JP3806951B2 - Method for producing γ-type glycine - Google Patents

Method for producing γ-type glycine Download PDF

Info

Publication number
JP3806951B2
JP3806951B2 JP15187395A JP15187395A JP3806951B2 JP 3806951 B2 JP3806951 B2 JP 3806951B2 JP 15187395 A JP15187395 A JP 15187395A JP 15187395 A JP15187395 A JP 15187395A JP 3806951 B2 JP3806951 B2 JP 3806951B2
Authority
JP
Japan
Prior art keywords
glycine
type
weight
parts
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15187395A
Other languages
Japanese (ja)
Other versions
JPH093015A (en
Inventor
靖浩 小菅
住男 征矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP15187395A priority Critical patent/JP3806951B2/en
Publication of JPH093015A publication Critical patent/JPH093015A/en
Application granted granted Critical
Publication of JP3806951B2 publication Critical patent/JP3806951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、グリシンの製造方法に関し、更に詳しくはγ型グリシンを製造する方法に関するものである。グリシンは加工食品の食品添加物や農薬、医薬の原料等として広く使用されている。
【0002】
【従来の技術】
従来、グリシンの合成方法としては、モノクロル酢酸のアミノ化法、ストレッカー法、ヒダントイン法等が知られている。また、この様にして得られるグリシンの結晶型には、α、β、γ型の3種類が存在することが古くから知られている(Albrecht,G. and Corey,R.B. J.Amer.Chem.Soc.,第61巻、1087(1939)、Iitaka,Y.,ActaCryst.,第11巻、225(1958) 、Iitaka,Y.,Acta Cryst., 第13巻、35(1960)等)。一方、工業的単離法としては、通常の冷却析晶、濃縮晶析、溶媒晶析などで行われており、この様にして得られるα型のグリシン製品は、しばしば保存中に岩石状に強固に固結し、製造上、流通保存上、使用上に非常に大きな問題となっている。
【0003】
一方、上記問題点に対してγ型グリシンが固結に対して安定であるという知見からγ型を得る方法が開示されている。
その1つは、グリシンの飽和溶液にγ型グリシンを接種し撹拌下に徐冷することによりγ型グリシンを得る方法である(特許出願公告 平2-9018、大阪市立大学工学部応用化学化・平成元年度化学研究費補助金(総合研究A)研究成果報告書、280 (平成2年3月))。また、他の方法は、α型グリシンをγ型グリシン共存下かつ水分共存下に保ち、γ型グリシンに結晶状態で転移させる方法である(特許出願公告 平2-9019、大阪市立大学工学部応用化学化・平成元年度化学研究費補助金(総合研究A)研究成果報告書、280 (平成2年3月))。
【0004】
【発明が解決しようとする課題】
しかしながら、グリシンの飽和溶液にγ型グリシンを接種し徐冷する方法においては、冷却速度20℃/hr では、α型とγ型の混合型が得られ、安定的にγ型が得られるのは5 ℃/hr 以下とかなり緩慢であることから、装置的に大型あるいは多くの晶析槽が必要であり、大量生産には経済的に困難な方法といえる。
【0005】
一方、結晶状態でγ型グリシンに転移させる方法では、α型とγ型との共存である事が必須であり、工業的には、晶析工程でγ型グリシンを併産するか、あるいは転移前にγ型を添加して実施されるため煩雑なプロセスが必要とされる。また、上記条件での転移操作では処理時に凝集固結しやすいという大きな欠点を有し、商品化するためには粉砕等の操作が必要となる。以上のようにこの場合にも経済的に大量生産に不適であるといえる。
本発明の目的は、γ型グリシンを製造するにあたり、工業的に量産可能なγ型グリシンの製造方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明者らは、工業的に量産可能なγ型グリシンの製造方法を検討した結果、従来γ型の共存下でのみ可能であったγ型グリシンの製造を、高pHのグリシン水溶液中ではγ型グリシンを共存させることなく、スラリー状態でα型グリシンをγ型に転移させることによりγ型グリシンが得られることをみいだした。すなわち、本発明は、α型グリシンをスラリー状態(結晶状態)のまま、pH 10 14としたグリシン水溶液中に保ち、結晶状態でγ型グリシンに転移させることを特徴とするγ型グリシンの製造方法を提供するものである。
【0007】
以下、本発明を詳細に説明する。本発明におけるグリシン水溶液のpHは 10 14 である。グリシン水溶液のpHを調製するための添加剤には、例えば水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどのアルカリ金属あるいはアルカリ土類金属の水酸化物、炭酸塩あるいは酸化物、または、グリシンのアルカリ金属塩あるいはアルカリ土類金属塩等が用いられる。これらの添加剤は、pH 10 14の範囲でα型グリシンを転移させるのが主目的であり、添加剤の添加方法には制限されない。すなわち、予め、グリシン水溶液に添加され、後にα型グリシンが加えられても良く、または、α型グリシンをグリシン水溶液に加えた後に添加剤が添加されても良い。ただし、予め、グリシン水溶液をpH調整しておくことが連続装置の観点から好適である。また、用いられた添加剤は、通常の分離工程・洗浄工程を経ることによって製品に残存する事なく、除去が可能である。
【0008】
転移は室温でも進行するが、転移を促進するために加熱する事は有効である。
さらに、本発明の方法で得られたγ型グリシンは結晶状態で転移する際に凝集を起こす事がなく、分離工程・乾燥工程の後に粉砕等の処理を行う必要がない。
また、本発明の方法は連続式でも回分式でも行われる。
以下、本発明を実施例によりさらに詳しく説明する。
【0009】
【実施例】
実施例1
溶解槽に水2800重量部、グリシン700重量部を順次加え40℃としてグリシンを完全に溶解した。この溶液に水酸化ナトリウム35重量部を加えグリシン水溶液のpHを10とした。このグリシン水溶液にα型グリシン330重量部を加え均一に撹拌し、槽内の温度を40℃に保った。3 時間の後に槽内から一部スラリーを抜き出し、グリシン溶液とグリシン結晶とに固液分離し、得られたグリシン結晶についてIRスペクトルを測定したところ、70%がγ型に転移していることが確認された。さらに、1時間撹拌した後に同様の測定を行ったところ、100%γ型に転移が進行していることが確認された。得られたスラリーを、全量固液分離した後、グリシン結晶を水30重量部で洗浄してγ型グリシン320重量部を得た。
【0010】
実施例2
溶解槽に水1300重量部、グリシン700重量部を順次加え70℃としてグリシンを完全に溶解した。この溶液に水酸化ナトリウム35重量部を加えグリシン水溶液のpHを10とした。このグリシン水溶液にα型グリシン330重量部を加え均一に撹拌し、槽内の温度を70℃に保った。3時間の後にグリシン溶液とグリシン結晶を固液分離した後、グリシン結晶を水30重量部で洗浄して得られたグリシン結晶についてIRスペクトルを測定したところ、100 %γ型である事を確認した。
【0011】
実施例3
溶解槽に水2800重量部、グリシン700重量部を順次加え40℃としてグリシンを完全に溶解した。この溶液に水酸化ナトリウム70重量部を加えグリシン水溶液のpHを12とした。このグリシン水溶液にα型グリシン330重量部を加え均一に撹拌し、槽内の温度を40℃に保った。3時間の後にグリシン溶液とグリシン結晶を固液分離した後、グリシン結晶を水30重量部で洗浄して得られたグリシン結晶についてIRスペクトルを測定したところ、100 %γ型である事を確認した。
【0012】
実施例4
溶解槽に水2800重量部、グリシン700重量部、水酸化ナトリウム35重量部を順次加え40℃としてグリシンを完全に溶解し、グリシンン水溶液のpHを10とした。この溶液にα型グリシン330重量部を加え均一に撹拌し、槽内の温度を40℃に保った。該溶解槽に、α型グリシンを110重量部/ 時間で連続的に投入した。同時に溶解槽からグリシン溶液と結晶の混合物を1290重量部/ 時間で連続的に抜き出した。さらに、抜き出したグリシン溶液とグリシン結晶を連続的に固液分離した後、得られたグリシン結晶についてIRスペクトルを測定したところ100 %γ型である事を確認した。また、分離された濾液は連続的溶解槽に回収された。
【0013】
比較例
溶解槽に水1300重量部、グリシン700重量部を順次加え70℃としてグリシンを完全に溶解した。この時グリシン水溶液のpHは6 であった。このグリシン水溶液にα型グリシン330重量部を加え均一に撹拌し、槽内の温度を70℃に保った。8時間の後に槽内から一部スラリーを抜き出し、グリシン溶液とグリシン結晶とに固液分離し、得られたグリシン結晶についてIRスペクトルを測定したところ100 %α型であった。
【0014】
【発明の効果】
γ型グリシンの製造方法において、晶析工程で特にγ型グリシンを添加することなく、α型グリシンをγ型グリシンへ転移させることができ、工程の簡易化された工業的な製法を提供することができる。
[0001]
[Industrial application fields]
The present invention relates to a method for producing glycine, and more particularly to a method for producing γ-type glycine. Glycine is widely used as a food additive for processed foods, agricultural chemicals, pharmaceutical raw materials and the like.
[0002]
[Prior art]
Conventionally, as a method for synthesizing glycine, amination method of monochloroacetic acid, Strecker method, hydantoin method and the like are known. Further, it has been known for a long time that there are three types of α, β, and γ types in the crystal form of glycine thus obtained (Albrecht, G. and Corey, RBJAmer. Chem. Soc., 61, 1087 (1939), Iitaka, Y., ActaCryst., 11, 225 (1958), Iitaka, Y., Acta Cryst., 13, 35 (1960), etc.). On the other hand, as industrial isolation methods, ordinary cooling crystallization, concentration crystallization, solvent crystallization, and the like are performed, and α-type glycine products obtained in this way are often formed into rocks during storage. It is firmly consolidated and is a very big problem in manufacturing, distribution and storage.
[0003]
On the other hand, a method for obtaining γ-type from the knowledge that γ-type glycine is stable against caking is disclosed.
One of them is a method of obtaining γ-type glycine by inoculating γ-type glycine into a saturated solution of glycine and slowly cooling it under stirring (Patent Application Publication No. Hei 2-9018, Faculty of Engineering, Osaka City University) 1st Year Chemical Research Grants (General Research A) Research Results Report, 280 (March 1990)). Another method is to maintain α-glycine in the coexistence of γ-type glycine and in the presence of water, and transfer it to γ-type glycine in a crystalline state (Patent Application Publication Hei 2-9019, Osaka City University, Faculty of Engineering, Applied Chemistry). Chemical Research Fund Subsidy (General Research A) Research Results Report, 280 (March 1990)).
[0004]
[Problems to be solved by the invention]
However, in the method in which γ-type glycine is inoculated into a saturated solution of glycine and slowly cooled, α-type and γ-type mixed types can be obtained at a cooling rate of 20 ° C / hr, and γ-type can be stably obtained. Since it is quite slow at 5 ° C / hr or less, it requires a large crystallization tank or a large number of crystallization tanks, making it an economically difficult method for mass production.
[0005]
On the other hand, in the method of transferring to γ-type glycine in the crystalline state, coexistence of α-type and γ-type is essential, and industrially, γ-type glycine is co-produced in the crystallization process or transferred. Since the γ-type is added before, a complicated process is required. In addition, the transfer operation under the above conditions has a major drawback that it tends to agglomerate and consolidate during processing, and operations such as pulverization are required for commercialization. As described above, this case is also economically unsuitable for mass production.
An object of the present invention is to provide a method for producing γ-type glycine which can be industrially mass-produced when producing γ-type glycine.
[0006]
[Means for Solving the Problems]
As a result of examining the production method of γ-type glycine that can be industrially mass-produced, the present inventors have found that the production of γ-type glycine, which was conventionally possible only in the presence of the γ-type, can be carried out in a high pH glycine aqueous solution. It has been found that γ-type glycine can be obtained by transferring α-type glycine to γ-type in a slurry state without coexisting type-glycine. That is, the present invention relates to the production of γ-type glycine characterized in that α-type glycine is kept in a slurry state (crystalline state) in a glycine aqueous solution having a pH of 10 to 14 and transferred to γ-type glycine in the crystalline state. A method is provided.
[0007]
Hereinafter, the present invention will be described in detail. The pH of the aqueous glycine solution in the present invention is 10-14. Examples of additives for adjusting the pH of aqueous glycine solutions include hydroxides, carbonates or oxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide and calcium hydroxide, or glycine. Alkali metal salts or alkaline earth metal salts are used. These additives are mainly intended to transfer α-glycine within a pH range of 10 to 14 , and are not limited by the method of adding the additive. That is, the α-type glycine may be added to the glycine aqueous solution in advance and the α-type glycine may be added later, or the additive may be added after the α-type glycine is added to the glycine aqueous solution. However, it is preferable to adjust the pH of the glycine aqueous solution in advance from the viewpoint of a continuous device. Further, the used additive can be removed without remaining in the product through a normal separation step and washing step.
[0008]
Although the transition proceeds even at room temperature, it is effective to heat to promote the transition.
Furthermore, the γ-type glycine obtained by the method of the present invention does not cause aggregation when it is transferred in a crystalline state, and it is not necessary to perform a treatment such as pulverization after the separation step and the drying step.
In addition, the method of the present invention can be carried out continuously or batchwise.
Hereinafter, the present invention will be described in more detail with reference to examples.
[0009]
【Example】
Example 1
2800 parts by weight of water and 700 parts by weight of glycine were sequentially added to the dissolution tank, and the temperature was 40 ° C. to completely dissolve glycine. To this solution, 35 parts by weight of sodium hydroxide was added to adjust the pH of the glycine aqueous solution to 10. To this aqueous glycine solution, 330 parts by weight of α-type glycine was added and stirred uniformly, and the temperature in the tank was kept at 40 ° C. After 3 hours, a part of the slurry was withdrawn from the tank and separated into a glycine solution and a glycine crystal. When the IR spectrum of the resulting glycine crystal was measured, 70% had been transferred to the γ-type. confirmed. Further, when the same measurement was performed after stirring for 1 hour, it was confirmed that the transition was progressing to 100% γ type. The obtained slurry was subjected to solid-liquid separation, and the glycine crystals were washed with 30 parts by weight of water to obtain 320 parts by weight of γ-type glycine.
[0010]
Example 2
1300 parts by weight of water and 700 parts by weight of glycine were sequentially added to the dissolution tank, and the temperature was raised to 70 ° C. to completely dissolve glycine. To this solution, 35 parts by weight of sodium hydroxide was added to adjust the pH of the glycine aqueous solution to 10. To this aqueous glycine solution, 330 parts by weight of α-type glycine was added and stirred uniformly, and the temperature in the tank was kept at 70 ° C. After 3 hours, the glycine solution and the glycine crystal were solid-liquid separated, and then the IR spectrum of the glycine crystal obtained by washing the glycine crystal with 30 parts by weight of water was measured and confirmed to be 100% gamma type. .
[0011]
Example 3
2800 parts by weight of water and 700 parts by weight of glycine were sequentially added to the dissolution tank, and the temperature was 40 ° C to completely dissolve glycine. To this solution, 70 parts by weight of sodium hydroxide was added to adjust the pH of the glycine aqueous solution to 12. To this aqueous glycine solution, 330 parts by weight of α-type glycine was added and stirred uniformly, and the temperature in the tank was kept at 40 ° C. After 3 hours, the glycine solution and the glycine crystal were solid-liquid separated, and then the IR spectrum of the glycine crystal obtained by washing the glycine crystal with 30 parts by weight of water was measured and confirmed to be 100% gamma type. .
[0012]
Example 4
In the dissolution tank, 2800 parts by weight of water, 700 parts by weight of glycine and 35 parts by weight of sodium hydroxide were successively added to bring the solution to 40 ° C. to completely dissolve glycine, and the pH of the aqueous glycine solution was adjusted to 10. To this solution, 330 parts by weight of α-glycine was added and stirred uniformly, and the temperature in the tank was kept at 40 ° C. Α-glycine was continuously charged into the dissolution tank at 110 parts by weight / hour. At the same time, a mixture of glycine solution and crystals was continuously extracted from the dissolution tank at 1290 parts by weight / hour. Further, the extracted glycine solution and the glycine crystal were continuously solid-liquid separated, and the IR spectrum of the obtained glycine crystal was measured. As a result, it was confirmed to be 100% γ type. The separated filtrate was recovered in a continuous dissolution tank.
[0013]
In a comparative dissolution tank, 1300 parts by weight of water and 700 parts by weight of glycine were sequentially added to 70 ° C. to completely dissolve glycine. At this time, the pH of the aqueous glycine solution was 6. To this aqueous glycine solution, 330 parts by weight of α-type glycine was added and stirred uniformly, and the temperature in the tank was kept at 70 ° C. After 8 hours, a part of the slurry was withdrawn from the tank, solid-liquid separated into a glycine solution and a glycine crystal, and the IR spectrum of the obtained glycine crystal was measured to be 100% α-type.
[0014]
【The invention's effect】
In the method for producing γ-type glycine, it is possible to transfer α-type glycine to γ-type glycine without adding γ-type glycine in the crystallization step, and to provide an industrial production method with a simplified process. Can do.

Claims (1)

γ型グリシンを製造する方法において、α型グリシンをスラリー状態のまま、pHを10 14としたグリシン水溶液中に保ち、結晶状態でγ型グリシンに転移させることを特徴とするγ型グリシンの製造方法。In the method for producing γ-type glycine, the production of γ-type glycine, characterized in that α-type glycine is kept in a slurry state, kept in a glycine aqueous solution having a pH of 10 to 14, and transferred to γ-type glycine in a crystalline state Method.
JP15187395A 1995-06-19 1995-06-19 Method for producing γ-type glycine Expired - Fee Related JP3806951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15187395A JP3806951B2 (en) 1995-06-19 1995-06-19 Method for producing γ-type glycine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15187395A JP3806951B2 (en) 1995-06-19 1995-06-19 Method for producing γ-type glycine

Publications (2)

Publication Number Publication Date
JPH093015A JPH093015A (en) 1997-01-07
JP3806951B2 true JP3806951B2 (en) 2006-08-09

Family

ID=15528083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15187395A Expired - Fee Related JP3806951B2 (en) 1995-06-19 1995-06-19 Method for producing γ-type glycine

Country Status (1)

Country Link
JP (1) JP3806951B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4557280B2 (en) * 2003-12-02 2010-10-06 旭化成ケミカルズ株式会社 Method for producing glycine
JP4587694B2 (en) 2004-04-07 2010-11-24 旭化成ケミカルズ株式会社 Method for separating and recovering amino acid and iminodicarboxylic acid
RU2471372C1 (en) * 2011-07-13 2013-01-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) Method for production of gamma glycine from solutions
KR102491010B1 (en) * 2021-09-07 2023-01-20 경희대학교 산학협력단 Method for producing stable-phase crystals using physical grinding

Also Published As

Publication number Publication date
JPH093015A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
JP3854765B2 (en) Method for purifying long-chain dicarboxylic acids
JPWO2002032854A1 (en) Method for producing nateglinide crystals
JP3806951B2 (en) Method for producing γ-type glycine
CN103167872B (en) For the production of the method for VBT tartrate
JPS5848554B2 (en) Manufacturing method of nicotinamide
CN115676788B (en) High-purity potassium dihydrogen phosphate and preparation method thereof
JPH11158140A (en) Production of methionine
CN110467537B (en) Preparation process of L-p-hydroxyphenylglycine
US3931316A (en) Method of preparing O-methyl-isourea hydrogen sulfate and O-methyl-isourea sulfate from cyanamide
JPH0351713B2 (en)
JPH0967322A (en) Continuous production of gamma-glycine
US2557326A (en) Purification and recovery of crystals of metal salts
US3278572A (en) Improvement in producing zinc glutamate
JP3890642B2 (en) Continuous production method of alkali metal styrene sulfonate
EP1028106B1 (en) Process for the preparation of guanidine derivatives
US3812188A (en) Purification of 7-chlorotetracycline
US3974215A (en) Process for directly obtaining the calcium and magnesium salts of the N-acetyl-amino-6-hexanoic acid from acetyl-caprolactame
JPS5834468B2 (en) Production method of nitro↓-Armstrong's acid magnesium salt
US2764612A (en) Process for preparing salts of glutamic acid
JP2001247529A (en) Method of producing alpha-amino acid amide
US3772374A (en) Process for preparing alkali metal nitrilotriacetates
US2388189A (en) Amino acid synthesis
JP3908794B2 (en) Process for producing N-substituted unsaturated amides
JPH0761957A (en) Production of n-mixed saturated fatty acid acyl neutral amino acid
US2724724A (en) Preparation of concentrated solutions of alkylchlorophenoxyacetates

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060508

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150526

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees