JP3803901B2 - Sea level displacement measuring device - Google Patents

Sea level displacement measuring device Download PDF

Info

Publication number
JP3803901B2
JP3803901B2 JP35522099A JP35522099A JP3803901B2 JP 3803901 B2 JP3803901 B2 JP 3803901B2 JP 35522099 A JP35522099 A JP 35522099A JP 35522099 A JP35522099 A JP 35522099A JP 3803901 B2 JP3803901 B2 JP 3803901B2
Authority
JP
Japan
Prior art keywords
floating
floating body
sea
rod
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35522099A
Other languages
Japanese (ja)
Other versions
JP2001174259A (en
Inventor
照之 加藤
幸博 寺田
正生 木下
英司 柿本
英樹 遠藤
浩 一色
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
University of Tokyo NUC
Original Assignee
Hitachi Zosen Corp
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, University of Tokyo NUC filed Critical Hitachi Zosen Corp
Priority to JP35522099A priority Critical patent/JP3803901B2/en
Publication of JP2001174259A publication Critical patent/JP2001174259A/en
Application granted granted Critical
Publication of JP3803901B2 publication Critical patent/JP3803901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Level Indicators Using A Float (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海面の変位を計測するための変位計測装置に関するものである。
【0002】
【従来の技術】
従来、海面の状態を観測する場合、その海域に浮体を浮かべるとともに、その浮体の変動を、例えばGPS受信器を用いて計測することにより行われていた。
【0003】
【発明が解決しようとする課題】
上記従来の浮体の変動による観測においては、その計測データには、原因が異なる種々の周期を有する波が合成されており、したがって実際の海面の状態を正確に把握するためには、計測データに、ディジタフィルタを通すなどの解析処理を行う必要があり、その作業が面倒であった。
【0004】
そこで、本発明は、面倒な解析処理を行うことなく海面の状態を把握し得る海面変位計測装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明の海面変位計測装置は、所定海域に浮遊される複数個の浮体と、これら各浮体に設けられて少なくとも上下方向での変動を計測し得る位置計測器とから構成し、上記1個の浮体については、海面付近での水位の変動を検出し得るようにするとともに、残りの浮体については、棒状部材の海面下の所定位置に板状の抵抗部材を取り付けて、海面下の海水の変動を検出し得るようになし、かつ上記1個の浮体により検出された水位の変動量と、残りの浮体により検出された海面下の海水の変動量とを比較することにより、少なくとも津波の有無を検知し得るようにしたものである。
【0007】
上記海面変位計測装置によると、浮体を複数個配置し、上記1個の浮体を、海面付近に浮遊させ、また残りの浮体を、棒状部材で構成するとともに、その下端部に設けられる抵抗部材を、所定の設置深さに位置させることにより、海面付近の水位の変動と海面下における海水の変動をそれぞれ計測し、そして両計測データを比較することにより、少なくとも津波の発生の有無を検知し得るようにしたので、面倒な解析処理を行うことなく、津波を検知することができる。
【0008】
さらに、上記海面変位計測装置において、残りの浮体における抵抗部材に錘を取り付けるとともに、当該抵抗部材を、直接、棒状部材に取り付ける替わりに、棒状部材の下端部に索体を介して取り付けるようにしたものである。
このように、錘が取り付けられた抵抗部材を、索体を介して、棒状部材の下端部から吊り下げることにより、簡単な構成にて、すなわち棒状部材を長くすることなく、深い位置での海水の変動を計測することができる。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態における海面変位計測装置を、図1〜図4に基づき説明する。
この海面変位計測装置は、例えば所定海域に設置されて、GPSシステムを利用して、異なる深さで、例えば海面近傍と所定深さでの海水の変動を測定することにより、津波を検知するものである。
【0010】
すなわち、この海面変位計測装置は、図1に示すように、所定海域に設置された2個の浮体(ブイともいう)1(1A,1B)と、これら各浮体1A,1Bに取り付けられてGPS衛星3からの電波を受信して各浮体1A,1Bの時々刻々変化する位置(変動位置)を計測するGPS受信器(位置計測器の一例で、勿論、これには位置を演算する演算部が設けられている)2(2A,2B)とから構成されている。
【0011】
なお、これら各浮体1A,1Bに設けられたGPS受信器2A,2Bにて得られた浮体1A,1Bの位置データ(計測データ)は、例えば陸上基地局4に無線にて送信されて、ここで、海面の状態が検知(観測)される。
上記一方の浮体1Aは、図2に示すように、所定海域に係留索5を介して係留されるとともに比較的高さが低く(例えば、2m弱程度)かつ所定径(例えば、直径が2m程度)の円柱部材11により構成されるとともに、この円柱部材11の上面には、必要な測定機器の一つとしてGPS受信器2Aが設置されている。
【0012】
また、上記他方の浮体1Bは、図3に示すように、所定長さ(例えば、8m程度)で所定径(例えば、130mm程度)の細長い棒状部材(竿状部材ともいえる)12により構成されるとともに、海面から所定深さ(以下、設置深さという)の下端部には、錘13が取り付けられるとともに、所定面積を有する板状、好ましくは円板状の抵抗部材14および重さの微調整用のバラス15が外嵌されて抵抗部材14上に載置されている。この棒状部材12の上端部にGPS受信器2Bが取り付けられている。
【0013】
上記海面変位計測装置を設置する場合、図1に示すように、まず一方の浮体1Aを海面に浮かべるとともに係留索5を介して係留し、かつ他方の浮体1Bを連結索6を介して上記一方の浮体1Aに連結して、2個の浮体1A,1Bを所定海域に浮遊させる。
ところで、上記一方の浮体1Aの円柱部材11は、高さと径の比率が1に近い形状であるため、海面に浮かべた場合には、海面の変動に追従し、したがってこの一方の浮体1Aで得られる計測値は、海面付近の変動を示しているため、通常の風波などによる小さい変動が計測されることになる。
【0014】
一方、他方の浮体1Bは、棒状部材12で構成されているため、海面に浮かべた場合には、その下端部が比較的深い箇所に位置することになるため、風波の影響を受けない海面下での海水の変動、すなわち津波などの大きい波の変動に追従することになる。
そして、これら両浮体1A,1Bの各GPS受信機2A,2Bで得られた計測データは陸上基地局4に無線にて送信され、ここで、海面の状態、例えば津波の発生の有無が観測される。
【0015】
すなわち、通常の海象状態では、海面には風波による比較的小さい変動が生じているが、少し深い箇所では、風波による影響が殆ど無くなり、穏やかな変動となっている。
したがって、一方の浮体1Aの変動量と、他方の浮体1Bの変動量とが異なるとともに、他方の浮体1Bの動きが、一方の浮体1Aよりも、ゆっくりとしたものになっている。
【0016】
ここで、通常の海象状態における、両浮体1A,1Bの変動量(波高)を示すと、図4のグラフのようになる。
図4(a)は、一方の浮体1Aの変動量を示しており、(b)は他方の浮体1Bの変動量を示しており、このグラフから、海面に浮遊している一方の浮体1Aの変動量が、他方の浮体1Bの変動量よりも、大きくかつその変動周期が高いことが分かる。
【0017】
ところで、津波の場合には、比較的深い範囲に亘って波が伝わるため、両方の浮体1A,1Bが、一緒に、変動することになる。したがって、両浮体1A,1Bにおける計測データが、ほぼ同一の周期および振幅で変化している場合には、海面の変動が津波によるものであることが分かる。
なお、上記両浮体1A,1Bの計測データの差を求めることにより、例えば海面のうねりなどについても、その発生およびその大きさを検出することができる。
【0018】
このように、浮体1を2個配置するとともに、一方の浮体1Aを、海面の表面付近に浮遊させるとともに、他方の浮体1Bを、棒状部材12で構成するとともに、その下端部に設けられる抵抗部材14を、所定の設置深さに位置させることにより、海面付近と海面下における海水の変動をそれぞれ計測することができるので、両計測データを比較することにより、津波の発生の有無を、確実にかつ解析処理を行うことなく、検知することができる。
【0019】
ところで、上記実施の形態においては、一方の浮体1Aを円柱部材11で構成することにより、海面付近の海水の変動を検出するとともに、他方の浮体1Bを棒状部材12の下端部に抵抗部材14を取り付けて構成することにより、海面から所定深さにおける海水の変動を検出するようにしたが、例えば両方の浮体とも、棒状部材の下端部に抵抗部材を取り付けて構成したものでもよい。
【0020】
すなわち、図5に示すように、2個の浮体21の内、一方の浮体21Aを、短い棒状部材31の海面下(設置深さ)LAの箇所に、円形板体よりなる抵抗部材32を取り付けるとともに、他方の浮体21Bについても、長い棒状部材33の海面下(設置深さ)LBの箇所に円形板体よりなる抵抗部材34を取り付けるようにしてもよい。
【0021】
勿論、図示しないが、両棒状部材31,32の上端部には、GPS受信器が取付けられている。
ここで、上記両棒状部材31,32の運動について説明する。
周期T(秒)の波による水塊の運動は、その水深をD(m)とすると、下記(1)式に示すような範囲で主に起こる。
【0022】
D≦1.56×T2・・・・(1)
したがって、上記両浮体21A,21Bが応答する波周期の最小値を、TA,TBとすると、下記(2)式および(3)式の関係が成立する。
A≦1.56×TA 2・・・・(2)
B≦1.56×TB 2・・・・(3)
したがって、計測対象となる波の周期Tが、Tk<T<Tlである場合、2個の抵抗部材32,34を、下記(4)式および(5)式により求められる設置深さに、取り付ければよいことが分かる。
【0023】
A≦1.56×Tk 2・・・・(4)
B≦1.56×Tl 2・・・・(5)
このような深さに取り付けることにより、一方の浮体21Aの変動は、周期がTk以上の波によるものであり、また他方の浮体21Bの変動は、周期がTl以上の波によるものである。
【0024】
したがって、Tk<T<Tlの範囲の波による振幅(変動)を求めるには、両浮体21A,21Bの変動の振幅の差を求めればよい。
すなわち、周期の異なる波、風波やうねりなどを、別々に検出することができる。
ところで、上記各実施の形態においては、棒状部材の下端部に抵抗部材を取り付りるように説明したが、例えば海面下、数十メートル、またはそれ以上の深さでの海水の変動を計測したい場合には、棒状部材を長くすることは非現実的であり、したがって抵抗部材を索体などの連結部材を介して、棒状部材の下端部から所定深さだけ吊り下げればよい。
【0025】
また、上記各実施の形態においては、抵抗部材までの設置深さが異なる浮体を2個設けた場合について説明したが、例えば抵抗部材までの設置深さが異なる浮体を3個以上設けることにより、周期が異なる多くの波を、一緒に検出することができる。
【0026】
【発明の効果】
以上のように本発明の海面変位計測装置の構成によると、浮体を複数個配置し、上記1個の浮体を、海面付近に浮遊させるとともに、残りの浮体を、棒状部材で構成し、そしてその下端部に設けられる抵抗部材を、所定の設置深さに位置させることにより、海面付近の水位の変動と海面下における海水の変動をそれぞれ計測し、そして両計測データを比較することにより、少なくとも津波の発生の有無を検知し得るようにしたので、面倒な解析処理を行うことなく、津波を検知することができる。
【0027】
また、残りの浮体における抵抗部材に錘を取り付けるとともに、当該抵抗部材を、直接、棒状部材に取り付ける替わりに、棒状部材の下端部に索体を介して吊り下げるようにしたので、簡単な構成にて、すなわち棒状部材を長くすることなく、深い位置での海水の変動を計測することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態における海面変位計測装置を使用した津波検知システムの概略構成を示す図である。
【図2】同海面変位計測装置における一方の浮体の側面図である。
【図3】同海面変位計測装置における他方の浮体の側面図である。
【図4】同海面変位計測装置の両浮体による海面付近および海面下での海水の変動量を示すグラフである。
【図5】本発明の他の実施の形態における海面変位計測装置における各浮体の側面図である。
【符号の説明】
1 浮体
2 GPS受信器
3 GPS衛星
4 陸上基地局
5 係留索
11 円柱部材
12 棒状部材
13 錘
14 抵抗部材
21 浮体
31 棒状部材
32 抵抗部材
33 棒状部材
34 抵抗部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a displacement measuring device for measuring the displacement of the sea surface.
[0002]
[Prior art]
Conventionally, when the state of the sea surface is observed, a floating body is floated in the sea area, and the fluctuation of the floating body is measured by using, for example, a GPS receiver.
[0003]
[Problems to be solved by the invention]
In the conventional observation based on fluctuations of floating bodies, waves with various periods with different causes are combined in the measurement data. Therefore, in order to accurately grasp the actual state of the sea surface, It is necessary to perform analysis processing such as passing through a digital filter, which is troublesome.
[0004]
Then, an object of this invention is to provide the sea surface displacement measuring device which can grasp | ascertain the state of a sea surface, without performing a troublesome analysis process.
[0005]
[Means for Solving the Problems]
In order to solve the above-described problems, a sea level displacement measuring device according to the present invention includes a plurality of floating bodies floating in a predetermined sea area, and a position measuring device that is provided in each floating body and that can measure fluctuations in at least the vertical direction. consist of, for one floating body above, while adapted to detect the variation of water level in the vicinity of the sea surface, for the remaining floating, mounting the plate-shaped resistance member at a predetermined position below sea level of the rod Thus, it is possible to detect the fluctuation of the seawater below the sea level , and the fluctuation amount of the water level detected by the one floating body is compared with the fluctuation amount of the seawater below the sea level detected by the remaining floating bodies. Thus, at least the presence or absence of a tsunami can be detected .
[0007]
According to the sea surface displacement measurement apparatus, by arranging a plurality of floating bodies, one floating body above, and suspended in the vicinity of the sea surface, also the rest of the floating body, as well as constituted by rod-like member, the resistance member provided at its lower end and by positioning the predetermined installation depth and the change of marine in change and subsea water level in the vicinity of the sea surface is measured respectively, and Ri by the comparing both measurement data of at least tsunami generation Since the presence or absence can be detected, the tsunami can be detected without performing troublesome analysis processing .
[0008]
Further, in the sea surface displacement measurement apparatus, with attaching the weight to the resistance member in the remaining floating, the resistance member, directly, instead attached to the rod-like member, as attached via Sakutai the lower end of the rod It is a thing.
Thus, by suspending the resistance member to which the weight is attached from the lower end of the rod-shaped member via the cable body , the seawater at a deep position can be obtained with a simple configuration, that is, without lengthening the rod-shaped member. Fluctuations can be measured.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a sea level displacement measuring apparatus according to an embodiment of the present invention will be described with reference to FIGS.
This sea level displacement measuring device is installed in a predetermined sea area, for example, and detects a tsunami by using a GPS system to measure seawater fluctuations at different depths, for example, near the sea surface and at a predetermined depth. It is.
[0010]
That is, as shown in FIG. 1, this sea level displacement measuring device is equipped with two floating bodies (also referred to as buoys) 1 (1A, 1B) installed in a predetermined sea area, and attached to each of these floating bodies 1A, 1B. A GPS receiver that receives radio waves from the satellite 3 and measures the position (fluctuation position) of each floating body 1A, 1B that changes every moment (an example of a position measurement device. Of course, this includes a calculation unit that calculates the position) 2) (2A, 2B) provided.
[0011]
The position data (measurement data) of the floating bodies 1A and 1B obtained by the GPS receivers 2A and 2B provided in the floating bodies 1A and 1B are transmitted to the land base station 4 by radio, for example. The sea level is detected (observed).
As shown in FIG. 2, the one floating body 1A is moored in a predetermined sea area via a mooring cable 5 and relatively low in height (for example, about 2 m) and has a predetermined diameter (for example, about 2 m in diameter). ), And a GPS receiver 2A is installed on the upper surface of the cylindrical member 11 as one of the necessary measuring devices.
[0012]
Further, as shown in FIG. 3, the other floating body 1B is constituted by an elongated rod-like member (also referred to as a bowl-like member) 12 having a predetermined length (for example, about 8 m) and a predetermined diameter (for example, about 130 mm). In addition, a weight 13 is attached to the lower end of a predetermined depth from the sea surface (hereinafter referred to as installation depth), and a plate-shaped, preferably disk-shaped resistance member 14 having a predetermined area and a fine adjustment of the weight. A ballast 15 is externally fitted and placed on the resistance member 14. A GPS receiver 2 </ b> B is attached to the upper end portion of the rod-shaped member 12.
[0013]
When the sea level displacement measuring device is installed, as shown in FIG. 1, first one floating body 1A is floated on the sea surface and moored via a mooring line 5, and the other floating body 1B is connected to the one side via a connecting line 6. The two floating bodies 1A and 1B are connected to the floating body 1A and suspended in a predetermined sea area.
By the way, the cylindrical member 11 of the one floating body 1A has a shape in which the ratio of the height and the diameter is close to 1. Therefore, when floating on the sea surface, it follows the fluctuation of the sea surface, and thus obtained by this one floating body 1A. Since the measured values indicate fluctuations near the sea surface, small fluctuations due to normal wind waves and the like are measured.
[0014]
On the other hand, since the other floating body 1B is composed of the rod-like member 12, when it floats on the sea surface, its lower end portion is located at a relatively deep location, so that it is not affected by wind waves. It follows the fluctuations of seawater at the sea, that is, fluctuations of large waves such as tsunami.
The measurement data obtained by the GPS receivers 2A and 2B of both the floating bodies 1A and 1B are transmitted to the land base station 4 by radio, where the state of the sea surface, for example, the presence or absence of the occurrence of a tsunami is observed. The
[0015]
That is, in a normal sea state, relatively small fluctuations due to wind waves occur on the sea surface, but at a slightly deeper place, the influence by wind waves almost disappears and becomes gentle fluctuations.
Therefore, the fluctuation amount of one floating body 1A is different from the fluctuation amount of the other floating body 1B, and the movement of the other floating body 1B is slower than that of the one floating body 1A.
[0016]
Here, when the fluctuation amount (wave height) of both the floating bodies 1A and 1B in the normal sea state is shown, the graph is as shown in FIG.
FIG. 4A shows the fluctuation amount of one floating body 1A, and FIG. 4B shows the fluctuation amount of the other floating body 1B. From this graph, one floating body 1A floating on the sea surface is shown. It can be seen that the fluctuation amount is larger than the fluctuation amount of the other floating body 1B and the fluctuation cycle is high.
[0017]
By the way, in the case of a tsunami, since a wave is transmitted over a relatively deep range, both floating bodies 1A and 1B fluctuate together. Therefore, when the measurement data in both floating bodies 1A and 1B change with substantially the same period and amplitude, it is understood that the sea level fluctuation is caused by the tsunami.
In addition, by obtaining the difference between the measurement data of both the floating bodies 1A and 1B, for example, the occurrence and the size of the sea surface swell can be detected.
[0018]
In this way, two floating bodies 1 are arranged, one floating body 1A is floated near the surface of the sea surface, and the other floating body 1B is constituted by the rod-shaped member 12, and a resistance member provided at the lower end thereof. By positioning 14 at a predetermined installation depth, it is possible to measure seawater fluctuations near and below the sea surface. By comparing both measurement data, it is possible to reliably determine whether a tsunami has occurred. And it can detect, without performing an analysis process.
[0019]
By the way, in the said embodiment, while forming one floating body 1A with the cylindrical member 11, while detecting the fluctuation | variation of the seawater near the sea surface, the resistance member 14 is used for the other floating body 1B in the lower end part of the rod-shaped member 12. By attaching and configuring, the seawater fluctuation at a predetermined depth from the sea surface is detected. However, for example, both floating bodies may be configured by attaching a resistance member to the lower end portion of the rod-shaped member.
[0020]
That is, as shown in FIG. 5, one of the two floating bodies 21 is provided with a resistance member 32 made of a circular plate at a location L A below the sea surface (installation depth) LA of the short rod-shaped member 31. is attached, for the other floating body 21B, it may be attached to the resistance member 34 made of a circular plate body in long subsea rod-like member 33 (installation depth) position of the L B.
[0021]
Of course, although not shown, a GPS receiver is attached to the upper ends of the rod-like members 31 and 32.
Here, the motion of the rod-like members 31 and 32 will be described.
The movement of the water mass due to the waves of period T (seconds) mainly occurs in the range shown in the following equation (1), where the water depth is D (m).
[0022]
D ≦ 1.56 × T 2 (1)
Therefore, when the minimum values of the wave periods to which both the floating bodies 21A and 21B respond are T A and T B , the following expressions (2) and (3) are established.
L A ≦ 1.56 × T A 2 ···· (2)
L B ≦ 1.56 × T B 2 (3)
Therefore, when the period T of the wave to be measured is T k <T <T 1 , the two resistance members 32 and 34 are set to the installation depth obtained by the following equations (4) and (5). It can be seen that it should be attached.
[0023]
L A ≦ 1.56 × T k 2 (4)
L B ≦ 1.56 × T l 2 (5)
By mounting at such a depth, the fluctuation of one floating body 21A is caused by a wave having a period of Tk or more, and the fluctuation of the other floating body 21B is caused by a wave having a period of Tl or more. .
[0024]
Therefore, in order to obtain the amplitude (fluctuation) due to the wave in the range of T k <T <T 1 , the difference in the amplitude of the fluctuations of both the floating bodies 21A and 21B may be obtained.
That is, waves with different periods, wind waves, swells, and the like can be detected separately.
By the way, in each said embodiment, although demonstrated so that a resistance member might be attached to the lower end part of a rod-shaped member, the fluctuation | variation of the seawater in the depth of several dozen meters or more is measured under the sea surface, for example. When it is desired to lengthen the rod-shaped member, it is impractical to suspend the resistance member by a predetermined depth from the lower end of the rod-shaped member via a connecting member such as a rope.
[0025]
Further, in each of the above embodiments, the case where two floating bodies having different installation depths to the resistance member are described, but for example, by providing three or more floating bodies having different installation depths to the resistance member, Many waves with different periods can be detected together.
[0026]
【The invention's effect】
According to the configuration of the sea surface displacement measurement apparatus of the present invention as described above, the floating body by arranging a plurality of, one floating body above, with floated near the sea surface, the remaining floating, constituted by the rod-like member, and the resistance member provided at its lower end, by positioning the predetermined installation depth, that the change of marine in change and subsea water level in the vicinity of the sea surface is measured respectively, and compares the two measurement data Ri, since adapted to detect the occurrence of at least tsunami, without performing troublesome analysis, it is possible to detect the tsunami.
[0027]
In addition, the weight is attached to the resistance member in the remaining floating body, and instead of attaching the resistance member directly to the rod-like member, it is suspended from the lower end portion of the rod-like member via the cord, so that the structure is simple. That is, it is possible to measure the fluctuation of seawater at a deep position without lengthening the rod-like member.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a tsunami detection system using a sea level displacement measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a side view of one floating body in the sea level displacement measuring apparatus.
FIG. 3 is a side view of the other floating body in the sea level displacement measuring apparatus.
FIG. 4 is a graph showing the amount of seawater fluctuation near and below the sea surface due to both floating bodies of the sea level displacement measuring apparatus.
FIG. 5 is a side view of each floating body in a sea level displacement measuring apparatus according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Floating body 2 GPS receiver 3 GPS satellite 4 Land base station 5 Mooring line 11 Cylindrical member 12 Bar-shaped member 13 Weight 14 Resistance member 21 Floating body 31 Bar-shaped member 32 Resistance member 33 Bar-shaped member 34 Resistance member

Claims (2)

所定海域に浮遊される複数個の浮体と、これら各浮体に設けられて少なくとも上下方向での変動を計測し得る位置計測器とから構成し、
上記1個の浮体については、海面付近での水位の変動を検出し得るようにするとともに、残りの浮体については、棒状部材の海面下の所定位置に板状の抵抗部材を取り付けて、海面下の海水の変動を検出し得るようになし、
かつ上記1個の浮体により検出された水位の変動量と、残りの浮体により検出された海面下の海水の変動量とを比較することにより、少なくとも津波の有無を検知し得るようにしたことを特徴とする海面変位計測装置。
Consists of a plurality of floating bodies floating in a predetermined sea area, and a position measuring device that is provided in each floating body and can measure at least fluctuations in the vertical direction ,
For the one floating body, it is possible to detect the fluctuation of the water level near the sea surface, and for the remaining floating bodies, a plate-like resistance member is attached to a predetermined position below the sea surface of the rod-shaped member, To detect seawater fluctuations ,
And by comparing the amount of fluctuation of the water level detected by the one floating body with the amount of fluctuation of the seawater detected by the remaining floating bodies, it was possible to detect at least the presence or absence of a tsunami. A sea level displacement measuring device.
残りの浮体における抵抗部材に錘を取り付けるとともに、当該抵抗部材を、直接、棒状部材に取り付ける替わりに、棒状部材の下端部に索体を介して取り付けるようにしたことを特徴とする請求項1に記載の海面変位計測装置。 Is attached a weight to the resistance member in the remaining floating, the resistance member, directly, instead attached to the rod-like member, it has to be attached via a Sakutai the lower end of the rod to claim 1, wherein The described sea level displacement measuring device.
JP35522099A 1999-12-15 1999-12-15 Sea level displacement measuring device Expired - Fee Related JP3803901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35522099A JP3803901B2 (en) 1999-12-15 1999-12-15 Sea level displacement measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35522099A JP3803901B2 (en) 1999-12-15 1999-12-15 Sea level displacement measuring device

Publications (2)

Publication Number Publication Date
JP2001174259A JP2001174259A (en) 2001-06-29
JP3803901B2 true JP3803901B2 (en) 2006-08-02

Family

ID=18442658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35522099A Expired - Fee Related JP3803901B2 (en) 1999-12-15 1999-12-15 Sea level displacement measuring device

Country Status (1)

Country Link
JP (1) JP3803901B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7609202B2 (en) 2004-10-29 2009-10-27 Hitachi Zosen Corporation Relative measurement method and relative measurement system using satellite
WO2006046298A1 (en) 2004-10-29 2006-05-04 Hitachi Zosen Corporation Relative positioning method and relative positioning system using satellite
JPWO2006051582A1 (en) 2004-11-10 2008-05-29 日立造船株式会社 Relative positioning system using satellite
JP4534200B2 (en) * 2005-01-25 2010-09-01 社団法人海洋調査協会 Tsunami detector
GB2427172B (en) * 2005-06-18 2010-05-05 Terence Halliwell Tsunami early warning device
DE102005036846B4 (en) * 2005-08-04 2016-11-24 Vega Grieshaber Kg Device for measuring a level
JP4672605B2 (en) * 2006-06-08 2011-04-20 株式会社ゼニライトブイ Sea state measurement method by super buoy
JP5008430B2 (en) * 2007-03-15 2012-08-22 日立造船株式会社 Tsunami and wave observation facilities
CN106152984B (en) * 2016-05-16 2019-03-01 长江水利委员会长江科学院 Cross-section of river wetted perimeter measuring instrument and its measuring method based on RTK technology

Also Published As

Publication number Publication date
JP2001174259A (en) 2001-06-29

Similar Documents

Publication Publication Date Title
CN110422281B (en) Ocean Internet of things intelligent buoy, water surface or underwater target detection system and method thereof
JP4134020B2 (en) Tidal level monitoring system, maritime buoy and ground station device for tidal level monitoring system, tidal level monitoring method, tidal level monitoring program
JP3803901B2 (en) Sea level displacement measuring device
MX2007004628A (en) Net-like electrode array for marine electric and magnetic field measurements.
CN210375200U (en) Water surface or underwater target detecting instrument based on intelligent buoy
US3552204A (en) Means for detecting and recording water wave direction
KR20140017819A (en) Buoy for oceanographic observation using auto balance keeping
RU2294000C1 (en) Marine self-contained bottom station for seismic surveying and seismological monitoring
US4855966A (en) Method and apparatus for monitoring bridge structures for scouring
CN114455004A (en) Wave buoy combined with pressure acceleration sensor and precision improvement method
US3329015A (en) Stabilized buoy assembly
CN104215202B (en) Depth finder based method for measuring height from bottom to sampler
KR20100024701A (en) Vertical profiling system of seawater
JP4534200B2 (en) Tsunami detector
JPH01303009A (en) Controller for installing cable or flexible pipe at very deep underwater position
JP2004347550A (en) Wind condition investigation method of floating body type, and device
US4610007A (en) Method and apparatus for surveying positions of mooring lines
KR20020050863A (en) Ocean current measurement apparatus with global positioning system
AU2017384386A1 (en) Line intended to be immersed in an aquatic environment
RU2282217C1 (en) Method of determining comprehensive data on ocean condition
JP2004317182A (en) Ocean wave measuring instrument and ocean wave measuring method
CN105738646A (en) Water-course flow velocity measurement device
CN105717324A (en) Self-adaptive bottoming overhanging-type water flow tester
RU2020116797A (en) METHOD FOR MEASURING THE DENSITY OF SEA WATER FROM A MOBILE CARRIER OF HYDROPHYSICAL EQUIPMENT
JP2520659B2 (en) SENSOR-STANDARD BOTTOM SEATING METHOD AND DEVICE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120519

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130519

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees