JP3803236B2 - Energizer for pulse energization sintering machine - Google Patents

Energizer for pulse energization sintering machine Download PDF

Info

Publication number
JP3803236B2
JP3803236B2 JP2000284771A JP2000284771A JP3803236B2 JP 3803236 B2 JP3803236 B2 JP 3803236B2 JP 2000284771 A JP2000284771 A JP 2000284771A JP 2000284771 A JP2000284771 A JP 2000284771A JP 3803236 B2 JP3803236 B2 JP 3803236B2
Authority
JP
Japan
Prior art keywords
energization
sintering
electrode
movable
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000284771A
Other languages
Japanese (ja)
Other versions
JP2001335811A (en
Inventor
正雄 鴇田
進一 石田
Original Assignee
Spsシンテックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spsシンテックス株式会社 filed Critical Spsシンテックス株式会社
Priority to JP2000284771A priority Critical patent/JP3803236B2/en
Publication of JP2001335811A publication Critical patent/JP2001335811A/en
Application granted granted Critical
Publication of JP3803236B2 publication Critical patent/JP3803236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Resistance Heating (AREA)
  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス通電焼結機用通電装置に関し、更に詳細には、焼結型にセットされた一対のプレスコアと接触してプレスコアに焼結電流を通電して焼結する通電焼結機に電源装置から焼結電流を通電するのに適したパルス通電焼結機用通電装置に関する。
【0002】
近年通電焼結にも改良が加えられ、例えば放電プラズマ焼結、放電焼結或いはプラズマ活性化焼結を含む、パルス電流を利用して焼結を行うパルス通電加圧焼結法によれば、本来接合が困難な異なる材質の材料、例えばステンレス鋼と銅、セラミックスと各種金属等の材料を焼結により一体的に接合させることが可能になってきた。この場合、100%純粋の材料から成る二つの材料層を重ねて焼結して一体化するよりも、その二つの材料層の間に二つの材料の混合比を変えた層を複数設けることによって、更には同一の材料の焼結体を作る場合でもその材料の粉体の粒度を順次変化させることによって、焼結品に傾斜機能(焼結品の一方の表面側から他方の表面側にその焼結品の特性が徐々に変化している状態)を与えてその特性を一段と向上させることが可能である。
【0003】
ところで、パルス通電焼結機により上記のようなパルス通電加圧焼結を行なうには、そのパルス通電焼結機に、低電圧(通常100V以下)ではあるが大電流(例えば、5000A或いはそれ以上)の電力を供給する必要がある。このため、従来の通電焼結機に電源装置から電力を供給するために使用していた通電装置をそのまま利用することはできない。特に、係るパルス通電焼結機では焼結型の穴内に焼結すべき粉体を間に挟んで挿入されセットされた一対のパンチすなわちプレスコアに一対の通電電極を接触させてそれらのプレスコアを所望の圧力で加圧すると共にそれらのプレスコアに通電電極から大きな焼結電流を流さなければならないため、構造上少なくとも一方の通電電極を可動としなければならない。しかも、上述のように大電流を通電電極に供給する必要があるためかかる電流を通電するための導電体は重量が大きくなってしまう。このため、特に、可動側の通電電極に焼結電流を流す導電体の構造上の対策を適切に講じないと、導電体の大きな重量により通電電極に偏加重が作用して通電電極を移動可能に案内している絶縁性案内部材の偏摩耗を発生させ、或いは可動側(例えば下側)の通電電極に取り付けられた焼結型設置テーブル部の上面と上側の固定通電電極の下面との平行度を損ない通電焼結時のパルス電流の流れが不均一となって焼結のバラツキ、未焼結部分の発生などの不具合が発生し、更には焼結型や焼結装置の破損問題などを引き起こす原因となる等の従来の通電焼結機では考えられない問題が生じる。
【0004】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、可動側の通電電極に対して大重量の導電体によって引き起こされる偏加重を防止してパルス通電焼結機の適切な動作を確保すると共にその構成部品の消耗、破損を防止したパルス通電焼結機用通電装置を提供することである。
本発明が解決しようとする他の課題は、低電圧、大電流の電力を電力損失なく電源装置からパルス通電焼結機に供給できるパルス通電焼結機用通電装置を提供することである。
【0005】
【課題を解決するための手段】
本願の一つの発明は、焼結型内にセットされた一対のプレスコアと接触して前記プレスコアに焼結電流を通電する一対の通電電極を有し、前記通電電極の少なくとも一つが可動であるパルス通電焼結機の前記通電電極に電源装置からの焼結電流を通電するためのパルス通電焼結機用通電装置において、前記電源装置に接続された一対の入力側端子、前記通電電極に接続される一対の出力側端子及び前記入力側端子と前記出力側端子とを電気的に連通させる連通部材とを有するスイッチ機構と、前記スイッチ機構の一対の出力側端子を前記一対の通電電極にそれぞれ電気的に導通させる導通機構とを備え、前記導通機構が、前記可動の通電電極に電気的に接続されかつ前記可動の通電電極と共に移動する可動の通電電極側の接続端子と、前記接続端子と前記一対の出力端子の一方とを電気的に接続するフレキシブル導電体と、前記可動の通電電極の移動に合わせて前記フレキシブル導電体の前記接続端子側の端部を移動させるアクチュエータとを備えて構成されている。
【0006】
上記通電装置において、該フレキシブル導電体が、幅広でかつ可撓性を有する薄い銅板を複数枚重ねて構成されていても、或いは細い銅線を編んで作られた編み導体で構成されていてもよい。また、該スイッチ機構の一対の入力側端子及び出力側端子が、それぞれ平坦な通電面を有する幅広の板状部材で構成され、該一対の出力側端子が対応する入力端子に隣接して配置され、該一対の連通部材が該入力側端子の通電面及び出力側端子の通電面と面接触可能に配置された平坦な通電面を有し、該連通部材がアクチュエータにより入力側端子及び出力側端子と接触する位置及びそれらから離れる位置に選択的に移動されるようになっていてもよい。
【0007】
本願の他の発明は、焼結型内にセットされた一対のプレスコアと接触して前記プレスコアに焼結電流を通電する一対の通電電極を有し、前記通電電極の少なくとも一つが可動であるパルス通電焼結機の前記通電電極に電源装置からの焼結電流を通電するためのパルス通電焼結機用通電装置において、前記電源装置の少なくとも一つの出力側端子を前記可動の通電電極に電気的に導通させる導通機構を備え、前記導通機構が、前記可動の通電電極に電気的に接続されかつ前記可動の通電電極と共に移動する可動の通電電極側の接続端子と、前記接続端子と前記一対の出力端子の一方とを電気的に接続するフレキシブル導電体と、前記可動の通電電極の移動に合わせて前記フレキシブル導電体の前記接続端子側の端部を移動させるアクチュエータとを備えて構成されている。
【0008】
以下、図面を参照して本発明の実施例について説明する。
図1を参照して、まず、本発明の通電装置が適用されるパルス通電焼結機の一例について説明する。この例のパルス通電焼結機1は、台111、その台に直立状態で互いに隔てて固定された複数(この実施例では2本)の支柱112及び支柱112の上端に固定された上支持板113を有する本体フレーム10と、支柱112に上下移動可能に支持された下ハウジング組立体12と、支柱112に上下移動可能に支持された上ハウジング組立体13と、下ハウジング組立体12に取り付けられた下通電電極組立体14と、上支持板113に取り付けられている上通電電極組立体15と、台111の中央に取り付けられていて下可動ハウジング組立体を上下動させる駆動装置16とを備えている。下ハウジング組立体12は、軸受け122を介して支柱112に滑動可能に案内支持された円板状(この実施例で)の下可動体121と、下可動体121に取り付けられた下ハウジング123とを有している。ハウジング123は底壁を形成していて下可動体121に取り付ける底板124と、底板124に溶接等により接続された、環状(この実施例では円環状)の側壁を構成する環状体125と、環状板の上端に固定されたリング部材126とを有している。上ハウジング組立体13は、軸受け132を介して支柱112に滑動可能に案内支持されたリング状の上可動体131と、上可動体131に取り付けられた上ハウジング133とを備えている。上ハウジングは、上壁を構成する天板134と、環状(この実施例では円環状)の側壁を構成する環状体135と、環状板の下端及び上可動体に固定され、それによって上ハウジングを上可動体に取り付けているリング部材136とを有している。上、下ハウジング133及び123は互いに協同して焼結チャンバを画成するようになっている。上、下ハウジングは、環状体135、125をそれぞれ二重に設けることによって二重壁構造(ウオータージャケット状)にされ、中に冷却水を通す構造になっている。この焼結チャンバは図示しない装置により、例えば真空雰囲気或いは不活性ガス雰囲気等の焼結雰囲気に制御されるようになっている。なお、リング部材126の上面及びリング部材136の下面の少なくとも一方にはシールリングが設けられ、それらの面間の気密性を確保するようになっている。なお、図示しないが上ハウジングの環状体135には外部から焼結チャンバ内を見れるように覗き窓を設けてもよい。また、図示しないが、通電時の焼結型からの発熱からハウジングの内壁を保護するために、チャンバ内部に単層又は複数の層の環状のステンレス鋼薄板を遮熱板として設けてもよい。
【0009】
下通電電極組立体14は、下可動体121及び下ハウジングの底板124の中央部に形成された上下方向の貫通穴内に、絶縁ブッシュ146及び絶縁板147を介して下可動体121及び底板124に電気的に絶縁させた状態で固定された下通電電極141を備えている。下通電電極141は、この実施例では、下端にフランジ部143を有する円柱状の電極本体142と、その電極本体142の上端に取り付けられた電極ヘッド144とを有している。下通電電極141の内部には図示しないが外部の冷却液供給源と接続されていて中に冷却液を流す冷却通路が形成されている。下通電電極141は、図2[A]に示されるように、フランジ部143を固定ボルト148で下可動体121に取り付けることによって、下可動体に固定されている。この場合、公知の絶縁スリーブ及び絶縁ワッシャ等を用いて、固定ボルト148の周囲での下通電電極141と下可動体121との間の電気的絶縁を確保してある。上通電電極組立体15は、上支持板113の中央部に形成された上下方向の貫通穴内に、絶縁ブッシュ156及び157を介して上支持板113に電気的に絶縁させた状態で固定された上通電電極151を備えている。上通電電極151は、この実施例では、上端にフランジ部153が固定された円柱状の長い電極本体152と、その電極本体152の下端に取り付けられた電極ヘッド154とを有している。上通電電極151の内部には図示しないが外部の冷却液供給源と接続されていて中に冷却液を流す冷却通路が形成されている。上通電電極151は、図示しないが、フランジ部153を固定ボルトで上支持板113に取り付けることによって、上支持板に固定されている。この場合、公知の絶縁スリーブ及び絶縁ワッシャ等を用いて、固定ボルトの周囲での上通電電極151と上支持板113との間の電気的絶縁を確保してある。上通電電極151は上ハウジング133の天板134を上下に貫通する穴を通して伸び、下端が焼結チャンバ内に配置されるようになっている。天板134には絶縁ブッシュ138及びシール部材139が取り付けられている。下通電電極141の軸心と上通電電極151の軸心とは同軸になるように位置決めされている。
【0010】
駆動装置16は、この実施例では流体圧シリンダ161で構成され、そのピストンロッド162の先端(図で上端)には下通電電極に固定するための接続ブロック163が固定されている。接続ブロック163とピストンロッド162との接続方法は、ピストンロッド先端に形成された雄ねじを接続ブロックに形成された雌ねじに螺合することによって行われる。接続ブロック163と下通電電極141のと間には、後述する銅板等の導電性材料でできた接続端子54と、絶縁板164とが接続端子を下通電電極に接触させた状態で、配置されている。接続ブロック163は、図2[A]に示されるように、その接続ブロック163を固定ボルト166で下通電電極141のフランジ部143に取り付けることによって、下通電電極に固定されている。この場合、公知の絶縁スリーブ及び絶縁ワッシャ等を用いて、固定ボルト166の周囲での接続ブロック163と下通電電極141ととの間の電気的絶縁を確保してある。下ハウジング組立体12はこのようにして下通電電極組立体14と共に駆動装置16により上下動される。なお、上記実施例では駆動装置として流体圧シリンダを採用したが、これに代えて電動モータで駆動する方式を採用してもよい。上通電電極151のフランジ部153と絶縁ブッシュ157との間には後述する銅板等の導電性材料でできた接続端子58が配置されている。上ハウジング組立体13を上下移動させる機構は、図2[B]に示されるように、上端が上支持板113に固定され下端が上可動体131に固定されたアクチュエータ17で構成される。このアクチュエータ17はこの実施例では流体シリンダ171で構成され、この流体シリンダのシリンダ本体の上端が上支持板113に固定され、ピストンロッド172の下端が上可動体131に固定されている。アクチュエータは、その軸心が、一対の支柱112の軸心及び上下通電電極151、141の軸心を含む面に関して所定の角度、例えば30度或いは45度を成す平面内に存在するように、位置決めされている。
【0011】
上記パルス通電焼結機において、上、下ハウジング組立体13、12がそれぞれ上位置及び下位置になっていて、下通電電極141が上通電電極15から最も離れた状態になっているとき、下通電電極141のヘッド144上には、中に焼結されるべき粉末材料jが充填された焼結型aが載せられる。このとき下通電電極141のヘッド144の上面は焼結型の穴内に挿入されてセットされている下プレスコアbの下面と接触しそれと通電できると共に所望の圧力を加え得るようになっている。焼結型が下通電電極141の上に位置決めされると、駆動装置16が動作して下通電電極組立体14及びその上の焼結型aを、下ハウジング組立体12と共に、焼結型の穴内に挿入された上プレスコアcが上通電電極151のヘッド154の下面に当たるまで上昇させる。それと同時又はその後アクチュエータ17が動作して上ハウジング組立体13を降下させる。すると上ハウジング133のリング部材136と下ハウジング123のリング部材126とが当接して上、下ハウジングによって画成されるチャンバを外気と遮断し、そのチャンバ内を公知の方法で真空雰囲気又は不活性ガス雰囲気にする。その後駆動装置16で下通電電極141を上通電電極151に向かって所望の圧力で押圧しながら通電電極を介して所望の電圧で所望の値の直流パルス電流を流してパルス通電焼結を行う。なお、上記実施例では上ハウジング組立体13を上下動するアクチュエータ17を流体シリンダで構成したが、図2[C]に示されるようにねじ軸及びそれと螺合するナットから成るねじ軸及びナット機構171aで構成してもよい。このねじ軸及びナット機構171aは、下可動体121に直立状態で回転可能に支持されていてほぼ全長に亘って雄ねじが形成されたねじ軸172aと、このねじ軸172aの雄ねじと螺合する雌ねじが形成されたナット173aと、このねじ軸172aを回転する駆動モータ174aとを備えている。
【0012】
電源装置は、低電圧(例えば100V以下)で大電流(例えば5000A或いはそれ以上)の直流パルス電流を供給できるものが好ましい。これは放電プラズマ焼結、放電焼結或いはプラズマ活性化焼結のようなパルス通電焼結を行う場合には低電圧で大電流の直流パルス電流が必要と成るからである。なおこのような直流パルス発生電源装置の構造自体は公知のものでよいのでその詳細な説明は省略する。
【0013】
図3ないし図5において、本実施例の通電装置3が示されている。この実施例の通電装置3は、本体フレーム30の台板31の上に配設されたスイッチ機構40と、スイッチ機構の後述する一対の出力側端子板を上記パルス通電焼結機の一対の通電電極に導通する導通機構50とを備えている。フレーム30の台板31上には、その上に配置された板状の絶縁体32を介して台板に電気的に絶縁してスイッチ機構40の第1及び第2の一対の入力側端子板41及び42が固定されている。台板31の上面、したがって絶縁体32の上面はほぼ水平面になるように調整されていてしたがって入力端子板41及び43の上側の接触面すなわち通電面411及び421もほぼ水平で平坦な面に形成されている。これら入力側端子板は銅等の導電性の良い材料でしかも通電面として広い面積がとれるような幅広の板を2枚重ねにして(大きな通電容量を確保するため)構成されている。第1及び第2の入力端子板41及び42は同様に幅広で板状の導電板412及び422を介して電源装置2にそれぞれ接続されている。これらの導電板も銅等の導電性の良い材料でつくられている。
【0014】
台板31上の絶縁体32の上には、第1及び第2の入力側端子板41及び42にそれぞれ隣接してその入力側端子板と隔てて(電気的に絶縁して)スイッチ機構40の第1及び第2の出力側端子板43及び44が配設固定されている。出力側端子板43及び44の上側の接触面すなわち通電面431及び441もほぼ水平で平坦な面に、しかも入力側端子板の通電面と面一になるように形成されている。これら出力側端子板は銅等の導電性の良い材料でしかも通電面として広い面積がとれるような幅広の板を2枚重ねにして構成されている。
【0015】
スイッチ機構40は、第1及び第2の入力側端子板及び第1及び第2の出力側端子板の上方、特に入力側端子板と出力側端子板とが横方向に(図5において左右方向に)重なり合う部分の上方に配置され複数の支柱46によりほぼ水平になるように固定された支持板45(45a、45b)を備えている。支柱46は図示しない絶縁部材により入力側及び出力側端子板から電気的に絶縁され、したがって支持板45も絶縁されている。支持板45a及び45bには流体シリンダ47(47a及び47b)がそれぞれ直立状態で取り付けられている。流体シリンダ47の位置は、各流体シリンダの軸心が、入力端子板と出力端子板とが横方向に重なり合う部分のほぼ中央の線X−X(図5において)上でかつ入力端子板と出力端子板との間の位置、すなわち第1の入力側端子板41と第1の出力側端子板43との間及び第2の入力側端子板42と第2の出力側端子板44との間になるように、決められている。
【0016】
各流体シリンダ47はそのピストンロッドが支持板の下側に突出できるように配向されている。各流体シリンダ47のピストンロッド471には可動支持体48(48a、48b)(ただし図4では48bのみ図示)が絶縁部材を介してピストンロッドに関して電気的に絶縁して固定されている。各可動支持体48の下面には銅等の導電性の良い材料でできた導通部材49(49a、49b)が固定されている。導通部材の下側の接触面すなわち通電面はほぼ水平になるように調整されている。このように、各流体シリンダに対して一つの導通部材が設けられ、各導通部材が対応する流体シリンダにより独立して上下動されるようになっている。導通部材49aはシリンダ47aにより動作されて第1の入力側端子板41と第1の出力側端子板43とを電気的に接続する。導通部材49bはシリンダ47bにより動作されて第2の入力側端子板42と第2の出力側端子板44とを電気的に接続する。
【0017】
第1及び第2の出力側端子板43及び44は、導通機構50を介して図1に示されるパルス通電焼結機1の上通電電極151及び下通電電極141にそれぞれ電気的に接続されるようになっている。導通機構50は、第1の出力側端子板43をパルス通電焼結機1の可動側の下通電電極141に電気的に接続する第1の部分と、第2の出力側端子板44を固定側の上通電電極151に電気的に接続する第2の部分とを備えている。導通機構50の第1の部分は、第1の出力側端子板43に電気的に接続された導電体51と、本体フレーム30の上フレーム部材33に絶縁させて固定されかつ導電板51と電気的に導通されている固定導電体52と、焼結機の側部に配置された可動導電体53と、可動導電体53と導電体を介して電気的に接続されていて可動導電体をパルス通電焼結機1の可動電極すなわち下通電電極141に電気的に接続する接続端子54と、固定導電体52と可動導電体53とを電気的に接続するフレキシブル導電体55、可動導電体53を下通電電極の上下動に同期して上下動させるアクチュエータ56とを備えている。導電板51も銅等の導電性の良い幅広の板を複数枚重ねてつくられている。
【0018】
アクチュエータ56は、この実施例では、焼結機1に隣接して直立状態で配置されたエアシリンダーなどの流体圧シリンダで構成され、そのピストンロッドの先端が可動導電体53に電気的に絶縁して取り付けられている。したがって、可動導電体を下通電電極の上下動に同期させて上下動できる。フレキシブル導電体55は、この実施例では極めて薄い幅広の銅板を多数枚重ねて可撓性を持たせたものであるが、細い導線を帯状に編んで可撓性にしたものでも、或いは銅でできた多数枚のリンクを幅方向(図4で紙面に直角な方向)及び長手方向に並べてそれらをチエーンのように銅のような導電性のよいピンで接続した構造でもよい。いずれにしろ十分な電流を流せるように幅広にかつ大きな断面積を有する導電体として構成される。本発明の通電装置においては、導通機構を上記のような構成にしたので、フレキシブル導電体の重量が非常に大きくなっても、下通電電極に偏荷重が作用するのを防止して絶縁ブッシュの変形、その偏荷重による焼結型設置テーブル部すなわちヘッドの上面と上通電電極の下面との平行度不良による焼結のバラツキの発生、未焼結部分の発生などの不具合の発生、また焼結型や焼結装置の破損問題なども防止できる。導通機構の第2の部分は、第2の出力側端子板と同様に幅広で板状の固定導電板57と固定導電板57を上通電電極151に電気的に接続する接続端子58とで構成されている。固定導電板57は、それぞれが銅等の導電性のよい板材を複数枚重ねて構成されていて互いに電気的に導通された複数の部分571ないし574から成っている。
【0019】
次に上記実施例の通電装置の動作を焼結機の動作と関連して説明する。
被焼結材料である粉体jが充填された焼結型aがパルス通電焼結機1の下通電電極141のヘッド144の上に設置されると、駆動装置16が動作して下ハウジング組立体12及び下通電電極組立体14を上昇させる。するとヘッド144上に載せられた焼結型aもそれと共に上昇し焼結型a内にセットされた上プレスコアcの上面が上通電電極151のヘッド154の下面に当接する。上記駆動装置16の動作により下通電電極141が上昇するのと同時にかつその上昇速度に合わせて導通機構50のアクチュエータ56が動作して可動導電体53を上昇させフレキシブル導電体の一端を上昇させる。それと同時に或いは時間をずらして、上ハウジング組立体13がアクチュエータ17によって降下され、上ハウジング組立体13のリング部材136及び下ハウジング組立体12のリング部材126が接近し、上下ハウジングにより焼結型を囲むチャンバを画成し、図示しない装置によりチャンバ内を真空状態(大気圧に対して負圧状態)或いは不活性ガスの雰囲気にする。駆動装置16は下通電電極141を上通電電極151に向かって、焼結条件により決められる力で押圧し上、下プレスコアc、bを介して焼結すべき粉体jを所望の圧力で圧縮する。このような状態の下で、通電装置3のシリンダ47a及び47bが同時に動作して導通部材49a及び49bを押し下げてその導通部材49aを第1の入力側端子板41と第1の出力側端子板43に接触させてそれらを電気的に導通させ、他方の導通部材49bを第2の入力側端子板42と第2の出力側端子板44に接触させてそれらを導通させ、それによって電源装置2からパルス通電焼結機1に直流パルス電流を供給し、その焼結機でパルス通電焼結を行う。パルス通電焼結機への電流の供給を中止するときは、シリンダ47を逆に動作させて導通部材を入力側端子板及び出力側端子板から離せばよい。
【0020】
上記通電装置は、図6に示されるようにして一つの入力側端子板41及び42に対して二つの出力側端子板43a、43b及び44a、44bを配置すると共に連通部材もそれに対応して設けることによって、1台の電源装置で2台のパルス通電焼結機に焼結電流を供給するのに使用できる。
【0021】
図7において、パルス通電焼結機の変形例が示されている。この実施例において、前記実施例のパルス通電焼結機のハウジングと違ってハウジング123bは上支持板113bに固定された固定式である点で相違する。ハウジング123bは上端が上支持板113bに固定された中空の筒体125bと、中空の筒体125bの下端に固定された底板124bとを備えている。下通電電極組立体14bは、駆動装置16bを構成する流体シリンダ161bのピストンロッド162bの上端に取り付けられている。下通電電極組立体14bは下端にフランジ部143bが形成された円柱状の電極本体142bから構成された下通電電極141bを備えている。電極本体142bと、ピストンロッド162bの上端に固定された接続ブロック163bとの間には、前記実施例と同様に絶縁板と銅板等でできた接続端子54とが絶縁板を接続ブロック側にして配置固定されている。接続端子、電極本体及び接続ブロック間の接続方法は前記実施例と同じである。上電極組立体15bの構造及び取り付け方法は前記実施例と実質的に同じである。従って説明は省略する。この実施例ではハウジング123bが固定式であるため、ハウジング内の焼結チャンバ内への或いはそこからの焼結型の出し入れを行うための比較的大きな窓127bが形成され、その窓を蝶番等により開閉可能に取り付けられた扉128bにより閉鎖できるようにしてある。下通電電極141bはハウジング123bの底板124bに形成された穴を貫通して伸びている。その穴内には絶縁シール部材129bが設けられている。この絶縁シール部材は底板と下通電電極との間の電気的接続を阻止すると共に下通電電極の周りでの気密性を確保し、更に下通電電極をハウジングに関して移動可能に案内する役目をしている。このようなハウジング構造を有する場合には、絶縁シール部材が通電電極と滑り接触しているので偏荷重により偏摩耗を来すことになるが、本発明の通電装置を使用すればこのような偏摩耗も防止できる。なお、ハウジングの側壁は、前記実施例と同様に、環状体125bを二重に設けることによって二重壁構造(ウオータージャケット状)にされ、中に冷却水を通す構造になっている。また、扉128bも二重構造になっている。また、図示しないが、通電時の焼結型からの発熱からハウジングの内壁を保護するために、チャンバ内部に単層又は複数の層の環状のステンレス鋼薄板を遮熱板として設けてもよい。
【0022】
上記実施例ではパルス通電焼結機1、1bと、そのパルス通電焼結機に直流電力を供給する直流の電源装置2との間にスイッチ機構40と導通機構50とが配置された場合を説明したが、図8に示されるように直流の電源装置2’とパルス通電焼結機1、1bとの間に導通機構50のみを配置し、電源装置2’内に或いはその上流側にスイッチ機構40’を配置してもよい。この場合には、交流電源(図示せず)から直流の電源装置2内の変圧器21に交流電力が供給されるので、スイッチ機構40’としては上記実施例のスイッチ機構40と同じ構造にする必要はないが、電源装置2の変圧器21より下流側にある整流器22からパルス通電焼結機には低電圧大電流が流れるので前述の導通機構50と同じ構成のものを使用する。この場合、もちろん導通機構50の第1の部分の導電体を電源装置2’の一方の出力端子に接続し、第2の部分の固定導電板57のいずれかの部分を他方の出力端子に接続する。そして、パルス通電焼結機への電力の供給はスイッチ機構40’を動作させて行う。
【0023】
【効果】
本発明によれば、
(イ)フレキシブル導電体の重量が非常に大きくなっても、下通電電極に偏荷重が作用するのを防止して下通電電極を移動可能に案内している絶縁性案内部材の偏摩耗の発生を防止できる、
(ロ)焼結型設置テーブル部の上面と上通電電極の下面との平行度を確保でき、平行度不良による焼結のバラツキ発生及び未焼結部分の発生などの不具合の発生を防止できる、
(ハ)また焼結型や焼結装置の破損を防止できる、
(ニ)大電流の通電を効率良く確実に行うことができる、
等の効果を奏することが可能である。
【図面の簡単な説明】
【図1】本発明の通電装置と共に使用されるパルス通電焼結機の側面図である。
【図2】[A]は下通電電極と駆動装置との連結状態を示す拡大断面図であり、[B]は上ハウジング組立体を動作するアクチュエータを示す図であり、[C]はアクチュエータの変形例を示す図である。
【図3】通電装置の平面図であって、通電焼結機と共に示す図である。
【図4】通電装置の立面図であって図の線A−Aに沿って見た図である。
【図5】入力側端子板と出力側端子板との配置位置関係を示す図である。
【図6】通電装置の変更可能性を示す側面図である。
【図7】パルス通電焼結機の変形例を示す図である。
【図8】電源装置、導通機構及びパルス通電焼結機の別の配置例を示す図である。
【符号の説明】
1、1b パルス通電焼結機 2、2’ 電源装置
3 通電装置
30 本体フレーム
40、40’ スイッチ機構
41,42 入力側端子板 43,44 出力側端子板
47 流体シリンダ 49 導通部材
50 導通機構
54接続端子 55 フレキシブル導電体
56 アクチュエータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an energization device for a pulsed electric sintering machine, and more specifically, an electric current sintering that contacts a pair of press cores set in a sintering die and applies a sintering current to the press cores for sintering. The present invention relates to a current-carrying apparatus for a pulse current sintering machine suitable for passing a sintering current from a power supply device to the machine.
[0002]
In recent years, improvements have also been made in electric current sintering. For example, according to the pulse electric current pressure sintering method in which sintering is performed using a pulse current, including discharge plasma sintering, discharge sintering or plasma activated sintering, It has become possible to integrally bond materials of different materials, which are inherently difficult to bond, such as stainless steel and copper, ceramics and various metals, by sintering. In this case, rather than stacking and integrating two material layers made of 100% pure material, a plurality of layers having different mixing ratios of the two materials are provided between the two material layers. In addition, even when a sintered body of the same material is made, by changing the particle size of the powder of the material sequentially, a gradient function is applied to the sintered product (from one surface side of the sintered product to the other surface side). It is possible to further improve the characteristics of the sintered product by providing a state in which the characteristics of the sintered product are gradually changing.
[0003]
By the way, in order to perform the above-mentioned pulse energization sintering by the pulse energization sintering machine, the pulse energization sintering machine has a low current (usually 100 V or less) but a large current (for example, 5000 A or more). ) Need to be supplied. For this reason, the current-carrying device used for supplying power from the power supply device to the conventional current-carrying sintering machine cannot be used as it is. In particular, in such a pulse current sintering machine, a pair of energized electrodes are brought into contact with a pair of punches, that is, press cores, which are inserted and set in a sintering mold hole with the powder to be sintered interposed therebetween, and the press cores. Are pressed at a desired pressure and a large sintering current must be passed through the press cores from the current-carrying electrodes, so that at least one current-carrying electrode must be movable in terms of structure. In addition, since it is necessary to supply a large current to the energizing electrode as described above, the conductor for energizing the current becomes heavy. For this reason, the current carrying electrode can be moved by applying a partial load to the current carrying electrode due to the large weight of the conductor, particularly when the structural measures of the current flowing through the current carrying electrode on the movable side are not properly taken. The insulating guide member that is guided to the surface of the insulating guide member causes uneven wear, or the upper surface of the sintered mold installation table attached to the movable-side (for example, lower) energizing electrode and the lower surface of the upper fixed energizing electrode are parallel to each other. The flow of the pulse current at the time of current sintering is not uniform, causing problems such as unevenness of sintering and unsintered parts, as well as damage to the sintering mold and sintering equipment. Problems that cannot be considered in the conventional electric sintering machine, such as causing it, occur.
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to prevent an uneven load caused by a heavy conductor on a current-carrying electrode on the movable side, to ensure proper operation of the pulse current sintering machine and to wear out its components. An object of the present invention is to provide an energization device for a pulsed electric sintering machine that prevents damage.
Another problem to be solved by the present invention is to provide an energization device for a pulse energization sintering machine capable of supplying low voltage, large current power from a power supply device to the pulse energization sintering machine without power loss.
[0005]
[Means for Solving the Problems]
One invention of this application has a pair of energization electrodes which contact a pair of press cores set in a sintering mold and energize the press core with a sintering current, and at least one of the energization electrodes is movable. In the energization device for pulse energization sintering machine for energizing the sintering current from the power supply device to the energization electrode of a certain pulse energization sintering machine, a pair of input side terminals connected to the power supply device, Connected to the energizing electrode A switch mechanism having a pair of output side terminals and a communication member that electrically connects the input side terminal and the output side terminal, and the pair of output side terminals of the switch mechanism are electrically connected to the pair of energizing electrodes, respectively. A conduction mechanism that conducts to the movable energization electrode, wherein the conduction mechanism is electrically connected to the movable energization electrode and moves together with the movable energization electrode, the connection terminal and the pair A flexible conductor that electrically connects one of the output terminals, and an actuator that moves the end of the flexible conductor on the connection terminal side in accordance with the movement of the movable energizing electrode. Yes.
[0006]
In the energization device, the flexible conductor may be formed by stacking a plurality of thin and flexible copper plates, or by a knitted conductor made by knitting a thin copper wire. Good. Further, the pair of input side terminals and output side terminals of the switch mechanism are each composed of a wide plate-like member having a flat current-carrying surface, and the pair of output side terminals are disposed adjacent to the corresponding input terminals. The pair of communication members have flat current-carrying surfaces arranged so as to be in surface contact with the current-carrying surface of the input-side terminal and the current-carrying surface of the output-side terminal, and the communication members are connected to the input-side terminal and the output-side terminal by an actuator. It may be selectively moved to a position in contact with and a position away from them.
[0007]
Of this application other The invention comprises a pulse current firing method comprising a pair of energizing electrodes that contact a pair of press cores set in a sintering mold and energizing the press core with a sintering current, wherein at least one of the energizing electrodes is movable. In the energization apparatus for a pulse energization sintering machine for energizing a sintering current from a power supply device to the energization electrode of a binding machine, at least one output side terminal of the power supply device is electrically connected to the movable energization electrode. A connection mechanism on the side of the movable energizing electrode that is electrically connected to the movable energizing electrode and moves together with the movable energizing electrode, the connection terminal, and the pair of output terminals. A flexible conductor that electrically connects one of the two, and an actuator that moves the end of the flexible conductor on the connection terminal side in accordance with the movement of the movable energizing electrode. It has been made.
[0008]
Embodiments of the present invention will be described below with reference to the drawings.
With reference to FIG. 1, first, an example of a pulse current sintering machine to which the current supply device of the present invention is applied will be described. The pulse electric sintering machine 1 of this example includes a table 111, a plurality of (two in this embodiment) columns 112 fixed upright on the table, and an upper support plate fixed to the upper ends of the columns 112. A main body frame 10 having a base 113, a lower housing assembly 12 supported by the support 112 so as to be movable up and down, an upper housing assembly 13 supported by the support 112 so as to be movable up and down, and a lower housing assembly 12. The lower energizing electrode assembly 14, the upper energizing electrode assembly 15 attached to the upper support plate 113, and the driving device 16 attached to the center of the base 111 and moving the lower movable housing assembly up and down. ing. The lower housing assembly 12 includes a disc-like (in this embodiment) lower movable body 121 that is slidably guided and supported by the support column 112 via bearings 122, and a lower housing 123 attached to the lower movable body 121. have. The housing 123 forms a bottom wall, a bottom plate 124 attached to the lower movable body 121, an annular body 125 constituting an annular (annular) side wall connected to the bottom plate 124 by welding or the like, and an annular shape And a ring member 126 fixed to the upper end of the plate. The upper housing assembly 13 includes a ring-shaped upper movable body 131 that is slidably guided and supported by the support column 112 via a bearing 132, and an upper housing 133 attached to the upper movable body 131. The upper housing is fixed to the top plate 134 constituting the upper wall, the annular body 135 constituting the annular (circular ring in this embodiment) side wall, the lower end of the annular plate and the upper movable body, thereby And a ring member 136 attached to the upper movable body. The upper and lower housings 133 and 123 cooperate with each other to define a sintering chamber. The upper and lower housings are formed into a double wall structure (water jacket shape) by providing the annular bodies 135 and 125 in double, and the cooling water is allowed to pass therethrough. This sintering chamber is controlled to a sintering atmosphere such as a vacuum atmosphere or an inert gas atmosphere by an apparatus (not shown). A seal ring is provided on at least one of the upper surface of the ring member 126 and the lower surface of the ring member 136 so as to ensure airtightness between these surfaces. Although not shown, a viewing window may be provided on the annular body 135 of the upper housing so that the inside of the sintering chamber can be seen from the outside. Although not shown, in order to protect the inner wall of the housing from heat generation from the sintering mold when energized, a single layer or a plurality of layers of an annular stainless steel thin plate may be provided inside the chamber as a heat shield.
[0009]
The lower energizing electrode assembly 14 is formed on the lower movable body 121 and the bottom plate 124 via the insulating bush 146 and the insulating plate 147 in the vertical through hole formed in the center of the lower movable body 121 and the bottom plate 124 of the lower housing. A lower energizing electrode 141 fixed in an electrically insulated state is provided. In this embodiment, the lower energizing electrode 141 includes a cylindrical electrode body 142 having a flange portion 143 at the lower end, and an electrode head 144 attached to the upper end of the electrode body 142. Although not shown, a cooling passage is formed in the lower energizing electrode 141, which is connected to an external coolant supply source and allows the coolant to flow therethrough. As shown in FIG. 2A, the lower energization electrode 141 is fixed to the lower movable body by attaching the flange portion 143 to the lower movable body 121 with a fixing bolt 148. In this case, electrical insulation between the lower energizing electrode 141 and the lower movable body 121 around the fixing bolt 148 is ensured by using a known insulating sleeve and an insulating washer. The upper energizing electrode assembly 15 is fixed in a vertically penetrating hole formed in the central portion of the upper support plate 113 in a state of being electrically insulated from the upper support plate 113 via insulating bushes 156 and 157. An upper energizing electrode 151 is provided. In this embodiment, the upper energizing electrode 151 has a long columnar electrode body 152 having a flange portion 153 fixed to the upper end, and an electrode head 154 attached to the lower end of the electrode body 152. Although not shown, the upper energizing electrode 151 is connected to an external coolant supply source, and a cooling passage through which the coolant flows is formed. Although not shown, the upper energizing electrode 151 is fixed to the upper support plate by attaching the flange portion 153 to the upper support plate 113 with a fixing bolt. In this case, electrical insulation between the upper energizing electrode 151 and the upper support plate 113 is secured around the fixing bolt by using a known insulating sleeve and insulating washer. The upper energizing electrode 151 extends through a hole penetrating the top plate 134 of the upper housing 133 in the vertical direction, and the lower end is arranged in the sintering chamber. An insulating bush 138 and a seal member 139 are attached to the top plate 134. The axis of the lower energizing electrode 141 and the axis of the upper energizing electrode 151 are positioned so as to be coaxial.
[0010]
In this embodiment, the driving device 16 is composed of a fluid pressure cylinder 161, and a connecting block 163 for fixing to the lower energizing electrode is fixed to the tip (upper end in the figure) of the piston rod 162. The connection method between the connection block 163 and the piston rod 162 is performed by screwing a male screw formed at the tip of the piston rod with a female screw formed in the connection block. Between the connection block 163 and the lower energization electrode 141, a connection terminal 54 made of a conductive material such as a copper plate, which will be described later, and an insulating plate 164 are arranged in a state where the connection terminal is in contact with the lower energization electrode. ing. As shown in FIG. 2A, the connection block 163 is fixed to the lower energization electrode by attaching the connection block 163 to the flange portion 143 of the lower energization electrode 141 with a fixing bolt 166. In this case, electrical insulation between the connection block 163 and the lower energizing electrode 141 around the fixing bolt 166 is ensured by using a known insulating sleeve, insulating washer, and the like. Thus, the lower housing assembly 12 is moved up and down by the driving device 16 together with the lower energizing electrode assembly 14. In the above embodiment, a fluid pressure cylinder is used as the driving device. However, instead of this, a method of driving with an electric motor may be adopted. A connection terminal 58 made of a conductive material such as a copper plate, which will be described later, is disposed between the flange portion 153 of the upper energizing electrode 151 and the insulating bush 157. As shown in FIG. 2B, the mechanism for moving the upper housing assembly 13 up and down includes an actuator 17 having an upper end fixed to the upper support plate 113 and a lower end fixed to the upper movable body 131. In this embodiment, the actuator 17 is composed of a fluid cylinder 171, the upper end of the cylinder body of the fluid cylinder is fixed to the upper support plate 113, and the lower end of the piston rod 172 is fixed to the upper movable body 131. The actuator is positioned so that its axis is in a plane that forms a predetermined angle, for example, 30 degrees or 45 degrees with respect to the plane including the axes of the pair of support columns 112 and the upper and lower energization electrodes 151 and 141. Has been.
[0011]
In the pulse energization sintering machine, when the upper and lower housing assemblies 13 and 12 are in the upper position and the lower position, respectively, and the lower energization electrode 141 is in the state farthest from the upper energization electrode 15, On the head 144 of the energizing electrode 141, a sintering die a filled with a powder material j to be sintered is placed. At this time, the upper surface of the head 144 of the lower energizing electrode 141 is brought into contact with the lower surface of the lower press core b inserted and set in the sintered mold hole, and can be energized with it, and a desired pressure can be applied. When the sintered mold is positioned on the lower energizing electrode 141, the driving device 16 operates to move the lower energizing electrode assembly 14 and the sintered mold a thereon together with the lower housing assembly 12 to the sintered mold. The upper press core c inserted into the hole is raised until it hits the lower surface of the head 154 of the upper energizing electrode 151. At the same time or thereafter, the actuator 17 operates to lower the upper housing assembly 13. Then, the ring member 136 of the upper housing 133 and the ring member 126 of the lower housing 123 come into contact with each other, the chamber defined by the lower housing is shut off from the outside air, and the inside of the chamber is evacuated or inert by a known method. Use a gas atmosphere. Thereafter, a pulse current sintering is performed by flowing a DC pulse current of a desired value at a desired voltage through the energizing electrode while pressing the lower energizing electrode 141 toward the upper energizing electrode 151 with the driving device 16 at a desired pressure. In the above embodiment, the actuator 17 that moves the upper housing assembly 13 up and down is constituted by a fluid cylinder. However, as shown in FIG. 2C, a screw shaft and a nut mechanism comprising a screw shaft and a nut screwed therewith. You may comprise by 171a. The screw shaft and nut mechanism 171a includes a screw shaft 172a that is rotatably supported by the lower movable body 121 in an upright state and has a male screw formed over almost the entire length, and a female screw that is screwed with the male screw of the screw shaft 172a. And a drive motor 174a for rotating the screw shaft 172a.
[0012]
The power supply device is preferably one that can supply a DC pulse current of a large current (eg, 5000 A or more) at a low voltage (eg, 100 V or less). This is because, when performing pulsed current sintering such as discharge plasma sintering, discharge sintering or plasma activated sintering, a low voltage and large DC pulse current is required. In addition, since the structure itself of such a direct current pulse generation power supply device may be well-known, the detailed description is abbreviate | omitted.
[0013]
3 to 5, the energization device 3 of the present embodiment is shown. In this embodiment, the energizing device 3 includes a switch mechanism 40 disposed on the base plate 31 of the main body frame 30 and a pair of output side terminal plates (to be described later) of the switch mechanism. And a conduction mechanism 50 that conducts to the electrode. On the base plate 31 of the frame 30, a first and second pair of input side terminal plates of the switch mechanism 40 are electrically insulated from the base plate via a plate-like insulator 32 disposed thereon. 41 and 42 are fixed. The upper surface of the base plate 31 and therefore the upper surface of the insulator 32 are adjusted so as to be substantially horizontal, and therefore the upper contact surfaces of the input terminal plates 41 and 43, that is, the current-carrying surfaces 411 and 421 are also formed on a substantially horizontal and flat surface. Has been. These input side terminal boards are made of a material having good conductivity such as copper, and two wide boards that can take a large area as a current-carrying surface are stacked (to ensure a large current-carrying capacity). The first and second input terminal plates 41 and 42 are similarly connected to the power supply device 2 via wide and plate-like conductive plates 412 and 422, respectively. These conductive plates are also made of a highly conductive material such as copper.
[0014]
On the insulator 32 on the base plate 31, the switch mechanism 40 is adjacent to the first and second input side terminal plates 41 and 42 and separated from the input side terminal plate (electrically insulated). The first and second output side terminal plates 43 and 44 are disposed and fixed. The contact surfaces on the upper side of the output side terminal plates 43 and 44, that is, the current-carrying surfaces 431 and 441 are also formed to be substantially horizontal and flat, and to be flush with the current-carrying surface of the input-side terminal plate. These output side terminal boards are made of a material having good conductivity such as copper, and are formed by stacking two wide boards that can take a large area as a current-carrying surface.
[0015]
The switch mechanism 40 has the first and second input side terminal plates and the first and second output side terminal plates above, particularly the input side terminal plate and the output side terminal plate in the horizontal direction (left and right direction in FIG. 5). And (b) a support plate 45 (45a, 45b) disposed above the overlapping portion and fixed to be substantially horizontal by a plurality of columns 46. The support 46 is electrically insulated from the input side and output side terminal plates by an insulating member (not shown), and thus the support plate 45 is also insulated. Support plates 45a and 45b In Fluid cylinders 47 (47a and 47b) are mounted in an upright state. The position of the fluid cylinder 47 is such that the axial center of each fluid cylinder is on a line XX (in FIG. 5) at the center of the portion where the input terminal plate and the output terminal plate overlap in the lateral direction and the input terminal plate and the output. Position between the terminal plate, that is, between the first input side terminal plate 41 and the first output side terminal plate 43 and between the second input side terminal plate 42 and the second output side terminal plate 44. It is decided to become.
[0016]
Each fluid cylinder 47 is oriented so that its piston rod can protrude below the support plate. A movable support 48 (48a, 48b) (however, only 48b is shown in FIG. 4) is electrically insulated and fixed to the piston rod 471 of each fluid cylinder 47 via an insulating member. Conductive members 49 (49a, 49b) made of a material having good conductivity such as copper are fixed to the lower surface of each movable support 48. The lower contact surface of the conducting member, that is, the energizing surface is adjusted to be substantially horizontal. Thus, one conducting member is provided for each fluid cylinder, and each conducting member is moved up and down independently by the corresponding fluid cylinder. The conducting member 49a is operated by the cylinder 47a to electrically connect the first input side terminal plate 41 and the first output side terminal plate 43. The conducting member 49b is operated by the cylinder 47b to electrically connect the second input side terminal plate 42 and the second output side terminal plate 44.
[0017]
The first and second output side terminal plates 43 and 44 are electrically connected to the upper energization electrode 151 and the lower energization electrode 141 of the pulse energization sintering machine 1 shown in FIG. It is like that. The conduction mechanism 50 fixes the first portion that electrically connects the first output side terminal plate 43 to the lower energization electrode 141 on the movable side of the pulse energization sintering machine 1 and the second output side terminal plate 44. And a second portion electrically connected to the upper energization electrode 151 on the side. The first portion of the conduction mechanism 50 is insulated and fixed to the conductor 51 electrically connected to the first output side terminal plate 43 and the upper frame member 33 of the main body frame 30 and is electrically connected to the conductor plate 51. Stationary conductor 52 that is electrically conductive, movable conductor 53 disposed on the side of the sintering machine, and electrically connected via movable conductor 53 and conductor to pulse the movable conductor A connection terminal 54 that is electrically connected to the movable electrode of the energization sintering machine 1, that is, the lower energization electrode 141, a flexible conductor 55 that electrically connects the fixed conductor 52 and the movable conductor 53, and the movable conductor 53. And an actuator 56 that moves up and down in synchronization with the up and down movement of the lower energization electrode. The conductive plate 51 is also formed by stacking a plurality of wide plates having good conductivity such as copper.
[0018]
In this embodiment, the actuator 56 is composed of a fluid pressure cylinder such as an air cylinder arranged upright adjacent to the sintering machine 1, and the tip of the piston rod is electrically insulated from the movable conductor 53. Attached. Therefore, the movable conductor can be moved up and down in synchronization with the vertical movement of the lower energizing electrode. In this embodiment, the flexible conductor 55 is formed by stacking a large number of very thin and wide copper plates so as to be flexible. A structure may be employed in which a large number of links formed are arranged in the width direction (direction perpendicular to the paper surface in FIG. 4) and the longitudinal direction, and these are connected by pins having good conductivity such as copper like a chain. In any case, it is configured as a conductor having a wide and large cross-sectional area so that a sufficient current can flow. In the energization device of the present invention, since the conduction mechanism is configured as described above, even if the weight of the flexible conductor becomes very large, it is possible to prevent an uneven load from acting on the lower energization electrode and Deformation, sintering mold installation table part due to the unbalanced load, that is, unevenness of sintering between the upper surface of the head and the lower surface of the upper energization electrode, occurrence of defects such as occurrence of non-sintered parts due to poor sintering, and sintering Problems such as damage to the mold and sintering apparatus can also be prevented. The second portion of the conduction mechanism includes a wide plate-like fixed conductive plate 57 and a connection terminal 58 that electrically connects the fixed conductive plate 57 to the upper energizing electrode 151 in the same manner as the second output side terminal plate. Has been. The fixed conductive plate 57 is composed of a plurality of portions 571 to 574 that are formed by stacking a plurality of conductive plates such as copper, and are electrically connected to each other.
[0019]
Next, the operation of the energizing device of the above embodiment will be described in relation to the operation of the sintering machine.
When the sintering die a filled with the powder j, which is a material to be sintered, is placed on the head 144 of the lower energizing electrode 141 of the pulse energization sintering machine 1, the driving device 16 operates to operate the lower housing assembly. The solid 12 and the lower energizing electrode assembly 14 are raised. Then, the sintering die a placed on the head 144 rises with it, and the upper surface of the upper press core c set in the sintering die a comes into contact with the lower surface of the head 154 of the upper energizing electrode 151. At the same time that the lower energizing electrode 141 is raised by the operation of the driving device 16, the actuator 56 of the conduction mechanism 50 is operated in accordance with the rising speed to raise the movable conductor 53 and raise one end of the flexible conductor. At the same time or at different times, the upper housing assembly 13 is lowered by the actuator 17, the ring member 136 of the upper housing assembly 13 and the ring member 126 of the lower housing assembly 12 approach, and the upper and lower housings form a sintered mold. The surrounding chamber is defined, and the inside of the chamber is made into a vacuum state (a negative pressure state relative to the atmospheric pressure) or an inert gas atmosphere by a device (not shown). The driving device 16 presses the lower energizing electrode 141 toward the upper energizing electrode 151 with a force determined by the sintering conditions, and presses the powder j to be sintered through the lower press cores c and b at a desired pressure. Compress. Under such a state, the cylinders 47a and 47b of the energizing device 3 operate simultaneously to push down the conducting members 49a and 49b, and the conducting members 49a are connected to the first input terminal plate 41 and the first output terminal plate. 43 is brought into electrical contact with each other, and the other conducting member 49b is brought into contact with the second input terminal plate 42 and the second output terminal plate 44 so as to conduct them, whereby the power supply 2 A direct current pulse current is supplied to the pulse electric current sintering machine 1 and pulse electric current sintering is performed by the sintering machine. When stopping the supply of current to the pulse current sintering machine, the cylinder 47 is operated in reverse to separate the conducting member from the input side terminal plate and the output side terminal plate.
[0020]
As shown in FIG. 6, the energizing device has two output side terminal plates 43a, 43b and 44a, 44b arranged for one input side terminal plate 41 and 42, and a communication member is provided correspondingly. Thus, it can be used to supply a sintering current to two pulse current sintering machines with one power supply device.
[0021]
FIG. 7 shows a modification of the pulse current sintering machine. In this embodiment, unlike the housing of the pulse current sintering machine of the above embodiment, the housing 123b is a fixed type fixed to the upper support plate 113b. The housing 123b includes a hollow cylinder 125b whose upper end is fixed to the upper support plate 113b, and a bottom plate 124b fixed to the lower end of the hollow cylinder 125b. The lower energizing electrode assembly 14b is attached to the upper end of the piston rod 162b of the fluid cylinder 161b constituting the driving device 16b. The lower energizing electrode assembly 14b includes a lower energizing electrode 141b including a cylindrical electrode body 142b having a flange portion 143b formed at the lower end. Between the electrode main body 142b and the connection block 163b fixed to the upper end of the piston rod 162b, a connection terminal 54 made of an insulation plate and a copper plate or the like is provided on the connection block side in the same manner as in the previous embodiment. The placement is fixed. The connection method among the connection terminal, the electrode body, and the connection block is the same as that in the above embodiment. The structure and attachment method of the upper electrode assembly 15b are substantially the same as those in the above embodiment. Therefore, explanation is omitted. In this embodiment, since the housing 123b is fixed, a relatively large window 127b is formed for inserting / removing the sintering mold into / from the sintering chamber in the housing. The door can be closed by a door 128b that can be opened and closed. The lower energizing electrode 141b extends through a hole formed in the bottom plate 124b of the housing 123b. An insulating seal member 129b is provided in the hole. The insulating seal member serves to prevent electrical connection between the bottom plate and the lower energizing electrode, to ensure airtightness around the lower energizing electrode, and to guide the lower energizing electrode to be movable with respect to the housing. Yes. In the case of such a housing structure, since the insulating seal member is in sliding contact with the energizing electrode, uneven wear occurs due to uneven load. Wear can also be prevented. In addition, the side wall of the housing has a double wall structure (water jacket shape) by providing the annular body 125b double as in the above embodiment, and has a structure through which cooling water passes. The door 128b also has a double structure. Although not shown, in order to protect the inner wall of the housing from heat generation from the sintering mold when energized, a single layer or a plurality of layers of an annular stainless steel thin plate may be provided inside the chamber as a heat shield.
[0022]
In the above embodiment, the case where the switch mechanism 40 and the conduction mechanism 50 are arranged between the pulsed electric sintering machine 1, 1 b and the DC power supply device 2 that supplies DC electric power to the pulsed electric sintering machine is described. However, as shown in FIG. 8, only the conduction mechanism 50 is disposed between the direct current power supply device 2 ′ and the pulse current sintering machine 1, 1b, and the switch mechanism is provided in the power supply device 2 ′ or upstream thereof. 40 'may be arranged. In this case, AC power is supplied from an AC power supply (not shown) to the transformer 21 in the DC power supply device 2, so that the switch mechanism 40 'has the same structure as the switch mechanism 40 of the above embodiment. Although it is not necessary, since a low voltage and large current flows from the rectifier 22 on the downstream side of the transformer 21 of the power supply device 2 to the pulse energization sintering machine, the same configuration as the conduction mechanism 50 described above is used. In this case, of course, the conductor of the first part of the conduction mechanism 50 is connected to one output terminal of the power supply device 2 ′, and any part of the fixed conductive plate 57 of the second part is connected to the other output terminal. To do. Then, power is supplied to the pulse current sintering machine by operating the switch mechanism 40 '.
[0023]
【effect】
According to the present invention,
(B) Even if the weight of the flexible conductor becomes very large, occurrence of uneven wear of the insulating guide member that prevents the biased load from acting on the lower energizing electrode and guides the lower energizing electrode to be movable. Can prevent,
(B) The parallelism between the upper surface of the sintering mold installation table portion and the lower surface of the upper energizing electrode can be secured, and the occurrence of problems such as the occurrence of variations in sintering and the occurrence of unsintered parts due to poor parallelism can be prevented.
(C) In addition, damage to the sintering mold and sintering equipment can be prevented.
(D) Energization of large currents can be performed efficiently and reliably.
It is possible to produce effects such as these.
[Brief description of the drawings]
FIG. 1 is a side view of a pulsed electric sintering machine used with an electric conduction device of the present invention.
FIG. 2A is an enlarged cross-sectional view showing a connection state of a lower energizing electrode and a drive device, FIG. 2B is a view showing an actuator that operates an upper housing assembly, and FIG. It is a figure which shows a modification.
FIG. 3 is a plan view of the energization device and is shown together with an energization sintering machine.
FIG. 4 is an elevation view of the energization device. 3 It is the figure seen along line AA.
FIG. 5 is a diagram showing an arrangement positional relationship between an input side terminal plate and an output side terminal plate.
FIG. 6 is a side view showing the possibility of changing the energization device.
FIG. 7 is a view showing a modification of the pulse current sintering machine.
FIG. 8 is a diagram showing another arrangement example of the power supply device, the conduction mechanism, and the pulse current sintering machine.
[Explanation of symbols]
1, 1b Pulse current sintering machine 2, 2 'Power supply
3 Energizer
30 Body frame
40, 40 'switch mechanism
41, 42 Input side terminal board 43, 44 Output side terminal board
47 Fluid cylinder 49 Conducting member
50 conduction mechanism
54 connection terminal 55 flexible conductor
56 Actuator

Claims (5)

焼結型内にセットされた一対のプレスコアと接触して前記プレスコアに焼結電流を通電する一対の通電電極を有し、前記通電電極の少なくとも一つが可動であるパルス通電焼結機の前記通電電極に電源装置からの焼結電流を通電するためのパルス通電焼結機用通電装置において、
前記電源装置に接続された一対の入力側端子、前記通電電極に接続される一対の出力側端子及び前記入力側端子と前記出力側端子とを電気的に連通させる連通部材とを有するスイッチ機構と、
前記スイッチ機構の一対の出力側端子を前記一対の通電電極にそれぞれ電気的に導通させる導通機構とを備え、
前記導通機構が、前記可動の通電電極に電気的に接続されかつ前記可動の通電電極と共に移動する可動の通電電極側の接続端子と、前記接続端子と前記一対の出力端子の一方とを電気的に接続するフレキシブル導電体と、前記可動の通電電極の移動に合わせて前記フレキシブル導電体の前記接続端子側の端部を移動させるアクチュエータとを備えるパルス通電焼結機用通電装置。
A pulsed electric sintering machine comprising a pair of energized electrodes that contact a pair of press cores set in a sintering mold and energize the press core with a sintering current, wherein at least one of the energized electrodes is movable In the energization device for a pulse energization sintering machine for energizing a sintering current from a power supply device to the energization electrode,
A switch mechanism having a pair of input-side terminals connected to the power supply device, a pair of output-side terminals connected to the energizing electrode, and a communication member that electrically connects the input-side terminal and the output-side terminal; ,
A conduction mechanism that electrically connects the pair of output terminals of the switch mechanism to the pair of energization electrodes, respectively.
The conduction mechanism electrically connects the connection terminal on the movable conduction electrode side that is electrically connected to the movable conduction electrode and moves together with the movable conduction electrode, and one of the connection terminal and the pair of output terminals. An electric conduction device for a pulse electric current sintering machine comprising: a flexible electric conductor connected to the movable electric electrode; and an actuator that moves an end of the flexible electric conductor on the connection terminal side in accordance with the movement of the movable electric conduction electrode.
請求項1に記載のパルス通電焼結機用通電装置において、前記フレキシブル導電体が、幅広でかつ可撓性を有する薄い銅板を複数枚重ねて構成されているパルス通電焼結用通電装置。  The energization apparatus for pulse electric sintering machines according to claim 1, wherein the flexible conductor is formed by stacking a plurality of wide and flexible thin copper plates. 請求項1に記載のパルス通電焼結機用通電装置において、前記フレキシブル導電体が、細い銅線を編んで作られた編み導体であるパルス通電焼結用通電装置。  2. The energizing apparatus for pulse energization sintering according to claim 1, wherein the flexible conductor is a knitted conductor made by knitting a thin copper wire. 請求項1ないし3のいずれかに記載のパルス通電焼結機用通電装置において、
前記スイッチ機構の一対の入力側端子及び出力側端子が、それぞれ平坦な通電面を有する幅広の板状部材で構成され、
前記一対の出力側端子が対応する入力端子に隣接して配置され、
前記一対の連通部材が前記入力側端子の通電面及び出力側端子の通電面と面接触可能に配置された平坦な通電面を有し、
前記連通部材がアクチュエータにより入力側端子及び出力側端子と接触する位置及びそれらから離れる位置に選択的に移動されるパルス通電焼結機用通電装置。
In the energization device for pulse energization sintering machines according to any one of claims 1 to 3,
The pair of input side terminals and output side terminals of the switch mechanism are each composed of a wide plate-like member having a flat energizing surface,
The pair of output terminals are disposed adjacent to corresponding input terminals;
The pair of communicating members has a flat energization surface disposed so as to be in surface contact with the energization surface of the input side terminal and the energization surface of the output side terminal,
An energizing device for a pulse energization sintering machine, wherein the communication member is selectively moved by an actuator to a position where the communicating member comes into contact with an input side terminal and an output side terminal and a position away from the position.
焼結型内にセットされた一対のプレスコアと接触して前記プレスコアに焼結電流を通電する一対の通電電極を有し、前記通電電極の少なくとも一つが可動であるパルス通電焼結機の前記通電電極に電源装置からの焼結電流を通電するためのパルス通電焼結機用通電装置において、
前記電源装置の少なくとも一つの出力側端子を前記可動の通電電極に電気的に導通させる導通機構を備え、
前記導通機構が、前記可動の通電電極に電気的に接続されかつ前記可動の通電電極と共に移動する可動の通電電極側の接続端子と、前記接続端子と前記一対の出力端子の一方とを電気的に接続するフレキシブル導電体と、前記可動の通電電極の移動に合わせて前記フレキシブル導電体の前記接続端子側の端部を移動させるアクチュエータとを備えるパルス通電焼結機用通電装置。
A pulsed electric sintering machine comprising a pair of energized electrodes that contact a pair of press cores set in a sintering mold and energize the press core with a sintering current, wherein at least one of the energized electrodes is movable In the energization device for a pulse energization sintering machine for energizing a sintering current from a power supply device to the energization electrode,
A conduction mechanism for electrically conducting at least one output side terminal of the power supply device to the movable energization electrode;
The conduction mechanism electrically connects the connection terminal on the movable conduction electrode side that is electrically connected to the movable conduction electrode and moves together with the movable conduction electrode, and one of the connection terminal and the pair of output terminals. An electric conduction device for a pulse electric current sintering machine comprising: a flexible electric conductor connected to the movable electric electrode; and an actuator that moves an end of the flexible electric conductor on the connection terminal side in accordance with the movement of the movable electric conduction electrode.
JP2000284771A 2000-03-22 2000-09-20 Energizer for pulse energization sintering machine Expired - Fee Related JP3803236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000284771A JP3803236B2 (en) 2000-03-22 2000-09-20 Energizer for pulse energization sintering machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000080307 2000-03-22
JP2000-80307 2000-03-22
JP2000284771A JP3803236B2 (en) 2000-03-22 2000-09-20 Energizer for pulse energization sintering machine

Publications (2)

Publication Number Publication Date
JP2001335811A JP2001335811A (en) 2001-12-04
JP3803236B2 true JP3803236B2 (en) 2006-08-02

Family

ID=26588067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000284771A Expired - Fee Related JP3803236B2 (en) 2000-03-22 2000-09-20 Energizer for pulse energization sintering machine

Country Status (1)

Country Link
JP (1) JP3803236B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533401B2 (en) * 2007-05-14 2010-09-01 Spsシンテックス株式会社 Pulse current welding equipment for small joint surfaces

Also Published As

Publication number Publication date
JP2001335811A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
EP1899999A1 (en) Electrical switchgear and method for operating an electrical switchgear
JP3803236B2 (en) Energizer for pulse energization sintering machine
CA1064558A (en) Sf6 puffer for arc spinner
JP2011253683A (en) Connection method of connection member for battery pack
JP2002088404A (en) Method and apparatus for high-speed temperature rise sintering
JP3618630B2 (en) Multi-head pulse current sintering system
KR101693093B1 (en) Main circuit breaking mechanism for ring main unit
EP2904624A1 (en) Switching device
WO2019098305A1 (en) Spot welding method
US3663790A (en) Electrical transformer apparatus
JP2000265201A (en) Electrically heating type pressurizing sintering apparatus
JP3294307B2 (en) Linear moving high voltage switch
WO2005005070A2 (en) Apparatus for performing a plurality of magnetic pulse forming or welding operations
CN218225300U (en) Workpiece positioning seat for argon arc welding machine
JP3618715B2 (en) Cooling device for current-carrying electrode and assembly of current-carrying electrode and cooling device
KR100289376B1 (en) Portable spot welding device
CN1050286A (en) The middle tension circuit breaking having high nominal current of pressing
JPS6156782A (en) Welding equipment
JP2594776Y2 (en) Power supply circuit connection device for tundish plasma heating device
JPH0767620B2 (en) Vacuum seam welding equipment
JPH05138364A (en) Resistance welding mechanism
DE2622439A1 (en) HEAVY DUTY VACUUM ARC DISCHARGE DEVICE WITH A POLE FIELD
JP2862699B2 (en) Electrode equipment for projection welding
WO2022053410A1 (en) High-voltage circuit breaker with a contact sleeve and method for producing the high-voltage circuit breaker
JPH03240916A (en) High-frequency hardening device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees