JP3806732B2 - Plant growth container - Google Patents

Plant growth container Download PDF

Info

Publication number
JP3806732B2
JP3806732B2 JP2003037297A JP2003037297A JP3806732B2 JP 3806732 B2 JP3806732 B2 JP 3806732B2 JP 2003037297 A JP2003037297 A JP 2003037297A JP 2003037297 A JP2003037297 A JP 2003037297A JP 3806732 B2 JP3806732 B2 JP 3806732B2
Authority
JP
Japan
Prior art keywords
cylinder
fiber
plant
thin film
biodegradability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003037297A
Other languages
Japanese (ja)
Other versions
JP2004242604A (en
Inventor
利行 饗庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanwa Tekki Corp
Original Assignee
Sanwa Tekki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanwa Tekki Corp filed Critical Sanwa Tekki Corp
Priority to JP2003037297A priority Critical patent/JP3806732B2/en
Publication of JP2004242604A publication Critical patent/JP2004242604A/en
Application granted granted Critical
Publication of JP3806732B2 publication Critical patent/JP3806732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Biological Depolymerization Polymers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生分解性素材で筒状に形成したものであって、主として砂丘や砂漠地等の砂地に樹木の苗を植え付けたり、長芋・牛蒡・長大根のような長尺根菜類の苗を植え付けて砂地で育成するために、苗とともに砂地中に埋め込んで使用する植物育成用の容体に関するものである。
【0002】
【従来の技術】
従来から、花卉や野菜類の育苗のために広く使用されている育苗ポットは、周知のごとく黒色の塩化ビニール製薄膜シートをブロー成形手段等によって小さな植木鉢形に膨出成形したものや、樹木苗の挿し木や育成には、土中への直播きや直挿しか樹脂製や素焼き製の植木鉢が使用されている。
【0003】
【発明が解決しようとする課題】
しかしながら、薄い合成樹脂シート製の育苗ポットや樹脂製の植木鉢にあっては、ポット壁や鉢壁から吸気・吸水や栄養分を吸収することができないため、根が蒸れ易く、潅水による養分補給を待たなければならないため、所定の大きさ以上には生育しにくくなり、成長が停滞し、素焼き鉢の場合をも含め、他の大形鉢や畑地等への植え替え時には育苗土を育苗ポットや鉢から取り出す必要があり、この植え替え作業時に育成苗や挿し木の根が損傷し易く、植え替え後の成育に一時的な成長障害を来すことが避けられない。また、薄い合成樹脂シート製育苗ポットや樹脂製植木鉢にあっては、使用後不要となったときの廃棄処分が大気汚染や土壌汚染のような環境汚染や公害問題を引き起こすという懸念も存在するものであった。
【0004】
そこで、本発明は、これら従来から使用されている樹脂シート製の育苗ポットや植木鉢が有していた上記課題を技術解決することができる、育苗ポットや植木鉢、挿し木用育成容器等として、並びに樹木苗育成用の容器として使用することができる植物育成用容体をここに提供しようとするものである。
【0005】
而して、本発明の第1の目的は、栄養分が殆ど無く水分の乏しい砂丘地や砂漠地のような砂地であっても、樹木や長尺根菜類等の苗を育成し、成長させることができる植物育成用容体を提供することにある。
【0006】
第2の目的は、育苗容器として所定の大きさに挿し木や苗を育成した後に、所定の定植地に容体ごと埋め込んで育成苗を継続的に育成成長させることができる容体であって、生分解する筒本体と、その外周を生分解期間の長い薄膜体で覆わせることによって、地中に埋め込んだ後における生分解期間を、育成する苗の種類や苗の成長予測に従って最適期間に適するように調整してある植物育成用容体を提供することにある。
【0007】
第3の目的は、廃材として原野に放置されたり廃棄されたりしている未利用・未活用の植物繊維を主材料として積極的に活用し、生分解する筒本体を形成することにより、育成苗の根と接する筒本体それ自体が、微細な気孔を有し地上にあっては苗根が蒸れることなく生育し、筒本体の繊維に直接食い込んで根張りの良い状態で安定良く生育させることができる廉価な植物育成用容体を提供することにある。
【0008】
第4の目的は、このような繊維製植物育成用容体の筒本体を形成する前記植物繊維素材中に、予め防腐効果を発揮する炭化繊維のような混合材や、肥料効果を有する骨粉のような混合材を混合させてあるものとすることによって、根腐れを起こすことなく肥料の供給を受けながら良好な生育を続けることが出来る植物育成用容体を提供することにある。
【0009】
【課題を解決するための手段】
これらの目的を達成するために講じた本発明にいう繊維製植物育成用容体の第1の構成は、植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0010】
また、第2の構成は、竹繊維と、葦繊維と、パーム繊維とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0011】
第3の構成は、重量比10〜30%の竹繊維と、重量比60〜20%の葦繊維と、重量比30〜50%のパーム繊維とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0012】
第4の構成は、重量比10〜30%の竹繊維と、重量比60〜20%の葦繊維と、重量比30〜50%のパーム繊維とを主体成分として混合した植物繊維素材に、骨粉・貝殻粉等のカルシウム系素材粉末又は鶏糞粉末若しくはその両素材からなる補助材と、少量の尿素とを混合した混合素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0013】
第5の構成は、竹繊維と、イネ科植物又はマメ科植物の煮沸繊維と、植物素材を加熱処理して炭化させた炭素化植物材とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0014】
第6の構成は、竹繊維と、イネ科植物又はマメ科植物の煮沸繊維と、植物素材を加熱処理して炭化させた炭素化植物材とを主体成分として混合した植物繊維素材に、骨粉・貝殻粉等のカルシウム系素材粉末又は鶏糞粉末若しくはその両素材からなる補助材と、少量の尿素とを混合した混合素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比して薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造に形成してある構成としたものである。
【0015】
【発明の実施の形態】
本発明の植物育成用容体にいうところの筒本体1を形成するに当たっては、底が存在する有底筒としたり、使用目的によっては底のない筒体のみからなるものとして実施することが出来る。また、前記第1乃至第6の構成にいうところの何れか一つの素材を使用したものであっても、筒壁1aの肉厚を変化させることによって、生分解期間を変化調整することができるものである。また、筒径や筒長は生育苗の種類や品種等に応じて適宜に形成されるものである。なお、筒の形状は円筒であることが汎用性があって好ましいが、例えば、六角形筒や八角形筒のような多角形筒のものとして実施することができるものであって、円筒体のみに限定されるものではない。
【0016】
他方、前記薄膜筒体2にあっても、有底筒のものとしたり、底なしのものとして実施することが出来るものである。また、その使用素材としては、例えば、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリビニールアルコール等の不織布が価格的に廉価である点で好ましいが、織布、編組布等を用いてもよい。以下において、その具体的な実施例について説明する。
【0017】
【実施例】
図は、本発明にいうところの植物育成用容体についての一実施例形態を説明する図であって、図1は、筒本体1と底部材11とを示す正面上方向から見た斜視図。図2は、薄膜筒体2の製造手段を示す正面上方向から見た斜視図。図3は、薄膜筒体2を示す正面上方向から見た斜視図。図4は、筒本体1と薄膜筒体2との合体手段を示す正面上方向から見た斜視図。図5は、筒本体1の外周に薄膜筒体2を外嵌させて二層構造とした状態を示す正面上方向から見た斜視図である。
【0018】
先ず、第1実施例として、樹木苗の育成に使用するのに適した植物育成用容体についての素材と製造手段について説明する。該植物育成用容体の筒本体1を製造する素材例としては、竹を打圧圧壊して得た煮沸されていない竹繊維約20重量部と、煮沸した葦の繊維約40重量部と、シュロやヤシのような熱帯植物からなるパーム(palm)繊維約40重量部とを主体成分として混合した植物繊維素材に対して、蕎麦殻又は茶殻若しくはそのそれぞれを焙煎して炭化させたものを約10重量部前後と、尿素約10重量部(必要に応じて窒素、リン酸等のほか、マグネシウムやマンガン、硼素等も加えればよい)と、竹酢液又は木酢液若しくはその両液を約5重量部とを混入し、適量の水を加えて全体を均一に撹拌混合し泥状に練ったものを成型用素材とする。
【0019】
この成型用素材を、吸湿軟化状態程度となるまで予め余分な水分を除去して圧縮成型金型に入れ、温度200℃、圧力3Kg/cm2の条件下で20〜30秒かけてプレス成形させ、図1にみられるような所要径、所要肉厚、所要長さの円筒体1と、所要肉厚の円盤形底部材11とを形成する。その大きさの一例としては、外径100mm、内径90mm、即ち筒壁1aの肉厚5mm、長さ300mmとした円筒体1と、肉厚5mm、直径90mmとした円盤形底部材11とを形成する。この底部材11には円盤の中央部に10mmの水抜き穴12を形成してあるものとする。この底部材11を円筒体1の一方の開口部(同図において下方の開口部)に押圧状に嵌め込む。
【0020】
このようにして形成された円筒体1は、その表面に微細な凹凸を有し、水分や空気が浸透する微細な孔を備えている。また、時間の経過とともに微生物によって生分解する性質を備えている。それ自体分解とともに育成苗に対する栄養素としての役割を果たす。
【0021】
次に、図2及び図3に基づいて、薄膜筒体2を製造する素材例について説明すると、前記のように、ポリ乳酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリビニールアルコール等の生分解性を備えた素材で形成した不織布3aを用いる。ここでは、例えば乳酸ポリマーの不織布3aを図2のように二つ折りとし、その内長が前記円筒体1の外周面の長さにほぼ見合う長さ、即ち、前記事例では100mm×π(円周率)+α(付加量)の箇所で長さ300mm縫製2bし、縫い代を加えた長さ部分で裁断したものと、別途円盤形に裁断した素材3bを底部材21として、前記縫い代部分と縫い合わせて、図3のように、筒状となるように形成する。この底部材21も、その円盤中央部に×形の水抜き用切り込み22を形成してあるものとする。
【0022】
このようにして形成した薄膜筒体2も、薄膜の不織布であることと素材原料との関係で透水性と生分解性とを備えている。この生分解期間は、筒本体1に比して長期間維持するように設定されている。
【0023】
次いで、図4に示したように、この薄膜筒体2に対して矢印のように筒本体1を挿入することにより、図5に示したように、筒本体1の外周に薄膜筒体2を外嵌させて内外二層構造に形成した植物育成用容体が得られる。
【0024】
このようにして得た植物育成用容体は、地上において使用する場合の苗育成土投入後の形状維持期間を、例えば、筒本体1を平均60日〜80日、薄膜筒体2を平均2.5年〜3年に設定し、地中に埋め込んだ生分解期間を、例えば、筒本体1を平均25日〜40日、薄膜筒体2を平均2年〜2.5年に設定し、何れの場合も、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定しておく。
【0025】
以上本発明の代表的と思われる実施例について説明したが、本発明は必ずしもこの実施例に示した素材のみに限定されるものではなく、他の繊維素材や肥料等を適宜付加して実施することができるものであって、本発明にいう構成要件を備え、かつ、本発明にいう前記の目的を達成し、以下にいう効果を有する範囲内において適宜改変して実施することができるものである。
【0026】
【発明の効果】
以上の説明から明らかなように、本発明にいう植物育成用容体は、樹木苗の育成の場合は、地中への植え込みを終えるとそのままにしておくことによって、筒本体及び薄膜筒体がともに育成樹木の生育とともに自然分解し、樹木の肥料として作用し成長を促進させることができる。また、例えば長芋や牛蒡、長大根のような長尺の根菜類を育成する場合は、地中においてその生育とともに筒本体が自然分解し肥料として作用し、薄膜筒体は根菜類の形状を異常に変形しないように規制する作用をなす。また、収穫時には薄膜筒体を引き抜くことによって、収穫根菜類を痛めることなく収穫することができる。殊に、栄養素が少なく乾燥の激しい砂地において、樹木の植林に役立ち、根菜類の収穫を行うことに役立つという従来の育苗ポットや植木鉢では到底期待することができなかった顕著な効果を発揮するものである。
【0027】
また、本発明にいうところの植物育成用容体は、筒本体を構成する主体素材が繊維であるため、植物育成用容体が微細な気孔を有しているので、根を張り易く、地上にあっては苗根が蒸れることなく健康に生育し、地中に配置する場合をも含めて、苗の根が筒本体の繊維内に直接食い込んで根張りの良い状態で安定良く継続的に生育させることができる効果がある。しかも、主体素材としての植物繊維は、廃材として原野に放置されている未利用材や廃棄植物の繊維を再利用し、薄膜筒体を含めて容体全体が利用後は土に返すことができるので、環境浄化の一助となるという効果をも有するものである。
【図面の簡単な説明】
【図1】筒本体を示した斜視図。
【図2】薄膜筒体の製造手段を説明する斜視図。
【図3】薄膜筒体を示した斜視図。
【図4】植物育成用容体の組み立て手段を説明する斜視図。
【図5】植物育成用容体を示す斜視図。
【符号の説明】
1 筒本体
11 底部材
2 薄膜筒体
21 底部材
[0001]
BACKGROUND OF THE INVENTION
The present invention is formed of a biodegradable material in a cylindrical shape, mainly planting tree seedlings in sandy areas such as sand dunes and desert areas, or seedlings of long-rooted vegetables such as long bean, gyudon and long radish This invention relates to a plant-growing container that is used by being embedded in a sand ground together with seedlings in order to plant and grow in the sand.
[0002]
[Prior art]
Conventionally, seedling pots widely used for seedling of flower buds and vegetables are, as is well known, black vinyl chloride thin film sheets swelled into small flower pots by blow molding means, etc. For cuttings and nurturing, planting pots made of resin or unglazed wood are used only for direct sowing and direct insertion in the soil.
[0003]
[Problems to be solved by the invention]
However, in a seedling pot made of a thin synthetic resin sheet or a flower pot made of resin, since the inhalation, water absorption, and nutrients cannot be absorbed from the pot wall or pot wall, the roots are easily stuffy, and waiting for replenishment of nutrients by irrigation Therefore, it will be difficult to grow beyond the specified size, growth will be stagnant, and even if it is an unglazed pot, the seedling soil will be used as a seedling pot or pot when replanting to other large pots or upland fields. The roots of the seedlings and cuttings are apt to be damaged during the replanting operation, and it is inevitable that the growth after the replanting causes temporary growth failure. In addition, in the case of thin synthetic resin sheet seedling pots and resin flower pots, there is a concern that disposal when it becomes unnecessary after use will cause environmental pollution and pollution problems such as air pollution and soil pollution. Met.
[0004]
Therefore, the present invention is capable of solving the above-mentioned problems that the conventional seedling pots and flower pots made of resin sheets have used, and as a seedling pot, a flower pot, a growing container for cuttings, etc. An object for plant growth that can be used as a container for seedling growth is to be provided here.
[0005]
Thus, the first object of the present invention is to grow and grow seedlings such as trees and long root vegetables even in sandy areas such as sand dunes and desert areas with little nutrients and low moisture. An object of the present invention is to provide a plant-growing container that can be used.
[0006]
The second purpose is a container that can grow and grow seedlings and seedlings in a predetermined size as a seedling container, and then embed the whole container in a predetermined fixed planting area to continuously grow and grow the seedlings. By covering the cylinder body and the outer periphery with a thin film with a long biodegradation period, the biodegradation period after embedding in the ground is suitable for the optimal period according to the type of seedling to be grown and the growth prediction of the seedling. The object is to provide an adjusted plant-growing container.
[0007]
The third purpose is to actively use unused and unused plant fibers that have been left in the wild as a waste material or to be discarded as a main material, and to form a biodegradable cylinder body. The tube itself that contacts the roots of the tube itself has fine pores, so that the seedling roots can grow without being steamed on the ground, and can grow directly and stably grow in a well-rooted state by eating directly into the fibers of the tube body. The object is to provide an inexpensive plant-growing container that can be produced.
[0008]
The fourth object is to use a mixture material such as carbonized fiber that exhibits a preservative effect in advance, or bone powder having a fertilizer effect in the plant fiber material that forms the tube body of such a fiber plant-growing container. An object of the present invention is to provide a plant-growing container capable of continuing good growth while receiving supply of fertilizer without causing root rot by mixing a suitable mixed material.
[0009]
[Means for Solving the Problems]
In order to achieve these objects, the first configuration of the fiber plant growing container referred to in the present invention is formed into a cylinder by a plant fiber material, and is a cylinder having hydrophilicity and biodegradability. It consists of a main body 1 and a thin film cylinder 2 formed of a fiber thin film material and having water permeability and biodegradability. The biodegradation period of the thin film cylinder 2 is longer than that of the cylinder main body 1. It is set to be maintained, and is configured to have a two-layer structure in which a thin film cylinder 2 is fitted on the outer periphery of the cylinder body 1.
[0010]
Moreover, the 2nd structure is the cylinder main body 1 which was press-molded by the plant fiber material which mixed the bamboo fiber, the straw fiber, and the palm fiber as a main component, and was hydrophilic and biodegradable. And a thin-film cylinder 2 formed in a fiber-like thin film material and having water permeability and biodegradability, and the biodegradation period of the thin-film cylinder 2 is maintained for a longer time than the cylinder main body 1. It is set as mentioned above, and it is set as the structure currently formed in the two-layer structure formed by making the thin film cylinder 2 fit on the outer periphery of the said cylinder main body 1. FIG.
[0011]
3rd composition is cylindrical with the vegetable fiber material which mixed the bamboo fiber of 10-30% of weight ratio, the straw fiber of 60-20% of weight ratio, and the palm fiber of 30-50% of weight ratio as a main component. A cylindrical body 1 having a hydrophilicity and biodegradability, and a thin-film cylinder 2 having a water permeability and biodegradability. The structure which is set so that the biodegradation period of the thin film cylinder 2 may be maintained for a long time as compared with the cylinder main body 1 and is formed in a two-layer structure in which the thin film cylinder 2 is fitted on the outer periphery of the cylinder main body 1 It is what.
[0012]
The fourth composition is a bone meal mixed with a vegetable fiber material in which bamboo fibers having a weight ratio of 10 to 30%, straw fibers having a weight ratio of 60 to 20%, and palm fibers having a weight ratio of 30 to 50% are mixed as main components.・ Pressurized in a cylindrical shape with a mixture of calcium-based material powder such as shellfish powder, chicken dung powder or both, and a small amount of urea, with hydrophilicity and biodegradability The cylinder main body 1 and the thin film cylinder 2 formed of a fiber thin film material and having water permeability and biodegradability are provided. The biodegradation period of the thin film cylinder 2 is longer than that of the cylinder main body 1. It is set to be maintained for a period, and is configured to have a two-layer structure in which a thin film cylinder 2 is fitted on the outer periphery of the cylinder body 1.
[0013]
The fifth configuration is a cylindrical shape made of a plant fiber material in which bamboo fibers, a boiled fiber of a grass family or legume plant, and a carbonized plant material obtained by carbonizing a plant material by heat treatment are mixed as main components. A cylinder body 1 which is pressure-molded and has hydrophilicity and biodegradability, and a thin film cylinder 2 which is formed of a fiber thin film material and has water permeability and biodegradability. A structure that is set so as to maintain the biodegradation period of the thin film cylinder 2 for a long time as compared with the main body 1 and is formed in a two-layer structure in which the thin film cylinder 2 is fitted on the outer periphery of the cylinder main body 1 It is a thing.
[0014]
The sixth configuration is a plant fiber material in which bamboo fiber, a boiled fiber of a gramineous plant or a leguminous plant, and a carbonized plant material obtained by carbonizing a plant material by heat treatment are mixed as a main component, A cylinder that is hydrophilic and biodegradable, pressed into a cylinder by a mixed material that is a mixture of calcium-based material powder such as shellfish powder, chicken dung powder, or both, and a small amount of urea. It consists of a main body 1 and a thin film cylinder 2 formed of a fiber thin film material and having water permeability and biodegradability. The biodegradation period of the thin film cylinder 2 is longer than that of the cylinder main body 1. It is set to be maintained for a period, and is configured to have a two-layer structure in which a thin film cylinder 2 is fitted on the outer periphery of the cylinder body 1.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In forming the tube main body 1 as referred to in the plant growing container of the present invention, it can be implemented as a bottomed tube having a bottom or only a tube without a bottom depending on the purpose of use. In addition, even if any one of the materials in the first to sixth configurations is used, the biodegradation period can be changed and adjusted by changing the thickness of the cylindrical wall 1a. Is. Moreover, a cylinder diameter and a cylinder length are suitably formed according to the kind, breed, etc. of growing seedlings. In addition, although it is versatile and preferable that the shape of the cylinder is a cylinder, for example, it can be implemented as a polygonal cylinder such as a hexagonal cylinder or an octagonal cylinder, and only the cylindrical body It is not limited to.
[0016]
On the other hand, even if it exists in the said thin film cylinder 2, it can be implemented as a thing with a bottomed cylinder or a thing without a bottom. In addition, as the material used, for example, a nonwoven fabric such as polylactic acid, polycaprolactone, polybutylene succinate, polyethylene succinate, and polyvinyl alcohol is preferable because it is inexpensive, but woven fabric, braided fabric, etc. It may be used. In the following, specific examples will be described.
[0017]
【Example】
FIG. 1 is a diagram for explaining an embodiment of a plant-growing container according to the present invention. FIG. 1 is a perspective view showing a tube main body 1 and a bottom member 11 as seen from the front upper direction. FIG. 2 is a perspective view of the thin-film cylinder 2 as viewed from the front and showing the manufacturing means. FIG. 3 is a perspective view of the thin film cylinder 2 as seen from the front upper direction. FIG. 4 is a perspective view seen from above the front showing the uniting means of the cylinder body 1 and the thin film cylinder 2. FIG. 5 is a perspective view seen from above the front showing a state in which the thin film cylinder 2 is fitted on the outer periphery of the cylinder body 1 to form a two-layer structure.
[0018]
First, as a first embodiment, materials and production means for a plant growing container suitable for use in growing tree seedlings will be described. Examples of materials for producing the tube body 1 of the plant-growing container include about 20 parts by weight of non-boiled bamboo fibers obtained by crushing and crushing bamboo, about 40 parts by weight of boiled straw fibers, Approximately 10 parts of roasted and / or carbonized buckwheat husk or tea husk or each of the plant fiber material mixed with about 40 parts by weight of palm fiber made of a tropical plant such as palm as a main component About 5 parts by weight of about 10 parts by weight of urea, about 10 parts by weight of urea (in addition to nitrogen, phosphoric acid, etc., magnesium, manganese, boron, etc. may be added) and bamboo vinegar or wood vinegar or both The mixture is mixed with an appropriate amount of water, and the whole is stirred and mixed uniformly and then kneaded into a mud.
[0019]
This molding material is preliminarily removed from excess moisture until it is in the hygroscopic softened state, put into a compression mold, and press molded at a temperature of 200 ° C. and a pressure of 3 kg / cm 2 for 20 to 30 seconds. A cylindrical body 1 having a required diameter, a required wall thickness, and a required length as shown in FIG. 1 and a disk-shaped bottom member 11 having a required wall thickness are formed. As an example of the size, a cylindrical body 1 having an outer diameter of 100 mm and an inner diameter of 90 mm, that is, a wall thickness of 5 mm and a length of 300 mm, and a disk-shaped bottom member 11 having a thickness of 5 mm and a diameter of 90 mm are formed. To do. The bottom member 11 has a 10 mm drain hole 12 formed in the center of the disk. The bottom member 11 is fitted into one opening (the lower opening in the figure) of the cylindrical body 1 in a pressing manner.
[0020]
The cylindrical body 1 formed in this way has fine irregularities on its surface and has fine holes through which moisture and air permeate. It also has the property of biodegrading by microorganisms over time. It itself plays a role as a nutrient for growing seedlings along with decomposition.
[0021]
Next, an example of a material for manufacturing the thin film cylinder 2 will be described with reference to FIGS. 2 and 3. As described above, polylactic acid, polycaprolactone, polybutylene succinate, polyethylene succinate, polyvinyl alcohol, etc. A nonwoven fabric 3a formed of a material having biodegradability is used. Here, for example, the non-woven fabric 3a of lactic acid polymer is folded in two as shown in FIG. 2, and the inner length thereof is a length substantially corresponding to the length of the outer peripheral surface of the cylindrical body 1, that is, 100 mm × π (circumference in the above example). Rate) + α (additional amount) at the place of sewing 300mm length 2b, cut with the length portion with the seam allowance, and the material 3b separately cut into a disk shape as the bottom member 21 and stitched with the seam allowance portion As shown in FIG. 3, it is formed in a cylindrical shape. The bottom member 21 is also assumed to have an X-shaped drainage cut 22 formed in the center of the disk.
[0022]
The thin-film cylinder 2 formed in this way is also provided with water permeability and biodegradability due to the relationship between the thin-film nonwoven fabric and the raw material. This biodegradation period is set so as to be maintained for a long period of time compared to the cylinder body 1.
[0023]
Next, as shown in FIG. 4, by inserting the tube main body 1 into the thin film cylinder 2 as shown by the arrow, the thin film cylinder 2 is placed on the outer periphery of the tube main body 1 as shown in FIG. A plant-growing container that is externally fitted to form an inner / outer two-layer structure is obtained.
[0024]
The plant-growing container thus obtained has a shape maintenance period after the seedling-growing soil is introduced when used on the ground, for example, the cylinder body 1 has an average of 60 to 80 days, and the thin-film cylinder 2 has an average of 2. The biodegradation period set to 5 to 3 years and embedded in the ground, for example, the cylinder body 1 is set to an average of 25 to 40 days, the thin film cylinder 2 is set to an average of 2 to 2.5 years, In this case as well, the biodegradation period of the thin film cylinder 2 is set to be maintained for a long time as compared with the cylinder main body 1.
[0025]
As mentioned above, although the Example considered to be typical of this invention was described, this invention is not necessarily limited only to the raw material shown to this Example, It implements by adding another fiber raw material, a fertilizer, etc. suitably. The present invention can be implemented with appropriate modifications within the scope of the present invention, achieving the above-described object, and having the following effects. is there.
[0026]
【The invention's effect】
As is clear from the above description, the plant-growing container according to the present invention, in the case of growing tree seedlings, is left as it is after planting in the ground, so that both the tube main body and the thin film tube body Naturally decomposes along with the growth of the cultivated tree and can act as a fertilizer for the tree to promote growth. Also, for example, when growing long root vegetables such as long bean, beef bowl and daikon radish, the tube body naturally decomposes as it grows in the ground and acts as a fertilizer. It acts to regulate so as not to deform. Moreover, by harvesting the thin film cylinder at the time of harvesting, it is possible to harvest without damaging the harvested root vegetables. In particular, it is effective in planting trees and harvesting root vegetables on sandy soils with low nutrients and high dryness. It is.
[0027]
Further, in the plant growing container referred to in the present invention, since the main material constituting the cylinder body is a fiber, the plant growing container has fine pores, so that it is easy to have roots, and is suitable for the ground. The seedling root grows healthy without being steamed, and the root of the seedling eats directly into the fiber of the tube body, including the case where it is placed in the ground, and it grows stably and continuously in a well-rooted state. There is an effect that can. In addition, plant fibers as the main material can be reused from unused materials left in the wild as waste materials and fiber from discarded plants, and the entire container, including thin-film cylinders, can be returned to the soil after use. It also has the effect of helping to purify the environment.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a cylinder body.
FIG. 2 is a perspective view for explaining means for manufacturing a thin-film cylinder.
FIG. 3 is a perspective view showing a thin film cylinder.
FIG. 4 is a perspective view for explaining means for assembling a plant-growing container.
FIG. 5 is a perspective view showing a plant-growing container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylinder main body 11 Bottom member 2 Thin film cylinder 21 Bottom member

Claims (6)

植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。A cylinder main body 1 that is pressure-formed into a cylindrical shape by a plant fiber material and has a hydrophilic property and a biodegradability, and a thin film tube that is formed in a cylindrical shape by a fiber thin film material and has water permeability and biodegradability A two-layer structure comprising a body 2, which is set to maintain a biodegradation period of the thin-film cylinder 2 for a long period of time as compared to the cylinder body 1, and the thin-film cylinder 2 is externally fitted to the outer periphery of the cylinder body 1. A plant growing container. 竹繊維と、葦繊維と、パーム繊維とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。Cylinder body 1 that is pressed and formed into a cylindrical shape by a plant fiber material mixed with bamboo fiber, straw fiber, and palm fiber as main components, and a cylinder made of fiber thin film material. Formed of a thin film cylinder 2 having water permeability and biodegradability, which is set to maintain a biodegradation period of the thin film cylinder 2 for a long period of time as compared with the cylinder main body 1, A plant-growing container having a two-layer structure in which a thin-film cylinder 2 is fitted on the outer periphery of 1. 重量比10〜30%の竹繊維と、重量比60〜20%の葦繊維と、重量比30〜50%のパーム繊維とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。It is pressure-molded into a cylindrical shape by a plant fiber material in which bamboo fibers having a weight ratio of 10 to 30%, straw fibers having a weight ratio of 60 to 20%, and palm fibers having a weight ratio of 30 to 50% are mixed as main components, It consists of a cylindrical main body 1 having hydrophilicity and biodegradability, and a thin film cylindrical body 2 that is formed of a fiber thin film material and has water permeability and biodegradability. A plant-growing container having a two-layer structure in which the thin-film cylinder 2 is externally fitted to the outer periphery of the cylinder main body 1 so as to maintain the biodegradation period of the thin-film cylinder 2 for a long time. 重量比10〜30%の竹繊維と、重量比60〜20%の葦繊維と、重量比30〜50%のパーム繊維とを主体成分として混合した植物繊維素材に、骨粉・貝殻粉等のカルシウム系素材粉末又は鶏糞粉末若しくはその両素材からなる補助材と、少量の尿素とを混合した混合素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。Calcium, such as bone meal and shellfish powder, in a plant fiber material in which bamboo fiber having a weight ratio of 10 to 30%, straw fiber having a weight ratio of 60 to 20%, and palm fiber having a weight ratio of 30 to 50% are mixed as main components. A cylinder body 1 having a hydrophilicity and biodegradability, and a fiber, which is pressed into a cylindrical shape by a mixed material obtained by mixing a system material powder or chicken dung powder or an auxiliary material thereof and a small amount of urea. The thin film cylinder 2 is formed of a thin film material and is formed into a cylindrical shape with water permeability and biodegradability, and is set to maintain the biodegradation period of the thin film cylinder 2 for a long time compared to the cylinder body 1 A plant-growing container having a two-layer structure in which a thin-film cylinder 2 is fitted on the outer periphery of the cylinder body 1. 竹繊維と、イネ科植物又はマメ科植物の煮沸繊維と、植物素材を加熱処理して炭化させた炭素化植物材とを主体成分として混合した植物繊維素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比し薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。Pressurized into a cylindrical shape with a plant fiber material that is made by mixing bamboo fiber, boiled fiber of a grass family or legume plant, and a carbonized plant material obtained by carbonizing the plant material by heat treatment. It consists of a cylinder body 1 having the properties and biodegradability, and a thin film cylinder 2 made of a fiber thin film material and having water permeability and biodegradability. A plant-growing container having a two-layer structure that is set so as to maintain the biodegradation period of the cylindrical body 2 for a long period of time, and the thin-film cylindrical body 2 is fitted on the outer periphery of the cylindrical main body 1. 竹繊維と、イネ科植物又はマメ科植物の煮沸繊維と、植物素材を加熱処理して炭化させた炭素化植物材とを主体成分として混合した植物繊維素材に、骨粉・貝殻粉等のカルシウム系素材粉末又は鶏糞粉末若しくはその両素材からなる補助材と、少量の尿素とを混合した混合素材によって筒状に加圧成形され、親水性と生分解性とを備えた筒本体1と、繊維製薄膜素材で筒状に形成され、透水性と生分解性とを備えた薄膜筒体2とからなり、筒本体1に比して薄膜筒体2の生分解期間を長期間維持するように設定され、前記筒本体1の外周に薄膜筒体2を外嵌させてなる二層構造とした植物育成用容体。Calcium-based materials such as bone powder and shellfish powder mixed with bamboo fiber, boiled fiber of grass family or legume plant, and carbon fiber plant material obtained by carbonizing the plant material by heat treatment. A cylinder body 1 having a hydrophilicity and biodegradability, which is formed by pressure molding into a cylindrical shape by using a mixed material obtained by mixing a raw material powder or chicken dung powder or both auxiliary materials and a small amount of urea, and made of fiber The thin film cylinder 2 is formed of a thin film material and has water permeability and biodegradability, and is set so as to maintain the biodegradation period of the thin film cylinder 2 for a long period of time compared to the cylinder body 1. A plant-growing container having a two-layer structure in which a thin-film cylinder 2 is fitted on the outer periphery of the cylinder body 1.
JP2003037297A 2003-02-14 2003-02-14 Plant growth container Expired - Fee Related JP3806732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003037297A JP3806732B2 (en) 2003-02-14 2003-02-14 Plant growth container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003037297A JP3806732B2 (en) 2003-02-14 2003-02-14 Plant growth container

Publications (2)

Publication Number Publication Date
JP2004242604A JP2004242604A (en) 2004-09-02
JP3806732B2 true JP3806732B2 (en) 2006-08-09

Family

ID=33022159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003037297A Expired - Fee Related JP3806732B2 (en) 2003-02-14 2003-02-14 Plant growth container

Country Status (1)

Country Link
JP (1) JP3806732B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109258205A (en) * 2018-12-03 2019-01-25 华北水利水电大学 The environmental and ecological bucket of hat type sand control and desert ecological administering method

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4365815B2 (en) 2005-09-29 2009-11-18 三菱重工業株式会社 Plant, plant, seedling set, planting method for planting seedlings
JP2008136431A (en) * 2006-12-04 2008-06-19 Toshiyuki Aeba Raising seedling mat material made from non-woody fiber
JP4959373B2 (en) * 2007-02-27 2012-06-20 三菱重工業株式会社 Plant seedling short-term growing tools and methods, plant seedling set for planting, and planting method
JP5022061B2 (en) * 2007-02-28 2012-09-12 三菱重工業株式会社 Plant seedling short-term growing tools and methods, plant seedling set for planting, and planting method
CN104041377B (en) * 2014-07-04 2015-11-11 南京三生万物环保科技有限公司 A kind of method being applicable to the intercropping of Desert Area
CN104285704A (en) * 2014-09-30 2015-01-21 陈洁玲 Directional tuber bearing cylinder for planting Chinese yam
CN104541901B (en) * 2015-01-21 2017-06-20 梁立华 Burdock implantation methods
CN116158283B (en) * 2022-07-27 2024-06-14 广西师范大学 Purely natural completely degradable seedling raising bag, manufacturing method and application

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109258205A (en) * 2018-12-03 2019-01-25 华北水利水电大学 The environmental and ecological bucket of hat type sand control and desert ecological administering method
CN109258205B (en) * 2018-12-03 2021-09-03 华北水利水电大学 Cap type sand control environment-friendly ecological barrel

Also Published As

Publication number Publication date
JP2004242604A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
KR101205154B1 (en) mat-type bed for raising seeding and method of fabricating the same
KR101263675B1 (en) Media for cultivating mushroom containing water hyacinth, and method of cultivating mushroom using the same
KR100714674B1 (en) String, rope and mats containing seeds
US20060207170A1 (en) Hair felt
KR100718867B1 (en) Mat-type bed soil for raising seedlings and manufacturing method thereof
CN108781968A (en) A kind of method of interplanting tea tree and black fungus
CN106365928A (en) Base fertilizer for gerbera jamesonii planting and preparation method thereof
JP3806732B2 (en) Plant growth container
KR101359047B1 (en) A production method of vegetation mat which could product a chrysanthemum seedings for long time storage
KR20090045881A (en) Lawn mat for greening a slope
KR20130068290A (en) Mat system to plant chrysanthemum for a flower bed
KR101278758B1 (en) A pot for growing seedling
CN108990699A (en) A kind of facility cultivation technique of Stropharia rugoso-annulata and capsicum crop rotation
CN108990702A (en) A kind of facility cultivation technique of Stropharia rugoso-annulata and cowpea crop rotation
JPH04173024A (en) Pot-like form for raising seedling and its production
US7234273B2 (en) Pots for raising root crop seedlings
KR200491452Y1 (en) Pressed Culture Soil for Preparing Simple Flowerpot
CN109906894A (en) A kind of precocious more seedlings cultural method of fresh edible maize
US7234272B2 (en) Raising pots for vegetable seedlings
JP2003047335A (en) Plant culture material and method for producing the same
KR100742503B1 (en) Process for manufacturing charcoal core containingliquid fertilizer for accelerating growth of tree
CN209732058U (en) Cuttage nutrition bag suitable for rocky cliff vegetation restoration
CN1287051C (en) Paper material having multiple functions, its manufacturing method and application
JP3811802B2 (en) Textile seedling supplies and manufacturing method thereof
US20240237591A1 (en) Biodegradable layered composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100526

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110526

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120526

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130526

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees