, when the engine speed is constant, the volume intake air amount becomes maximum when the closing timing of the intake valve is a predetermined time, and when the closing timing is earlier or later, the volume intake air amount is higher than the maximum value. Decrease. On the other hand, the higher the engine speed, the greater the delay in intake from the intake valve, so the closing timing of the intake valve at which the intake air amount becomes maximum shifts to the delay side.
Therefore, the volume of intake air amount calculation means, the volume amount of intake air becomes the maximum (i.e., maximum volume intake air amount to changes in the closing timing of the intake valve), the the closed timing and engine rotational speed of the intake valve The volume intake air amount is calculated by multiplying the coefficient set on the basis of the coefficient . Thereby, the volume intake air amount can be calculated with high accuracy.
[0008]
Further, since the mass intake air amount changes depending on the intake air temperature and the intake pressure, the mass intake air amount calculation means detects the volume intake air amount by the intake air temperature and the intake pressure detection means detected by the intake air temperature detection means. The mass intake air amount is calculated with correction based on the intake pressure.
[0009]
Thereby, it is possible to detect a good intake air amount without the influence of the intake pulsation and the influence of the response delay at the time of transition.
The invention according to claim 2
The intake valve opening / closing timing detecting means detects the opening / closing timing of the intake valve for each cylinder, and calculates the mass intake air amount for each cylinder based on the opening / closing timing of the intake valve for each cylinder.
[0010]
According to the invention of claim 2,
The opening / closing timing of the intake valve is detected for each cylinder, and the volume intake air amount obtained for each cylinder is corrected by the intake temperature and the intake pressure to calculate the mass intake air amount for each cylinder. As a result, the intake air amount can be detected with high accuracy even if the opening / closing timing varies among the cylinders.
[0011]
[0012]
[0013]
[0014]
The invention according to claim 3, also claim 1 sets the fuel injection quantity supplied to the engine based on the intake air amount detected by the intake air amount detecting apparatus according to claim 2, wherein the set The fuel injection amount is supplied to the engine.
[0015]
According to the invention of claim 3,
Based on the mass intake air amount detected with high accuracy by the intake air amount detection device, the fuel injection amount supplied to the engine can be controlled with high accuracy.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 2 is a system diagram of a variable valve engine showing an embodiment of the present invention.
[0017]
The combustion chamber 3 defined by the piston 2 of each cylinder of the engine 1 is provided with an electromagnetically driven intake valve 5 and an exhaust valve 6 so as to surround the spark plug 4. 7 is an intake passage and 8 is an exhaust passage.
[0018]
FIG. 3 shows the basic structure of the electromagnetic drive device for the intake valve 5 and the exhaust valve 6. A plate-like movable element 22 is attached to the valve shaft 21 of the valve body 20, and the movable element 22 is biased to a neutral position by springs 23 and 24. A valve opening electromagnetic coil 25 is disposed below the mover 22, and a valve closing electromagnetic coil 26 is disposed above the movable element 22.
[0019]
Therefore, when opening the valve, after energization of the upper valve closing electromagnetic coil 26 is stopped, by energizing the lower valve opening electromagnetic coil 25 and attracting the mover 22 downward, The valve body 20 is lifted and opened. Conversely, when closing the valve, by energizing the lower valve opening electromagnetic coil 25 and then energizing the upper valve closing electromagnetic coil 26 to attract the mover 22 upward, The valve body 20 is seated on the seat portion and closed.
[0020]
Further, a detection rod 31 is engaged with the upper end of the valve shaft 21 of the intake valve 5, and a lift sensor 32 is disposed at the upper end of the housing. The lift sensor 32 detects the amount of movement of the detection rod 31 as the lift amount of the valve body 20. In addition to this, a contactless distance measuring sensor using infrared rays, ultrasonic waves, or the like can also be used. Further, the present invention requires that the lift amount itself of the intake / exhaust valve itself is not required, and it is only necessary to detect the opening / closing timing. What is detected can also be used.
[0021]
Returning to FIG. 2, the intake passage 7 is provided with an electromagnetic fuel injection valve 9 in the intake port portion of each cylinder.
Here, the operation of the intake valve 5, the exhaust valve 6, the fuel injection valve 9 and the spark plug 4 is controlled by a control unit 10, which outputs a crank angle signal in synchronism with engine rotation. A crank angle sensor 11 that can detect the engine speed, an accelerator pedal sensor 12 that detects the accelerator opening (the amount of depression of the accelerator pedal), an intake air temperature sensor (intake air temperature detection means) 13 that detects the intake air temperature, In addition to the intake pressure sensor (intake pressure detection means) 14 to be detected, a signal is input from a lift sensor (intake valve opening / closing timing detection means) 32 for detecting the opening / closing timing of the intake valve 5 and the exhaust valve 6.
[0022]
Then, the target opening / closing timing of the intake valve 5 and the exhaust valve 6 is set so as to generate the target torque based on the engine operating conditions such as the accelerator opening and the engine rotation speed, and the intake air is adjusted so as to obtain the target opening / closing timing. The opening / closing timing of the valve 5 and the exhaust valve 6 is controlled.
[0023]
On the other hand, the mass intake air amount is detected based on the values detected by the various sensors, and the fuel injection amount from the fuel injection valve 9 is controlled based on the mass intake air amount.
[0024]
Hereinafter, a routine for detecting the mass intake air amount and the fuel injection amount will be described in detail with reference to the flowchart of FIG.
In step 1, it reads the engine rotational speed detected by the accelerator opening and the crank angle sensor 11 detected by Tsu by the accelerator pedal sensor 12.
[0025]
In step 2, a target opening / closing timing of the intake valve 5 and the exhaust valve 5 that generates a target torque for each operating state according to the accelerator opening and the engine speed is searched from a map (see FIG. 5).
[0026]
In step 3, the opening / closing of the intake valve 5 and the exhaust valve 5 is controlled according to the target opening / closing timing.
In step 4, the actual opening / closing timing of the intake valve 5 detected by the lift sensor 32 is read.
[0027]
In step 5, the volume intake air amount Qv sucked into the cylinder is calculated based on the opening / closing timing of the intake valve 5 and the engine speed.
Specifically, as shown in FIG. 6, when the engine speed is constant, the intake air amount becomes maximum when the closing timing of the intake valve is a predetermined timing, and when the closing timing is earlier or later than that, The amount of intake air decreases from the maximum value. On the other hand, the higher the engine speed, the greater the delay in intake from the intake valve, so the closing timing of the intake valve at which the intake air amount becomes maximum shifts to the delay side. That is, in the case of the early closing control in which the intake valve 5 is closed before the bottom dead center, as shown in FIG. 7, the target torque and hence the intake air amount increases as the intake valve closing timing is delayed, but the engine rotation speed increases. As the speed increases, the intake valve closing timing needs to be delayed in order to obtain the same intake air amount.
[0028]
Therefore, the volume intake air amount Qv is calculated by the following equation. The function of step 5 constitutes volume intake air amount calculation means.
Qiv = Qi MAX × IVCt
Here, QIV, the volumetric amount of intake air #i cylinder, Qi MAX is the maximum volume amount of intake air #i cylinder, IVCT, based on the closing timing and the engine rotational speed of the intake valve (for example, every 400 rpm) By multiplying the set coefficient, the volume intake air amount Qiv can be calculated with high accuracy.
[0029]
In step 6, the intake air temperature T detected by the intake air temperature sensor 13 and the intake air pressure P detected by the intake air pressure sensor 14 are read.
In step 7, the mass intake air amount Qim is calculated by correcting the volume intake air amount Qiv by the intake air temperature T and the intake pressure P. The function of step 7 constitutes a mass intake air amount calculation means.
[0030]
Qim = R · T / P · Qiv (where R is a gas constant)
In step 8, the basic fuel injection amount TPi = k · Qim is calculated in proportion to the mass intake air amount Qim of the cylinder i, and the basic fuel injection amount T P i is driven by the engine coolant temperature and the fuel injection valve 9. The final fuel injection amount TIi is calculated by correcting with the battery voltage or the like.
[0031]
In this way, the mass intake air amount is calculated by correcting the volume intake air amount calculated with high accuracy based on the maximum volume intake air amount, the closing timing of the intake valve, and the engine speed with the intake air temperature and the intake pressure. Thus, it is possible to detect a good intake air amount without the influence of the intake pulsation or the influence of the response delay at the time of transition.
[0032]
In the above-described embodiment, since the intake air amount is detected for each cylinder and the fuel injection amount is set for each cylinder, highly accurate fuel injection amount control can be performed for each cylinder. An average value QmAV of the air amount Qim [for example, in the case of a four-cylinder engine, QmAV = 1/4 (Q1m + Q2m + Q3m + Q4m)] may be calculated, and a fuel injection amount TI common to each cylinder may be set corresponding to the average value QmAV The torque fluctuation due to the variation in the intake air amount for each cylinder can be suppressed.
[0033]
Further, a three-dimensional map of the volume intake air amount using the intake valve closing timing and the engine rotation speed as parameters may be created, and the volume intake air amount may be calculated by searching from the map.
[0034]
Furthermore, in order to finely adjust the target torque, the opening / closing timing of the intake valve may be adjusted, or a structure equipped with a throttle valve may be configured to adjust the throttle valve opening.
[Brief description of the drawings]
FIG. 1 is a functional block diagram showing a configuration of the present invention.
FIG. 2 is a system diagram of a variable valve engine showing an embodiment of the present invention.
FIG. 3 is a basic structural view of an electromagnetic drive device for intake and exhaust valves. FIG. 4 is a flowchart of a fuel injection amount setting routine. FIG. 5 is a diagram showing target opening / closing timings of intake and exhaust valves.
FIG. 6 is a diagram showing the relationship between intake valve closing timing and intake air amount.
FIG. 7 is a diagram showing target torque characteristics with intake valve closing timing and engine speed as parameters.
[Explanation of symbols]
1 engine
2 piston
3 Combustion chamber
4 Spark plugs
5 Electromagnetically driven intake valve
7 Intake passage
8 Exhaust passage
9 Fuel injection valve
10 Control unit
11 Crank angle sensor
12 Accelerator pedal sensor
13 Intake air temperature sensor
14 Intake pressure sensor
31 Detection rod
32 Lift sensor

Claims (3)

任意の開閉時期に可変制御でき、開時期及び閉時期のそれぞれについて目標時期が設定される吸気弁を備えた可変動弁エンジンにおいて、
吸気弁の開閉時期を検出する吸気弁開閉時期検出手段と、
エンジン回転速度を検出するエンジン回転速度検出手段と、
吸気弁の閉時期の変化に対して最大体積吸入空気量、吸気弁の閉時期及びエンジン回転速度に基づいて設定される係数を乗じて体積吸入空気量を算出する体積吸入空気量算出手段と、
吸気温度を検出する吸気温度検出手段と、
吸気圧力を検出する吸気圧力検出手段と、
前記体積吸入空気量を吸気温度と吸気圧力とで補正して質量吸入空気量を算出する質量吸入空気量算出手段と、
を含んで構成したことを特徴とする可変動弁エンジンの吸入空気量検出装置。
Can be varied arbitrarily controlled opening and closing timing, the variable valve engine target timing with an intake valve that will be set for each of the opening timing and closing timing,
Intake valve opening / closing timing detection means for detecting the opening / closing timing of the intake valve;
Engine speed detecting means for detecting the engine speed;
The maximum volumetric intake air amount to changes in the closing timing of the intake valve, the volume intake air amount calculating means for calculating the closing timing and volume intake air quantity by multiplying a coefficient set based on the engine rotational speed of the intake valve When,
An intake air temperature detecting means for detecting the intake air temperature;
Intake pressure detection means for detecting intake pressure;
A mass intake air amount calculating means for calculating the mass intake air amount by correcting the volume intake air amount with an intake temperature and an intake pressure;
An intake air amount detection device for a variable valve engine, comprising:
前記吸気弁開閉時期検出手段は、気筒毎に吸気弁開閉時期を検出し、該気筒毎の吸気弁の開閉時期に基づいて気筒毎に質量吸入空気量を算出することを特徴とする請求項1に記載の可変動弁エンジンの吸入空気量検出装置。The intake valve opening / closing timing detecting means detects the opening / closing timing of the intake valve for each cylinder, and calculates a mass intake air amount for each cylinder based on the opening / closing timing of the intake valve for each cylinder. The intake air amount detection device for a variable valve engine according to claim 1. 請求項1は請求項2に記載の吸入空気量検出装置によって検出された吸入空気量に基づいてエンジンに供給される燃料噴射量を設定し、該設定された燃料噴射量をエンジンに供給することを特徴とする可変動弁エンジンの燃料噴射制御装置。The claim 1 or set the fuel injection amount supplied to the engine based on the detected intake air amount by the intake air amount detecting apparatus according to claim 2, supplying the fuel injection quantity the set engine A fuel injection control device for a variable valve engine.
JP34355699A 1999-12-02 1999-12-02 Intake air amount detection device and fuel injection control device for variable valve engine Expired - Fee Related JP3807173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34355699A JP3807173B2 (en) 1999-12-02 1999-12-02 Intake air amount detection device and fuel injection control device for variable valve engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34355699A JP3807173B2 (en) 1999-12-02 1999-12-02 Intake air amount detection device and fuel injection control device for variable valve engine

Publications (2)

Publication Number Publication Date
JP2001159323A JP2001159323A (en) 2001-06-12
JP3807173B2 true JP3807173B2 (en) 2006-08-09

Family

ID=18362446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34355699A Expired - Fee Related JP3807173B2 (en) 1999-12-02 1999-12-02 Intake air amount detection device and fuel injection control device for variable valve engine

Country Status (1)

Country Link
JP (1) JP3807173B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10202437A1 (en) 2002-01-22 2003-08-28 Bosch Gmbh Robert Method and device and computer program for controlling an internal combustion engine
JP4013719B2 (en) * 2002-09-25 2007-11-28 トヨタ自動車株式会社 Internal combustion engine with variable valve gear
JP4811330B2 (en) * 2007-04-18 2011-11-09 日産自動車株式会社 Cylinder filling air amount calculation device for internal combustion engine
ATE509196T1 (en) * 2007-12-04 2011-05-15 Fiat Ricerche MULTI-CYLINDER ENGINE WITH INDEPENDENT CYLINDERS

Also Published As

Publication number Publication date
JP2001159323A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
US6827051B2 (en) Internal EGR quantity estimation, cylinder intake air quantity calculation, valve timing control, and ignition timing control
EP0953750B1 (en) Apparatus and method for controlling intake air quantity for internal combustion engine
JP3637825B2 (en) Control device for variable valve engine
US6412458B2 (en) Valve timing control for engine
JP3747700B2 (en) Intake air amount calculation device for variable valve engine
JP3572442B2 (en) Intake air amount estimation device for variable valve engine
JP3959957B2 (en) Engine internal EGR amount estimation method, variable valve control method using the internal EGR amount estimation value, cylinder intake air amount calculation method, and ignition timing control method
JP3627601B2 (en) Engine intake air amount control device
JP3622538B2 (en) Engine intake air amount detection device
EP1211402B1 (en) Internal EGR quantity estimation for controlling intake/exhaust valves and ignition timing
JP3807173B2 (en) Intake air amount detection device and fuel injection control device for variable valve engine
JP2001152929A (en) Air-fuel ratio control device for variable valve system engine
JP3799833B2 (en) Cylinder intake air amount detection device for variable valve engine
JP3915367B2 (en) Control device for variable valve engine
JP4144985B2 (en) Control device for variable valve engine
JP3800828B2 (en) Cylinder residual gas amount detection device for variable valve engine
JP3572383B2 (en) Failure detection device for variable valve engine
JP3565119B2 (en) Variable valve control device
JP3885456B2 (en) Variable valve control device
JP3820768B2 (en) Intake air density estimation device for variable valve engine
JP3733817B2 (en) Engine intake air amount control device
JP2000080938A (en) Controller for variable valve system engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090526

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees