JP3805240B2 - Ultrasonic motor - Google Patents

Ultrasonic motor Download PDF

Info

Publication number
JP3805240B2
JP3805240B2 JP2001367531A JP2001367531A JP3805240B2 JP 3805240 B2 JP3805240 B2 JP 3805240B2 JP 2001367531 A JP2001367531 A JP 2001367531A JP 2001367531 A JP2001367531 A JP 2001367531A JP 3805240 B2 JP3805240 B2 JP 3805240B2
Authority
JP
Japan
Prior art keywords
vibration source
vibrating body
vibration
phase
center axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367531A
Other languages
Japanese (ja)
Other versions
JP2003169486A (en
Inventor
飯島  保
靖貴 永田
佳照 生山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisca Corp
Original Assignee
Nisca Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisca Corp filed Critical Nisca Corp
Priority to JP2001367531A priority Critical patent/JP3805240B2/en
Publication of JP2003169486A publication Critical patent/JP2003169486A/en
Application granted granted Critical
Publication of JP3805240B2 publication Critical patent/JP3805240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧電素子に電気エネルギーを供給することにより振動体を共振させ、この振動体の共振により振動体に押圧された移動体に回転運動を生起し、この移動体の回転運動を抽出することでモータ出力とする超音波モータに関するものである。
【0002】
【従来の技術】
従来の超音波モータとしては特開平6−178561号公報に示されているように、振動を発生する圧電素子は中心軸を境に左右反転して分極されており、この圧電素子を2枚一組としてA相とB相に分け90度位相を違えて配置し積層している。そして、この圧電素子を一対の弾性体で挟む構成で振動体を形成している。
【0003】
この振動体は、圧電素子のA相だけに特定周波数の交流電圧を印加すると、圧電素子は左右反転して分極されているので、それぞれの領域は伸縮する。この伸縮によって振動体には中心軸と分極境界線を含む面を中心に左右に曲げ固有振動が励振される。
【0004】
またB相だけに特定周波数の交流電圧を印加すると、B相の分極境界面はA相に対して90度位相を違えて配置されているので、前記の曲げ固有振動に対して90度位相を違えた方向に固有振動が励振される。
【0005】
そしてA相とB相に印加する交流電圧を時間的にも90度位相を違えて印加すると、振動体の端部が回転するような曲げ振動となる。この時、時間的な位相を+90度または−90度のいずれかを選択することによって左右の回転方向を選択できる。
【0006】
また、特開平6−178561号公報に示される超音波モータでは、振動体に周溝を有して前記振動の変位拡大をおなっている。これにより振動体の端面には変位拡大した首振り運動が生じ、この首振り振動は1波の進行波に相当している。そしてこの振動体の端面部分に移動体を加圧接触させることで、移動体に回転運動を生起し、この移動体の回転運動を抽出することで超音波モータを構成している。
【0007】
【発明が解決しようとする課題】
以上で説明した超音波モータは振動体の構成がシンプルである為安価であり、また小型である。またボルト締めタイプであるために樹脂材料等の接着剤で圧電素子を接合する必要が無く、接着剤の温度特性変化によるモータ性能の変化や接着剤による振動吸収等の不具合が無い。しかし超音波モータとしては低トルクであり、大トルク化への要望が大きい。
【0008】
大トルクを発生させるためには、振動体と移動体との加圧接触面の径寸法をなるべく大きく設定するのが望ましく、上記で説明した超音波モータもその最大外径付近に加圧接触面を設けている場合が多い。しかし、首振り振動による棒状の超音波モータであるため、その最大外径は前記圧電素子の外径程度である。
【0009】
またトルク増大の為の別の手段として、振動体と移動体との接触部の加圧力を増す方式もあるが、接触部の磨耗で耐久性能の悪化要因つながる場合があり、限界があった。
【0010】
以上のように幾つかの利点は持つものの、大トルク化には限界があった。そこで本発明は、上記タイプの超音波モータの利点を生かしつつ大トルクのモータを提供することを目的としている。
【0011】
【課題を解決するための手段】
上記の目的を達成するために請求項1によれば、回転中心軸と、電気信号を印加することで前記回転中心軸の直交面でかつ回転中心軸に対称でその中心に対し90度異ならせた2つの領域において1/2波長異なる位相で時間的に1/4波長の位相差を持たせ回転軸方向に縦振動を生起させ得る薄板状で両面に電極を有し2つ以上の伸縮領域に分極された圧電素子が所定の角度位相を変えて複数積層され、その圧電素子の上下面を一対の弾性体で挟み込み柱形状とした振動源と、前記振動源の端面に結合され、その振動源の前記圧電素子の最大外径よりも大きい円板形状で、その円周方向に前記振動源の縦励振に共振し複数の波高をもつ屈曲振動の進行波を励振させる外周部を形成した振動体と、前記振動体に加圧接触し前記進行波により所定の方向に回転駆動される移動体とを有する超音波モータである。
【0012】
また、請求項2及び請求項3によれば、回転中心軸と、電気信号を印加することで前記回転中心軸の直交面でかつ回転中心軸に対称でその中心に対し90度異ならせた2つの領域において1/2波長異なる位相で時間的に1/4波長の位相差を持たせ回転軸方向に縦振動を生起させ得る薄板状で両面に電極を有し2つ以上の伸縮領域に分極された圧電素子が所定の角度位相を変えて複数積層され、その圧電素子の上下面を一対の弾性体で挟み込み柱形状とした振動源と、前記振動源の端面に結合され、その振動源の前記圧電素子の最大外径よりも大きい円板形状で、その円周方向に前記振動源の縦励振に共振し複数の波高をもつ屈曲振動の進行波を励振させる外周部を形成した振動体と、前記振動体に加圧接触し前記進行波により所定の方向に回転駆動される移動体とを備え、請求項2では前記振動体に前記圧電素子の最大外径よりも大きくその縦振動に共振する円板形状の外周部と、前記振動源との結合部から前記移動体との加圧接触面へ至る途中に曲げ剛性を小さくした振動体部とを形成し、また請求項3では前記振動体の形状を前記振動源との結合部分が円板形状で、この円板形状の周面部を基端として曲げ剛性を小さくした前記縦振動に共振する筒形状部を設け、この筒形状の他端部にフランジ形状部を設け、このフランジ形状部が前記移動体の加圧接触面となしたことを特徴とする超音波モータである。
【0013】
【実施例】
〔第1の実施例〕図1に本発明の第1実施例を示す。図2はその分解斜視図である。また、図3は第一の実施例で用いる圧電素子の電極配置を示す斜視図である。
【0014】
図1において、振動源4は薄板で円板状の圧電素子1、2、3と下部弾性体5、上部弾性体6と圧電素子の各電極と外部制御回路との接続のためのプリント基板7とで構成されている。
【0015】
圧電素子は図3に示すように、2つの領域で厚さ方向に分極され、それぞれの領域の上面に電極1a、1bを配置し通電可能なように電気配線されている。また圧電素子の逆の面には共通電極8(不図示)が概略前面に配置され同様に通電可能なように電気配線されている。
【0016】
これらの圧電素子は2枚1組の圧電素子1をA相として、このA相に対して90度位相を変えて配置される2枚1組の圧電素子2がB相となり、振動検出の為の1枚の圧電素子3がS相となっている。そしてそれぞれの圧電素子は積層されるとともに各電極がプリント基板に電気配線される。
【0017】
本実施例ではA相およびB相の圧電素子を各2枚で構成しているが、圧電素子の厚みを薄くしてさらに多くの枚数を積層することで低電圧化をすることができる。また、A相およびB相の圧電素子を各1枚構成としても可能であることは言うまでもない。また、本実施例のようにA相とB相を別々の圧電素子とするのではなく、1枚の圧電素子を軸中心に対し4分割するように電極を配置してその対向する領域の一方をA相とし、他方をB相としてもかまわない。
【0018】
以上のように構成された圧電素子は、図1及び図2に示すようにプリント基板7とともに下部弾性体5と上部弾性体6とで挟み込まれ、ボルト10の第1ネジ部10aによって締め付けられて結合される。この時結合手段として樹脂材料等からなる接着剤を使用することは、圧電素子から発生する振動の減衰の原因となったり、発熱する温度での振動の減衰量が異なったりするので好ましくない。またプリント基板のベース材料も振動エネルギーを減衰させないような材料を選択するのが望ましい。
【0019】
本実施例では円板形状をした振動体9は上部弾性体6と一体化された構成となっており、振動源からの振動を振動体に効率よく伝えるようにしている。もちろん振動体9と上部弾性体6を別部品にして結合手段をもって結合した構成にしてもかまわない。また下部弾性体5と上部弾性体6と振動体9は安価で加工精度の優れた材料の例えば真鍮等で作られている。
【0020】
次に移動体11は、その中央穴をボルト10の連結軸部10bに通すように組み付けられ、加圧バネ13は移動体11の収納部11aに組み込む。さらに連動ギヤ12は、その凸部12bを移動体11に設けられた凹部11bに嵌合させ、そして加圧バネ13をその収納部12aに収納するように組み込む。
【0021】
最後にナット14をボルト10の第2ネジ部10cにねじ込み固定することで、移動体11と加圧バネ13と連動ギヤ12の組み付けは完了される。
【0022】
次に動作の説明をする。
【0023】
図3において圧電素子の下面側に設けられた共通電極8(不図示)をグランド(GND)電位にして、上面側に設けられた電極1a、1bにそれぞれプラス電位とマイナス電位を印加する。そしてこの電位を特定周波数の交流電圧とすることでA相の圧電素子による振動を生起させる。
【0024】
また、この2枚1組のA相の圧電素子1に対して90度の位相を変えて配置される2枚1組の圧電素子2のB相には、A相に対して時間的に1/4波長の位相を異ならせた特定周波数の交流電圧を印加させて、A相の圧電素子による振動に対し位置と時間とでそれぞれ位相をもたせたB相の圧電素子による振動を生起させる。
【0025】
図4は振動源4と振動体9の形状をモデル化した立体斜視図である。斜線部が圧電素子1,2であり、その下部に下部弾性体5、その上部に上部弾性体6と振動体9が構成されている。このモデルにおいては、中央の穴形状やS相の圧電素子等は省略している。このモデルによって振動のようすを説明する。
【0026】
前記のようにA相の圧電素子による振動を生起させ、その振動により励振される振動体9が共振状態となるようにその特定周波数を選択する。この共振により振動体9は図5の(a)と(b)の状態を繰り返すように左右の振動をする。また、B相の圧電素子による振動を生起させ、その振動により励振される振動体9が共振状態となるようにその特定周波数を選択すると、この共振により振動体9は図5の(c)と(d)の状態を繰り返すように前後の振動をする。
【0027】
A相の圧電素子による振動とB相の圧電素子による振動は時間的にプラス1/4波長異ならせてあるので、振動体9の共振によってできた波の波高部9aは(a)、(d)、(b)、(c)の順に推移していくことになり、波高部9aの位置が円板状の振動体の外周部で回転するように移動する。また、この波高部9aはA相の圧電素子による振動とB相の圧電素子による振動を時間的にマイナス1/4波長異ならせることによって(a)、(c)、(b)、(d)の順にすることができる。つまり、波高位置の正逆回転が可能となる。
【0028】
以上のように振動源4によって励振された振動体9の波は、1つの波高を持つ進行波に相当する。この進行波の生じる部位は前記振動体9の外周部が最も振幅の大きい所となり、前記振動体9の外径は前記圧電素子1a、1bの最大外径よりも大きいので、従来品に比べて低速で大きなトルクを得ることができる。
【0029】
前記に説明した振動の形態は次のような表現でも説明できる。
【0030】
圧電素子1,2の伸縮により振動を発生させ、圧電素子を挟んだ下部弾性体5と上部弾性体6に、共振状態ではない軸方向の縦振動をその軸の直交面で軸に対称な2つの領域で1/2波長異なる位相で生起させるとともに、この縦振動を軸中心に90度異ならせた2つの領域で時間的に1/4波長の位相差を持たせて生起させる。この縦振動は前記円板形状の振動体9を共振状態にする特定周波数であり、前記振動体9は図5で示すA相で励振された左右方向の定在波とB相で励振された前後方向の定在波が時間的に1/4波長の位相差を持つことによって、その円周方向に屈曲振動の進行波を作り出していることになる。
【0031】
振動体9が移動体11と接触する位置は、この波高部9aとなる。この波高部9aの接面は楕円軌道を描き、移動体11に回転運動を与える。
【0032】
移動体11はこの進行波を有効に得て回転運動をするように、振動体9との加圧接触面11cを振動体9の外周部付近にしている。この加圧接触する加重は、加圧バネ13によって加えられる。この加圧バネ13のたわみ量はナット14のねじ込み量で調整できるので、加圧接触する加重の調整や変更も容易となる。
【0033】
移動体11の回転運動は、移動体11に設けられた凹部11bと、連動ギヤ12に設けられた凸部12bとが嵌合しているので連動ギヤ12に回転運動は伝えられる。連動ギヤ12はこの超音波モータの運動抽出部品となり、本実施例では歯車にてモータ出力をしている。
【0034】
以上のように本発明の超音波モータは、振動体の構成がシンプルである為安価であり、また樹脂材料等からなる接着剤で圧電素子を接合する必要が無いために、接着剤による振動吸収や温度変化による接着剤の特性変化等によるモータ性能の変化が無く、また振動源が小型であることの特徴を持ちながら従来品に比べて低速で大きなトルクを得ることができる。
【0035】
〔第2の実施例〕図6に本発明の第2の実施例を示す。
【0036】
第1の実施例に対して振動体9の形状が異なり、振動体9には振動源4との結合部から移動体11との加圧接触面11cまでの途中に、曲げ剛性が小さくなるようにした肉薄部9bが全周にわたって均等に設けられている。
【0037】
振動体9は振動源4によって共振状態に励振されるが、この肉薄部の曲げ剛性が小さいことによって振動体9の外周部9cは振幅の大きな波に増幅されることになる。この効果は超音波モータのエネルギー効率を上げることにつながる。
【0038】
〔第3の実施例〕図7に本発明の第3の実施例を示す。
【0039】
上記と同様に第1の実施例に対して振動体9の形状が異なり、振動体9には振動源4との結合部から移動体11との加圧接触面11cまでの途中に、筒形状の曲げ剛性が小さくなるようにした肉薄部9bを全周にわたって均等に設けてあり、加圧接触面11cはその筒形状からフランジ状に突き出た外周部9cに設けられている。
【0040】
振動体9は振動源4によって共振状態に励振され、この筒形状の肉薄部の曲げ剛性が小さいことによってフランジ状に突き出た外周部9cは振幅の大きな波に増幅され、超音波モータのエネルギー効率を上げることにつながっている。
【0041】
本実施例の場合は肉薄部9bが振動源4の外周に沿って筒形状に設けられているので、振動体9の外周部9cの外径を小さくできる利点がある。
【0042】
また、ここでは筒形状の肉薄部9bを振動源4側に垂下させるように設けてあるが、移動体11側に突き出るように設けてもかまわない。
【0043】
また、第1から第3の実施例において、加圧接触面11cを含む振動体の外周部9cを櫛歯形状にして、さらに振幅の増幅を行うと共に磨耗分等の除去の効果を得るようにしても良い。
【0044】
〔その他の実施例〕上記で説明した振動体の進行波は1つの波高を持つ進行波であるが、次のように圧電素子の分極をすることによって複数の波高を持つ進行波を作ることができる。
【0045】
図8(a)に2波の波高部9aを持つ振動体モデルの波形を示す。このような波形の進行波を作り出す為には、図8(b)に示すように圧電素子を4つの領域で厚さ方向に分極し、それぞれの領域の上面に電極1A、1B、1C、1Dを配置し通電可能なように電気配線する。また圧電素子の逆の面には共通電極8(不図示)が概略前面に配置され同様に通電可能なように電気配線している。ここでは説明の為、中央の穴形状やS相の圧電素子等は省略している。
【0046】
ここで圧電素子1のA相には電極1A、1Bにはプラスの電位、1C,1Dにはマイナス電位を印加し、逆の面の共通電極はGND電位にする。B相の圧電素子はA相に対して45度位相を変えて配置している。そしてA相の圧電素子に対して時間的に1/4波長位相を異ならせた電位を印加する。
【0047】
そして、A相及びB相の圧電素子の電極1A、1B、1C、1Dに振動体9が図8(a)に示す共振をおこす特定周波数の上記条件の交流電圧を印加することで、2つの波高を持つ進行波を作ることができる。
【0048】
第1の実施例でも説明したように、圧電素子の分極の分割数を変えてA相、B相の圧電素子を一体化したりA相、B相の圧電素子を複数枚積層したりてもよい。
【0049】
3波以上の波高を持つ進行波を作る為には、上記と同様な思想のもとで圧電素子の分極を多分割して、それに応じたA相とB相の圧電素子の位相を変えた配置にすれば良い。3波以上の波高を持つ振動体の波形形状は、その例として図9の立体モデルに示す。
【0050】
振動時発生時に移動体11との接触部は波高部9aとなるので、上記のように振動体9に複数の波高の進行波を作ることによって、その接触部が多くなり両者は磨耗しにくくなる利点がある。
【0051】
以上で説明したように、本発明は従来タイプの超音波モータの利点を生かしつつ大トルクのモータを提供することを可能としている。
【図面の簡単な説明】
【図1】本発明の第1の実施例の超音波モータの断面図
【図2】本発明の第1の実施例の超音波モータの分解斜視図
【図3】本発明の第1の実施例の電極配置を示す斜視図
【図4】振動源4と振動体9の形状をモデル化した立体斜視図
【図5】立体モデルによる振動状態の説明図
【図6】本発明の第2の実施例の超音波モータの断面図
【図7】本発明の第3の実施例の超音波モータの断面図
【図8】2波の波高を持つ振動体の説明図。
【図9】立体モデルによる3波以上の波高を持つ振動体の波形形状。
【符号の説明】
1 A相圧電素子
2 B相圧電素子
4 振動源
5 下部弾性体
6 上部弾性体
9 振動体
9a 波高部
9b 薄肉部
9c 外周部
10 ボルト
11 移動体
11c 加圧接触面
12 連動ギヤ
13 加圧バネ
14 ナット
[0001]
BACKGROUND OF THE INVENTION
The present invention resonates the vibrating body by supplying electric energy to the piezoelectric element, causes the moving body pressed by the vibrating body due to the resonance of the vibrating body, and extracts the rotating motion of the moving body. It is related with the ultrasonic motor used as a motor output by this.
[0002]
[Prior art]
As a conventional ultrasonic motor, as disclosed in Japanese Patent Laid-Open No. 6-178561, a piezoelectric element that generates vibration is polarized by being reversed left and right with a central axis as a boundary. As a set, the phases are divided into the A phase and the B phase, and the phases are arranged differently and laminated. A vibrating body is formed by sandwiching the piezoelectric element between a pair of elastic bodies.
[0003]
When an AC voltage having a specific frequency is applied only to the A phase of the piezoelectric element, the piezoelectric element is reversed in the left-right direction and polarized, so that each region expands and contracts. By this expansion and contraction, the vibrating body is excited by bending natural vibration left and right around the plane including the central axis and the polarization boundary line.
[0004]
When an alternating voltage of a specific frequency is applied only to the B phase, the B phase polarization boundary surface is arranged 90 degrees out of phase with respect to the A phase. Natural vibration is excited in the wrong direction.
[0005]
When the AC voltage applied to the A phase and the B phase is applied with a phase difference of 90 degrees in terms of time, bending vibration is generated such that the end of the vibrating body rotates. At this time, the left and right rotation directions can be selected by selecting either +90 degrees or -90 degrees as the temporal phase.
[0006]
In the ultrasonic motor disclosed in Japanese Patent Laid-Open No. 6-178561, the vibration body has a circumferential groove to increase the displacement of the vibration. As a result, a swivel motion with increased displacement is generated on the end face of the vibrating body, and this swivel vibration corresponds to one traveling wave. Then, the moving body is brought into pressure contact with the end surface portion of the vibrating body to cause a rotational motion in the moving body, and the ultrasonic motor is configured by extracting the rotational motion of the moving body.
[0007]
[Problems to be solved by the invention]
The ultrasonic motor described above is inexpensive and small because the structure of the vibrator is simple. Further, since it is a bolted type, there is no need to bond the piezoelectric element with an adhesive such as a resin material, and there is no problem such as a change in motor performance due to a change in temperature characteristics of the adhesive or a vibration absorption by the adhesive. However, the ultrasonic motor has a low torque, and there is a great demand for a large torque.
[0008]
In order to generate a large torque, it is desirable to set the diameter dimension of the pressure contact surface between the vibrating body and the moving body as large as possible. The ultrasonic motor described above is also close to the maximum outer diameter of the pressure contact surface. Is often provided. However, since it is a rod-shaped ultrasonic motor by swinging vibration, its maximum outer diameter is about the outer diameter of the piezoelectric element.
[0009]
As another means for increasing the torque, there is a method of increasing the pressure applied to the contact portion between the vibrating body and the moving body, but there is a limit because wear of the contact portion may lead to deterioration of durability performance.
[0010]
As described above, although there are some advantages, there is a limit to increasing the torque. Accordingly, an object of the present invention is to provide a motor having a large torque while taking advantage of the ultrasonic motor of the above type.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, according to claim 1, by applying an electrical signal to the rotation center axis, the rotation center axis is orthogonal to the rotation center axis and is 90 degrees different from the center. In addition, in two regions, a thin plate shape having a phase difference of ¼ wavelength temporally with a phase different by ½ wavelength and causing longitudinal vibration in the direction of the rotation axis and having electrodes on both sides, two or more stretchable regions A plurality of piezoelectric elements polarized at different angular phases are laminated, and a vibration source having a columnar shape in which the upper and lower surfaces of the piezoelectric element are sandwiched between a pair of elastic bodies and an end face of the vibration source are coupled to the vibration source. A vibration having a disk shape larger than the maximum outer diameter of the piezoelectric element of the source, and forming an outer peripheral portion that resonates with the longitudinal excitation of the vibration source in the circumferential direction and excites a traveling wave of flexural vibration having a plurality of wave heights. The body and the vibrating body under pressure contact with the traveling wave An ultrasonic motor and a moving body driven in the direction rotation.
[0012]
According to claim 2 and claim 3, by applying an electrical signal to the rotation center axis, the rotation center axis is orthogonal to the rotation center axis and is 90 degrees different from the center. A thin plate that has a phase difference of ¼ wavelength temporally with a phase difference of ½ wavelength in one region and can cause longitudinal vibration in the direction of the rotation axis. It has electrodes on both sides and is polarized in two or more stretchable regions. A plurality of piezoelectric elements having a predetermined angle phase are stacked, and a vibration source having a pillar shape in which the upper and lower surfaces of the piezoelectric element are sandwiched between a pair of elastic bodies and an end face of the vibration source are coupled to each other. A vibrating body having a disk shape larger than the maximum outer diameter of the piezoelectric element and having an outer peripheral portion that resonates with longitudinal excitation of the vibration source in the circumferential direction and excites a traveling wave of flexural vibration having a plurality of wave heights; , Pressurizing and contacting the vibrating body in a predetermined direction by the traveling wave In claim 2, the vibrating body includes a disk-shaped outer peripheral portion that is larger than the maximum outer diameter of the piezoelectric element and resonates in the longitudinal vibration, and a coupling portion between the vibration source and the vibrating body. A vibrating body portion having a reduced bending rigidity is formed on the way to the pressure contact surface with the moving body, and in claim 3 the shape of the vibrating body is a disk-shaped coupling portion with the vibration source, A cylindrical portion that resonates with the longitudinal vibration with a bending rigidity reduced with the disc-shaped peripheral surface portion as a base end is provided, and a flange-shaped portion is provided at the other end portion of the cylindrical shape. It is an ultrasonic motor characterized by having a pressure contact surface.
[0013]
【Example】
[First Embodiment] FIG. 1 shows a first embodiment of the present invention. FIG. 2 is an exploded perspective view thereof. FIG. 3 is a perspective view showing the electrode arrangement of the piezoelectric element used in the first embodiment.
[0014]
In FIG. 1, a vibration source 4 is a thin and disk-shaped piezoelectric element 1, 2, 3 and lower elastic body 5, an upper elastic body 6, a printed circuit board 7 for connecting each electrode of the piezoelectric element and an external control circuit. It consists of and.
[0015]
As shown in FIG. 3, the piezoelectric element is polarized in the thickness direction in two regions, and is electrically wired so that electrodes 1 a and 1 b are disposed on the upper surfaces of the respective regions and can be energized. Further, a common electrode 8 (not shown) is disposed on the front surface of the piezoelectric element on the opposite side, and is electrically wired so that it can be energized in the same manner.
[0016]
These piezoelectric elements have a set of two piezoelectric elements 1 as an A phase, and a set of two piezoelectric elements 2 arranged by changing the phase by 90 degrees with respect to the A phase become a B phase, for vibration detection. This one piezoelectric element 3 is in the S phase. And each piezoelectric element is laminated | stacked, and each electrode is electrically wired by the printed circuit board.
[0017]
In this embodiment, the A-phase and B-phase piezoelectric elements are each composed of two sheets. However, the voltage can be lowered by reducing the thickness of the piezoelectric elements and stacking more sheets. Needless to say, one A-phase and one B-phase piezoelectric element can be used. Further, instead of using separate piezoelectric elements for the A phase and the B phase as in this embodiment, one electrode is arranged so that one piezoelectric element is divided into four with respect to the axial center, and one of the opposing regions is arranged. May be the A phase and the other may be the B phase.
[0018]
The piezoelectric element configured as described above is sandwiched between the lower elastic body 5 and the upper elastic body 6 together with the printed circuit board 7 as shown in FIGS. 1 and 2, and is tightened by the first screw portion 10 a of the bolt 10. Combined. At this time, it is not preferable to use an adhesive made of a resin material or the like as a coupling means because it causes attenuation of vibration generated from the piezoelectric element or the amount of vibration attenuation at the temperature at which heat is generated. It is also desirable to select a material that does not attenuate vibration energy for the base material of the printed circuit board.
[0019]
In the present embodiment, the disk-shaped vibrating body 9 is integrated with the upper elastic body 6 so that vibration from the vibration source is efficiently transmitted to the vibrating body. Of course, the vibration body 9 and the upper elastic body 6 may be separated and combined with a coupling means. The lower elastic body 5, the upper elastic body 6 and the vibrating body 9 are made of an inexpensive material with excellent processing accuracy such as brass.
[0020]
Next, the movable body 11 is assembled so that the central hole thereof is passed through the connecting shaft portion 10 b of the bolt 10, and the pressure spring 13 is assembled in the storage portion 11 a of the movable body 11. Further, the interlocking gear 12 is assembled so that the convex portion 12b is fitted into the concave portion 11b provided in the moving body 11, and the pressure spring 13 is accommodated in the accommodating portion 12a.
[0021]
Finally, the nut 14 is screwed and fixed to the second screw portion 10c of the bolt 10, whereby the assembly of the movable body 11, the pressure spring 13, and the interlocking gear 12 is completed.
[0022]
Next, the operation will be described.
[0023]
In FIG. 3, a common electrode 8 (not shown) provided on the lower surface side of the piezoelectric element is set to a ground (GND) potential, and a positive potential and a negative potential are applied to the electrodes 1a and 1b provided on the upper surface side, respectively. By making this potential an alternating voltage of a specific frequency, vibrations caused by the A-phase piezoelectric element are caused.
[0024]
In addition, the B phase of the two piezoelectric elements 2 arranged in a set of two sheets with a phase difference of 90 degrees with respect to the two A piezoelectric elements 1 is 1 in time with respect to the A phase. An AC voltage having a specific frequency with a phase difference of / 4 wavelength is applied to cause vibration by a B-phase piezoelectric element having a phase and a position with respect to vibration by the A-phase piezoelectric element.
[0025]
FIG. 4 is a three-dimensional perspective view modeling the shapes of the vibration source 4 and the vibrating body 9. The hatched portions are the piezoelectric elements 1 and 2, the lower elastic body 5 is formed in the lower part, and the upper elastic body 6 and the vibrating body 9 are formed in the upper part. In this model, the central hole shape, the S-phase piezoelectric element, and the like are omitted. This model explains how vibrations occur.
[0026]
As described above, vibration is generated by the A-phase piezoelectric element, and the specific frequency is selected so that the vibrating body 9 excited by the vibration enters a resonance state. Due to this resonance, the vibrating body 9 vibrates left and right so as to repeat the states of FIGS. 5 (a) and 5 (b). Further, when vibration is generated by the B-phase piezoelectric element and the specific frequency is selected so that the vibrating body 9 excited by the vibration is in a resonance state, the resonance causes the vibrating body 9 to be as shown in FIG. Vibrate back and forth so as to repeat the state of (d).
[0027]
Since the vibration caused by the A-phase piezoelectric element and the vibration caused by the B-phase piezoelectric element are temporally different from each other by a quarter wavelength, the wave crest portion 9a formed by the resonance of the vibrating body 9 is represented by (a), (d ), (B), and (c), and the wave height portion 9a moves so as to rotate at the outer peripheral portion of the disc-shaped vibrating body. Further, the wave height portion 9a makes the vibration by the A-phase piezoelectric element and the vibration by the B-phase piezoelectric element different from each other by a quarter wavelength (a), (c), (b), (d). In the order. That is, forward and reverse rotation of the wave height position is possible.
[0028]
As described above, the wave of the vibrating body 9 excited by the vibration source 4 corresponds to a traveling wave having one wave height. The part where the traveling wave is generated is the place where the outer peripheral portion of the vibrating body 9 has the largest amplitude, and the outer diameter of the vibrating body 9 is larger than the maximum outer diameter of the piezoelectric elements 1a and 1b. Large torque can be obtained at low speed.
[0029]
The form of vibration described above can also be described by the following expression.
[0030]
Vibration is generated by the expansion and contraction of the piezoelectric elements 1 and 2, and longitudinal vibrations in the axial direction that are not in the resonance state are symmetric to the lower elastic body 5 and the upper elastic body 6 sandwiching the piezoelectric elements. It is generated with a phase difference of ¼ wavelength in two regions where the vertical vibrations are generated with a phase difference of ½ wavelength in two regions and the two regions where the longitudinal vibrations are different from each other by 90 degrees with respect to the axial center. This longitudinal vibration is a specific frequency that brings the disk-shaped vibrating body 9 into a resonance state, and the vibrating body 9 was excited in the left-right direction standing wave excited in the A phase and the B phase shown in FIG. Since the standing wave in the front-rear direction has a phase difference of ¼ wavelength in time, a traveling wave of bending vibration is created in the circumferential direction.
[0031]
The position where the vibrating body 9 contacts the moving body 11 is this wave height portion 9a. The tangent surface of the wave height portion 9a draws an elliptical orbit and gives the moving body 11 a rotational motion.
[0032]
The moving body 11 has a pressure contact surface 11c with the vibrating body 9 in the vicinity of the outer peripheral portion of the vibrating body 9 so as to effectively obtain the traveling wave and perform a rotational motion. The pressurizing contact load is applied by the pressurizing spring 13. Since the amount of deflection of the pressure spring 13 can be adjusted by the amount of screwing of the nut 14, it is easy to adjust or change the load applied by pressure.
[0033]
The rotational motion of the moving body 11 is transmitted to the interlocking gear 12 because the concave portion 11 b provided on the moving body 11 and the convex portion 12 b provided on the interlocking gear 12 are fitted. The interlocking gear 12 serves as a motion extraction part of this ultrasonic motor, and in this embodiment, the motor output is performed by a gear.
[0034]
As described above, the ultrasonic motor of the present invention is inexpensive because the structure of the vibrating body is simple, and it is not necessary to bond the piezoelectric element with an adhesive made of a resin material or the like. In addition, there is no change in motor performance due to changes in adhesive properties due to changes in temperature or temperature, and a large torque can be obtained at a lower speed than conventional products while having the feature that the vibration source is small.
[0035]
[Second Embodiment] FIG. 6 shows a second embodiment of the present invention.
[0036]
The shape of the vibrating body 9 is different from that in the first embodiment, and the bending rigidity of the vibrating body 9 is reduced in the middle from the connecting portion with the vibration source 4 to the pressure contact surface 11c with the moving body 11. The thinned portion 9b is provided uniformly over the entire circumference.
[0037]
Although the vibrating body 9 is excited in a resonance state by the vibration source 4, the outer peripheral portion 9c of the vibrating body 9 is amplified to a wave having a large amplitude due to the small bending rigidity of the thin portion. This effect increases the energy efficiency of the ultrasonic motor.
[0038]
[Third Embodiment] FIG. 7 shows a third embodiment of the present invention.
[0039]
Similarly to the above, the shape of the vibrating body 9 is different from that of the first embodiment. The vibrating body 9 has a cylindrical shape on the way from the coupling portion with the vibration source 4 to the pressure contact surface 11c with the moving body 11. The thin-walled portion 9b, which has a small bending rigidity, is provided uniformly over the entire circumference, and the pressure contact surface 11c is provided on the outer peripheral portion 9c protruding from the cylindrical shape into a flange shape.
[0040]
The vibrating body 9 is excited in a resonance state by the vibration source 4, and the outer peripheral portion 9c protruding in a flange shape is amplified to a wave having a large amplitude due to the small bending rigidity of the thin cylindrical portion, so that the energy efficiency of the ultrasonic motor is increased. It has led to raising.
[0041]
In the case of the present embodiment, since the thin portion 9b is provided in a cylindrical shape along the outer periphery of the vibration source 4, there is an advantage that the outer diameter of the outer peripheral portion 9c of the vibrating body 9 can be reduced.
[0042]
Further, although the cylindrical thin portion 9b is provided so as to hang down to the vibration source 4 side here, it may be provided so as to protrude toward the movable body 11 side.
[0043]
Further, in the first to third embodiments, the outer peripheral portion 9c of the vibrating body including the pressure contact surface 11c is formed in a comb shape so as to further amplify the amplitude and obtain the effect of removing wear and the like. May be.
[0044]
[Other Embodiments] The traveling wave of the vibrator described above is a traveling wave having one wave height, but a traveling wave having a plurality of wave heights can be created by polarizing the piezoelectric element as follows. it can.
[0045]
FIG. 8A shows a waveform of a vibrating body model having two wave height portions 9a. In order to create a traveling wave having such a waveform, the piezoelectric element is polarized in the thickness direction in four regions as shown in FIG. 8B, and electrodes 1A, 1B, 1C, 1D are formed on the upper surface of each region. And arrange the wiring so that it can be energized. A common electrode 8 (not shown) is arranged on the front surface of the piezoelectric element on the opposite side, and is electrically wired so that it can be similarly energized. Here, for the sake of explanation, the central hole shape, the S-phase piezoelectric element, and the like are omitted.
[0046]
Here, a positive potential is applied to the electrodes 1A and 1B for the A phase of the piezoelectric element 1, a negative potential is applied to the electrodes 1C and 1D, and the common electrode on the opposite surface is set to the GND potential. The B-phase piezoelectric elements are arranged with the phase changed by 45 degrees with respect to the A-phase. A potential having a phase difference of ¼ wavelength is applied to the A-phase piezoelectric element.
[0047]
And by applying the alternating voltage of the said conditions of the specific frequency in which the vibrating body 9 performs the resonance shown to Fig.8 (a) to the electrodes 1A, 1B, 1C, and 1D of the A-phase and B-phase piezoelectric elements, A traveling wave with a wave height can be created.
[0048]
As described in the first embodiment, the number of polarization divisions of the piezoelectric element may be changed to integrate the A-phase and B-phase piezoelectric elements, or a plurality of A-phase and B-phase piezoelectric elements may be stacked. .
[0049]
In order to create a traveling wave having a wave height of three or more waves, the polarization of the piezoelectric element is divided into multiple parts under the same idea as described above, and the phases of the A-phase and B-phase piezoelectric elements are changed accordingly. It only has to be arranged. The waveform shape of the vibrating body having a wave height of 3 waves or more is shown in the solid model of FIG. 9 as an example.
[0050]
When the vibration occurs, the contact portion with the moving body 11 becomes the wave height portion 9a. Therefore, by creating a traveling wave having a plurality of wave heights on the vibration body 9 as described above, the contact portion increases and both are less likely to wear. There are advantages.
[0051]
As described above, the present invention makes it possible to provide a motor having a large torque while taking advantage of a conventional ultrasonic motor.
[Brief description of the drawings]
FIG. 1 is a sectional view of an ultrasonic motor according to a first embodiment of the present invention. FIG. 2 is an exploded perspective view of the ultrasonic motor according to the first embodiment of the present invention. FIG. 4 is a three-dimensional perspective view modeling the shapes of the vibration source 4 and the vibrating body 9. FIG. 5 is an explanatory diagram of a vibration state by the three-dimensional model. FIG. FIG. 7 is a sectional view of an ultrasonic motor according to a third embodiment of the present invention. FIG. 8 is an explanatory diagram of a vibrating body having a wave height of two waves.
FIG. 9 shows a waveform shape of a vibrating body having a wave height of three or more waves by a three-dimensional model.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 A phase piezoelectric element 2 B phase piezoelectric element 4 Vibration source 5 Lower elastic body 6 Upper elastic body 9 Vibration body 9a Wave height part 9b Thin part 9c Outer peripheral part 10 Bolt 11 Moving body 11c Pressing contact surface 12 Interlocking gear 13 Pressing spring 14 nuts

Claims (4)

回転中心軸と、A rotation center axis;
電気信号を印加することで前記回転中心軸の直交面でかつ回転中心軸に対称でその中心に対し90度異ならせた2つの領域において1/2波長異なる位相で時間的に1/4波長の位相差を持たせ回転軸方向に縦振動を生起させ得る薄板状で両面に電極を有し2つ以上の伸縮領域に分極された圧電素子が所定の角度位相を変えて複数積層され、その圧電素子の上下面を一対の弾性体で挟み込み柱形状とした振動源と、By applying an electrical signal, the ¼ wavelength is temporally different in phase by ½ wavelength in two regions that are orthogonal to the rotation center axis and symmetrical with respect to the rotation center axis and differ by 90 degrees with respect to the center. A plurality of piezoelectric elements having a phase difference and causing longitudinal vibrations in the direction of the rotation axis and having electrodes on both sides and polarized in two or more stretchable regions are laminated at different predetermined angular phases. A vibration source sandwiching the upper and lower surfaces of the element with a pair of elastic bodies and having a pillar shape;
前記振動源の端面に結合され、その振動源の前記圧電素子の最大外径よりも大きい円板形状で、その円周方向に前記振動源の縦励振により共振し複数の波高をもつ屈曲振動の進行波を励振させる外周部を形成した振動体と、It is coupled to the end face of the vibration source, has a disk shape larger than the maximum outer diameter of the piezoelectric element of the vibration source, and resonates in the circumferential direction by longitudinal excitation of the vibration source and has a plurality of wave heights. A vibrating body having an outer peripheral portion for exciting traveling waves;
前記振動体に加圧接触し前記進行波により所定の方向に回転駆動される移動体とA movable body that is in pressure contact with the vibrating body and is driven to rotate in a predetermined direction by the traveling wave;
を有する超音波モータ。Ultrasonic motor with
回転中心軸と、A rotation center axis;
電気信号を印加することで前記回転中心軸の直交面でかつ回転中心軸に対称でその中心に対し90度異ならせた2つの領域において1/2波長異なる位相で時間的に1/4波長の位相差を持たせ回転軸方向に縦振動を生起させ得る薄板状で両面に電極を有し2つ以上の伸縮領域に分極された圧電素子が所定の角度位相を変えて複数積層され、その圧電素子の上下面を一対の弾性体で挟み込み柱形状とした振動源と、By applying an electrical signal, the ¼ wavelength is temporally different in phase by ½ wavelength in two regions that are orthogonal to the rotation center axis and symmetrical with respect to the rotation center axis and differ by 90 degrees with respect to the center. A plurality of piezoelectric elements having a phase difference and causing longitudinal vibrations in the direction of the rotation axis and having electrodes on both sides and polarized in two or more stretchable regions are laminated at different predetermined angular phases. A vibration source sandwiching the upper and lower surfaces of the element with a pair of elastic bodies and having a pillar shape;
前記振動源の端面に結合され、その振動源の前記圧電素子の最大外径よりも大きい円板形状で、その円周方向に前記振動源の縦励振により共振し複数の波高をもつ屈曲振動の進行波を励振させる外周部を形成した振動体と、It is coupled to the end face of the vibration source, has a disk shape larger than the maximum outer diameter of the piezoelectric element of the vibration source, and resonates in the circumferential direction by longitudinal excitation of the vibration source and has a plurality of wave heights. A vibrating body having an outer peripheral portion for exciting traveling waves;
前記振動体に加圧接触し前記進行波により所定の方向に回転駆動される移動体とを備え、A movable body that is in pressure contact with the vibrating body and is rotationally driven in a predetermined direction by the traveling wave;
前記円板形状の振動体の前記振動源との結合部から前記移動体との加圧接触面へ至る途中に、曲げ剛性を小さくした振動体部とを形成してなることを特徴とする超音波モータ。A vibration body portion having reduced bending rigidity is formed on the way from the connecting portion of the disk-shaped vibration body to the vibration source to the pressure contact surface with the moving body. Sonic motor.
回転中心軸と、A rotation center axis;
電気信号を印加することで前記回転中心軸の直交面でかつ回転中心軸に対称でその中心に対し90度異ならせた2つの領域において1/2波長異なる位相で時間的に1/4波長の位相差を持たせ回転軸方向に縦振動を生起させ得る薄板状で両面に電極を有し2つ以上の伸縮領域に分極された圧電素子が所定の角度位相を変えて複数積層され、その圧電素子の上下面を一対の弾性体で挟み込み柱形状とした振動源と、By applying an electrical signal, the ¼ wavelength is temporally different in phase by ½ wavelength in two regions that are orthogonal to the rotation center axis and symmetrical with respect to the rotation center axis and differ by 90 degrees with respect to the center. A plurality of piezoelectric elements having a phase difference and causing longitudinal vibrations in the direction of the rotation axis and having electrodes on both sides and polarized in two or more stretchable regions are laminated at different predetermined angular phases. A vibration source sandwiching the upper and lower surfaces of the element with a pair of elastic bodies and having a pillar shape;
前記振動源の端面に結合され、その振動源の前記圧電素子の最大外径よりも大きい円板形状で、その円周方向に前記振動源の縦励振に共振し複数の波高をもつ屈曲振動の進行波を励振させる外周部を形成した振動体と、It is coupled to the end face of the vibration source, has a disk shape larger than the maximum outer diameter of the piezoelectric element of the vibration source, and resonates with the longitudinal excitation of the vibration source in the circumferential direction and has a plurality of wave heights. A vibrating body having an outer peripheral portion for exciting traveling waves;
前記振動体に加圧接触し前記進行波により所定の方向に回転駆動される移動体とを備え、A movable body that is in pressure contact with the vibrating body and is rotationally driven in a predetermined direction by the traveling wave;
前記振動体の形状を前記振動源との結合部分が円板形状で、この円板形状の周面部を基端として曲げ剛性を小さくした前記縦振動に共振する筒形状部を設け、この筒形状の他端部にフランジ形状部を設け、このフランジ形状部が前記移動体の加圧接触面となしたことを特徴とする超音波モータ。A cylindrical portion that resonates with the longitudinal vibration is provided with the shape of the vibrating body coupled to the vibration source in a disc shape, and a bending rigidity is reduced with the peripheral surface portion of the disc shape as a base end. An ultrasonic motor characterized in that a flange-shaped portion is provided at the other end of the movable member, and the flange-shaped portion serves as a pressure contact surface of the movable body.
前記振動体の前記移動体が加圧接触する部分を櫛歯形状としたことを特徴とする請求項1乃至3記載の超音波モータ。The ultrasonic motor according to claim 1, wherein a portion of the vibrating body where the moving body is in pressure contact is formed in a comb shape.
JP2001367531A 2001-11-30 2001-11-30 Ultrasonic motor Expired - Fee Related JP3805240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367531A JP3805240B2 (en) 2001-11-30 2001-11-30 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367531A JP3805240B2 (en) 2001-11-30 2001-11-30 Ultrasonic motor

Publications (2)

Publication Number Publication Date
JP2003169486A JP2003169486A (en) 2003-06-13
JP3805240B2 true JP3805240B2 (en) 2006-08-02

Family

ID=19177268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367531A Expired - Fee Related JP3805240B2 (en) 2001-11-30 2001-11-30 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JP3805240B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100356677C (en) * 2004-11-12 2007-12-19 南京航空航天大学 Minitype rod traveling wave type ultrasonic motor
EP1739762B1 (en) 2005-05-26 2010-11-24 Nikon Corporation Vibrational Actuator and Method for Driving Vibrational Actuator
CN110293633B (en) * 2018-03-22 2022-10-18 深圳市特力威科技有限公司 Ultrasonic machining apparatus and vibration unit thereof

Also Published As

Publication number Publication date
JP2003169486A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3823340B2 (en) Vibration motor
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JP3805240B2 (en) Ultrasonic motor
JPS62239875A (en) Drive control method for ultrasonic vibrator
JP3297211B2 (en) Ultrasonic motor
JP3113481B2 (en) Piezo motor
JPH05236767A (en) Oscillation motor
JPH05344759A (en) Ultrasonic motor
JPH0150196B2 (en)
JPH0681523B2 (en) Vibration wave motor
JPH05328760A (en) Vibration motor
JP2615953B2 (en) Ultrasonic motor and its driving method
JP2001095269A (en) Vibrating actuator
JPH07178370A (en) Vibrator and vibrating actuator
JPS62155782A (en) Ultrasonic vibrator and drive control method thereof
Kanda et al. An in-wheel type micro ultrasonic motor utilizing sector shaped piezoelectric vibrators
JPH0937576A (en) Ultrasonic motor and driving method therefor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor
JPH0491677A (en) Supersonic motor
JP2605121B2 (en) Ultrasonic vibrator and ultrasonic motor using the same
JPS63236577A (en) Wave matching method of supersonic vibrator
JP2759805B2 (en) Vibrator type actuator
JPH0345174A (en) Ultrasonic oscillator and ultrasonic motor
JPH0993965A (en) Ultrasonic oscillator and ultrasonic motor using the ultrasonic oscillator
JPH069389U (en) Vibration motor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees