JP3802242B2 - 電子線装置における試料像表示方法および電子線装置 - Google Patents

電子線装置における試料像表示方法および電子線装置 Download PDF

Info

Publication number
JP3802242B2
JP3802242B2 JP28916398A JP28916398A JP3802242B2 JP 3802242 B2 JP3802242 B2 JP 3802242B2 JP 28916398 A JP28916398 A JP 28916398A JP 28916398 A JP28916398 A JP 28916398A JP 3802242 B2 JP3802242 B2 JP 3802242B2
Authority
JP
Japan
Prior art keywords
energy
electron
spectrum
sample
eonset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28916398A
Other languages
English (en)
Other versions
JP2000123772A (ja
Inventor
藤 政 都 工
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP28916398A priority Critical patent/JP3802242B2/ja
Publication of JP2000123772A publication Critical patent/JP2000123772A/ja
Application granted granted Critical
Publication of JP3802242B2 publication Critical patent/JP3802242B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電子線を試料に照射し、その電子線照射により試料から放出される信号を検出して試料像を表示する電子線装置に関する。
【0002】
【従来の技術】
組成がほとんど同一で微量に含まれる不純物の濃度や種類が違うもの(たとえば半導体にドーピングされた不純物の濃度に勾配や分布があるものや、pn接合部のように不純物の種類が場所によって異なっているもの)、あるいは金属の多結晶のように組成は全く同じで場所によって面方位が異なるだけのものなどに対して、通常の光学顕微鏡あるいは走査電子顕微鏡では像上でコントラストの違いがほとんど生じない。
【0003】
このような試料に対して明瞭なコントラストのついた像を得るために、走査型オージェ電子分光装置を利用した技術がある。
【0004】
この技術について説明すると、半導体の場合には不純物の種類や濃度によって禁制帯中のフェルミ準位の位置が違うため、それに応じて電子分光器の真空準位から見たオージェ電子のエネルギーが違ってくる。そこで、このような試料に対しては、走査型オージェ電子分光装置を利用し、不純物の種類や濃度によって異なるオージェ電子ピークのエネルギー位置を検出してこれを画像化している。
【0005】
【発明が解決しようとする課題】
しかしながら、このような技術は、多結晶金属の場合のように面方位が異なるだけでオージェ電子のエネルギーに変化がないものに対しては利用できない。
【0006】
また、この技術は、画像の収集に時間がかかるという実用上の欠点がある。画像収集に時間がかかるのは、オージェ電子ピークは高いバックグランドの上に乗っているため信号のSN比が悪いことと、オージェ電子ピークが比較的ブロードなためにピーク位置がシフトしていても特定のエネルギーでの電子強度にはあまり大きな違いがないことが最大の原因である。その他に、画像の輝度情報を得るために各々の画素ごとにオージェ電子のピーク位置近傍のスペクトルを収集しなければならないことと、ピークフィッティングなどのアルゴリズムを用いてピーク位置を決定するための演算が必要になることなどが挙げられる。このために、ある程度実用的な面分解能を持つ画像(画素数128×128)を一枚得るのに、少なくとも1時間程度の収集時間を必要とする。
【0007】
本発明はこのような点に鑑みて成されたもので、その目的は、従来よりも短い時間で、半導体や多結晶金属などの明瞭なコントラストのついた像を得ることができる試料像表示方法および電子線装置を提供することにある。
【0008】
【課題を解決するための手段】
この目的を達成する本発明の電子線装置における試料像表示方法は、試料上の複数の点に電子線を照射し、その電子線照射により試料から放出される2次電子を検出して各点におけるエネルギースペクトルを得、そのエネルギースペクトルの中から2次電子が出現するエネルギーが最も低いスペクトルLを選択して、その選択したスペクトルLにおける2次電子が出現するエネルギーEonset(L)と、前記エネルギースペクトルの中から2次電子が出現するエネルギーが最も高いスペクトルHを選択して、その選択したスペクトルHにおける2次電子が出現するエネルギーEonset(H)と、前記Eonset(L)と前記スペクトルLのピーク位置エネルギーとの間でできるだけピーク位置に近くてかつスペクトルの直線性が保たれているところのエネルギーE0と、そのエネルギーE0と前記Eonset(L)との間のエネルギー幅Ew(=E0−Eonset(L))と、前記スペクトルLのエネルギーE0における2次電子強度Ioをそれぞれ求め、前記E0がE0≧Eonset(H)ならば、電子分光器の設定分析エネルギーをE0だけに決め、一方、E0≧Eonset(H)でないならば、前記E0に加えてE1=E0+Ewを電子分光器の設定分析エネルギーとして決め、さらに、E1≧Eonset(H)でないならば、前記E0,E1に加えてE2=E0+2Ewを電子分光器の設定分析エネルギーとして決め、以後同様にしてn+1個の設定分析エネルギーEn=E0+n×Ew(n=0,1,2,…)を決め、このようにして電子分光器の設定分析エネルギーEnが決まると、電子線を試料上の各画素に照射すると共に、電子分光器の分析エネルギーをその求めたn+1個のEnに順次設定して、試料上の各画素ごとに各エネルギーEnにおける2次電子強度I(n)を検出し、前記n=0の場合、すなわち、設定分析エネルギーがE0だけの時には、検出した2次電子強度信号を像信号に変換して試料像を表示する一方、前記n≠0の場合、以下の▲1▼▲2▼の規則にしたがって各画素における2次電子強度信号を選定し、
▲1▼k×Ioよりも強度の大きい2次電子強度信号を捨てる(kは係数)
▲2▼強度がk×Ioに等しいか、またはそれより小さい2次電子強度信号が複数ある場合には、その中で最も強度が大きい2次電子強度信号を選ぶ
選定した2次電子強度信号の前記nの値とその電子強度I(n)とからパラメータS’=I(n)−n×Ioを算出し、算出したパラメータに基づいて像信号を作成して試料像を表示することを特徴とする。
【0009】
【発明の実施の形態】
まず、本発明の思想について述べる。
【0010】
固体試料の表面に電子線を照射すると、図1に示すようなエネルギー分布を持った電子が発生する。このうちの最も低エネルギー側の大きな強度を有する部分は「真の2次電子」又は略して単に「2次電子」と呼ばれている。
【0011】
図2は、図1の2次電子の最も低エネルギー側の部分を拡大したものである。ここで、2次電子が出現するエネルギーをEonsetとすると、Eonsetを越えたところから2次電子強度が急激に増加する。このEonsetは、固体試料の仕事関数Φs、2次電子を検出する電子分光器の仕事関数Φsm、およびEbによって決まり、Eonset=Eb+Φs−Φsmで与えられる。EbはEb=eVbで、eは電気素量(1.6×10-19C)、Vbは試料に印加される負のバイアス電圧の絶対値であり、また、電子分光器は真空準位(分光器最表面の電位)を基準にして調整されているものとする。なお、図2は、電子分光器の真空準位を座標原点にとって表示されている。
【0012】
さて、2次電子の出現する付近のスペクトルは、たとえばp型半導体で場所によって不純物濃度が異なる場合を例に取ると、図3のようになる。図3において、Hは不純物濃度が相対的に高い部分のスペクトルを表し、Lは不純物濃度が低い部分のスペクトルを表し、Mはそれらの中間のものを表しており、2次電子の出現位置は試料の仕事関数の違いによって異なっている。いずれのスペクトルも、2次電子出現部分から急激な立ち上がりがあり、ピークを経てから2次電子強度は減少している。試料表面の凹凸が激しいなどの事情がない限り、通常の試料では、これらのスペクトルは立ち上がり部分がシフトしているだけでその形状は同じである。
【0013】
本発明では、このような、試料の仕事関数の違いによって起こるスペクトルのシフトに着目し、通常の2次電子像で明瞭に現れないコントラストを得ようとするものである。すなわち、本発明では、電子分光器の分析エネルギーをたとえば図3中のE0に設定しておき、電子線を試料面上で走査するのに同期させながら電子分光器の検出値を輝度情報に置き換えて画像を収集していく。
【0014】
なお、Φs≧Φsmが成り立っている場合には原理的にはVb=0でもよく、その場合にはバイアス電圧印加装置は不要となるが、通常、分光器の仕事関数は試料の仕事関数に比べてさほど小さい値ではなく、むしろ逆になる場合も考えられるから、実用的にはバイアス電圧印加装置は必須となる。また、試料にバイアス電圧を印加する代わりに、分光器全体に逆極性のバイアスを印加しても同じ結果となるが、実用的には前者の方が実現が容易な場合が多い。
【0015】
以上、本発明の思想について述べたが、以下に本発明の実施例を図面を用いて説明する。
【0016】
図4は、本発明の電子線装置の一例を示した図である。
【0017】
図4において1は鏡筒で、鏡筒1の内部には、電子銃2と集束レンズ3と偏向器4が配置されている。電子銃2から放出された電子線は、集束レンズ3で集束された後に偏向器4で偏向され、その結果、細く絞られた電子線は、試料室5内に配置された試料6上で走査される。この試料6は、組成がほとんど同一で微量に含まれる不純物の濃度が場所によって異なるものである。また、試料6は、試料ステージ7の上に載置されており、試料6には、バイアス電圧印加装置8により負のバイアス電圧が印加されるように構成されている。
【0018】
前記試料室5の内部には2次電子検出器9と、たとえば静電半球型エネルギーアナライザのような電子分光器10が配置されており、それらの検出信号は表示制御手段11に送られる。前記電子分光器10の分析エネルギーは分析エネルギー設定手段12により設定され、この分析エネルギー設定手段12は前記表示制御手段11により制御される。
【0019】
図中13は、前記偏向器4に偏向信号を供給する偏向信号発生手段であり、この偏向信号発生手段13は前記表示制御手段11により制御される。また、14は入力手段、15は表示手段であり、それらは何れも前記表示制御手段11に接続されている。
【0020】
16は、前記試料室5を超高真空に排気するための排気装置である。17は、試料面を清浄化するためのイオンエッチング装置である。
以上、図4の電子線装置の構成について説明したが、以下に、この装置の動作説明を行う。
【0021】
まず、オペレータは、入力手段14に、2次電子検出器9を用いた2次電子像取得の指示入力を行う。この入力が行われると、表示制御手段11は偏向信号発生手段13を制御し、偏向信号発生手段13は、電子線を試料上で2次元的に走査させるための偏向信号を偏向器4に送る。この結果、電子線は試料上で2次元的に走査される。
【0022】
この電子線照射により試料6から2次電子が放出されるが、その2次電子は2次電子検出器9により検出され、検出された信号は表示制御手段11に送られる。表示制御手段11は、送られてくる検出信号に基づき、試料6の2次電子像を表示手段15に表示させる。
【0023】
上述したように、試料6は、組成がほとんど同一で微量に含まれる不純物の濃度が場所によって異なるものであるために、表示手段15に表示される2次電子像には、その濃度の違いがコントラストの違いとして明瞭に現れない。
そこで、オペレータは、その2次電子像を見ながら、その視野の範囲内の何点かの代表点を前記入力手段14により選択する。この選択の際、オペレータは、最も低エネルギー側と最も高エネルギー側に2次電子が現れると予想する点を含むように代表点を選択する。
【0024】
このようにして試料上の代表点が選択されると、前記表示制御手段11は偏向信号発生手段13を制御し、偏向信号発生手段13は、電子線をその代表点に順次照射するための偏向信号を偏向器4に送る。また、表示制御手段11は分析エネルギー設定手段12を制御し、分析エネルギー設定手段12は、電子線が各代表点に照射される毎に、電子分光器10の分析エネルギーをある範囲内において連続的に変化(掃引)させる。上述したように、電子分光器10の検出信号は表示制御手段11に送られており、表示制御手段11は、その送られてくる信号に基づき各代表点におけるスペクトルを得る。図5は、そのスペクトルを示したものであり、この場合、4つの代表点が選択されたために4本のスペクトルが得られる。
【0025】
そして、表示制御手段11は、各スペクトルに対して、オペレータによってあらかじめ決められた電子強度Iaが得られた分光エネルギーの値を求め、そのエネルギー値が最小のスペクトルLと最大のスペクトルHを選ぶ。
このようにして、表示制御手段11はスペクトルLとスペクトルHを選ぶと、次に、表示制御手段11は、図6に示すように、スペクトルLとHの2次電子の立ち上がり部分を拡大して表示手段15に表示させる。オペレータは、それらのスペクトルから、2次電子の立ち上がりが曲線から直線に移行するところのエネルギー値Eonset(L)とEonset(H)をそれぞれ入力手段14を用いて指定する。
【0026】
このような指定が行われると、表示制御手段11は、図7に示すように、スペクトルLとスペクトルHを表示手段15に表示させる。そして、オペレータは、そのスペクトルから、前記Eonset(L)とスペクトルLのピーク位置との間でできるだけピーク位置に近くてかつスペクトルの直線性が保たれているところのエネルギーE0を、入力手段14を用いて選ぶ。なお、この時の電子強度をIoとする。
【0027】
エネルギーE0の選択が行われると、前記表示制御手段11は、エネルギーE0とEonset(L)との間のエネルギー幅Ew(=E0−Eonset(L))を求める。そして、表示制御手段11は、後述する電子分光器10を用いた2次電子像取得の際に、電子分光器10に設定する分析エネルギーを求める。その求め方について説明すると、表示制御手段11は、Eonset(H)≦E0の条件が満たされていれば、その設定分析エネルギーをE0ひとつだけとする。そして、表示制御手段11は、この条件が満足されていない場合には、E0に加えて、新たにE1をE0よりもEwだけ高エネルギー側に決める。すなわち、E1=E0+Ewとする。
【0028】
そして、表示制御手段11は、Eonset(H)≦E1の条件が満たされていなければ、さらにEwだけ増やした位置にE2を決める。同様にしてn+1個のEn=E0+n×Ew(n=0,1,…)を決める。このnの数は、2次電子立ち上がり部分の勾配と視野内の各代表点でのその立ち上がり位置の最大値と最小値との差によって決まり、nの数は試料中に含まれる不純物の濃度や種類に依存する。大抵の場合はnは0ないし1である。つまり、設定する分析エネルギーは、普通は1個か2個である。図7の場合、設定する分析エネルギーはE01つだけであり、n=0である。図8では、設定する分析エネルギーはE0とE1の2個であり、n=1である。
【0029】
まず最初に、図7に示すように電子分光器の分析エネルギーをE0に設定して2次電子像を取得する場合(上記n=0の場合)について説明する。
【0030】
表示制御手段11は設定分析エネルギーE0を決めると、表示制御手段11は、電子分光器10を用いた2次電子像取得の制御を行う。すなわち、表示制御手段11は、電子線が試料上で2次元的に走査されるように偏向信号発生手段13を制御すると共に、電子分光器10の分析エネルギーが前記E0に設定されるように分析エネルギー設定手段12を制御する。この制御により、電子線は試料6上で2次元的に走査され、試料から放出される2次電子のうち、エネルギーE0を有する2次電子のみが電子分光器10で検出される。そして、電子分光器10の検出信号(電子強度データ)は表示制御手段11に送られる。
【0031】
このようにして、各画素ごとに1個の電子強度データIが得られると、表示制御手段11は、各画素ごとに、電子強度IからパラメータS’を算出する。算出式はS’=Iである。
【0032】
次に、表示制御手段11は、算出したパラメータS’の中から最大値S’maxと最小値をS’minを求め、次式(1)、(2)の一方を用いて各画素ごとにSを求める。どちらの式を使うかはオペレータにより決定される。
【0033】
S=S’max−S’ (1)
S=S’−S’min (2)
(1)式が用いられたときには、電子強度が最大のデータがゼロに変換され、一方、(2)式が用いられたときには、電子強度が最小のデータがゼロになるように全体のデータ値がシフトされる。
【0034】
表示制御手段11は、このようにして各画素ごとにSを求めると、Sを表示可能な階調、たとえば128階調に割り振り、試料6の2次電子像を表示手段15に表示させる。上記(1)式が用いられた場合は、仕事関数の大小がそのまま画像の輝度に反映され、仕事関数の値が大きい方が輝度が高くなる。一方、(2)式が用いられるとこれが逆になる。
【0035】
たとえば、n型半導体の場合には不純物濃度が高いほど仕事関数が小さくなり、p型の場合はその逆であるから、n型では(1)式を、p型では(2)式を用いれば濃度を直感的に反映した画像が得られる。
以上、電子分光器10の分析エネルギーをE0だけに設定して2次電子像を取得する場合について説明した。次に、試料中の不純物濃度の差が大きくて試料の仕事関数の差が大きいために、図8に示すように、電子分光器10の分析エネルギーをE0とE1の2つに設定して2次電子像を取得する場合(上記n=1の場合)について説明する。
【0036】
表示制御手段11は、このように設定分析エネルギーE0とE1を決めると、電子線が試料上でhorizontal(またはvertical)の1本のライン上に走査されるように偏向信号発生手段13を制御すると共に、まず電子分光器10の分析エネルギーがE0に設定されるように分析エネルギー設定手段12を制御する。この制御により、電子線は試料6上で走査され、試料から放出される2次電子のうち、エネルギーE0を有する2次電子のみが電子分光器10で検出される。そして、電子分光器10の検出信号である電子強度データは表示制御手段11に送られる。
【0037】
分析エネルギーE0での電子強度データの取得が終わると、表示制御手段11は、電子線が試料上で先に述べた1本のライン上に走査されるように偏向信号発生手段13を制御すると共に、電子分光器10の分析エネルギーがE1に設定されるように分析エネルギー設定手段12を制御する。この制御により、電子線は試料6上で走査され、試料から放出される2次電子のうち、エネルギーE1を有する2次電子のみが電子分光器10で検出される。そして、電子分光器10の検出信号である電子強度データは表示制御手段11に送られる。次にvertical(またはhorizontal)の位置を移動して同様の動作を行う。
【0038】
このようにして、各画素ごとに2個の電子強度データが得られると、表示制御手段11は、以下の規則によって各画素ごとに採用すべき電子強度データを選定する。すなわち、
▲1▼k×Ioよりも強度の大きい電子強度データを捨てる。なお、kは信号のノイズレベルなどを考慮して決められる係数で、たとえば1.1程度である。
▲2▼強度がk×Ioに等しいか、またはそれより小さい電子強度データが複数ある場合には、その中で最も強度が大きい電子強度データを選ぶ。
【0039】
たとえば、図8のSに示すようなスペクトルが得られる画素に電子線を照射した場合、分析エネルギーE0においては電子強度I(o)の信号が得られ、分析エネルギーE1においては電子強度I(1)の信号が得られるが、この場合、前記▲2▼にしたがって電子強度I(1)の信号が選定される。また、図8において、電子強度I’(1)を有する信号は、前記▲1▼にしたがって捨てられる。
【0040】
次に、表示制御手段11は、各画素ごとに、選択された電子強度データのnの値(この場合、nは0または1)と電子強度I(n)とからパラメータS’を算出する。算出式はS’=I(n)−n×Ioである。これは、S’の最大値をI0として、すべてのS’を2次電子の出現位置に対応させて並べることを意味する。2次電子が高エネルギー側から出現するほどS’の値は小さくなり、負の値となることもある。
【0041】
次に、表示制御手段11は、算出したパラメータS’の中から最大値S’maxと最小値をS’minを求め、前記式(1)、(2)の一方を用いて各画素ごとにSを求める。表示制御手段11は、このようにして各画素ごとにSを求めると、Sを表示可能な階調、たとえば128階調に割り振り、試料6の2次電子像を表示手段15に表示させる。
【0042】
以上のようにして、試料中の不純物濃度の差が大きい場合でも、濃度の違いを反映した明瞭なコントラストの2次電子像を短時間で得ることができる。
【0043】
以上、組成がほとんど同一で微量に含まれる不純物の濃度に違いがある試料を例にあげて説明したが、不純物の種類が違うものや、組成は全く同じで場所によって面方位が異なる試料などに対して本発明を適用しても、不純物の種類の違いや面方位の違いを反映した明瞭なコントラストの像を得ることができる。
【0044】
また、2次元の画像の代わりに視野内の特定の線に沿って上記と同様な手順でSを測定し、これを線の各点に対応させてその強度を表示すればラインプロファイルが得られる。
【0045】
また、エネルギー分析器の制御電源の応答性の関係から、画像のhorizontalまたはverticalのどちらかの一本のライン上に電子線を走査しながら、一回の走査で一つのエネルギーについて強度データを収集するのが一般的であるが、各画素ごとに各エネルギーでの強度を測定することも可能である。この際、エネルギー値を変更したときに電源系の応答遅れを待つための時間が必要である。
【0046】
また、集束イオンビーム装置を備えていれば、ICの断面をその場で作成し、pn接合部分の観察も可能となり、欠陥の有無の確認が容易となる。
【図面の簡単な説明】
【図1】 試料に電子線を照射したときに試料から発生する電子のエネルギー分布を示した図である。
【図2】 図1の2次電子の最も低エネルギー側の部分を拡大したものである。
【図3】 p型半導体で場所によって不純物濃度が異なる場合の、2次電子の出現する付近のスペクトルを示した図である。
【図4】 本発明の電子線装置の一例を示した図である。
【図5】 選択された各代表点におけるスペクトルを示した図である。
【図6】 図5のスペクトルのLとHの2次電子の立ち上がり部分を拡大した図である。
【図7】 電子分光器の設定分析エネルギーを説明するために示した図である。
【図8】 電子分光器の設定分析エネルギーを説明するために示した図である。
【符号の説明】
1…鏡筒、2…電子銃、3…集束レンズ、4…偏向器、5…試料室、6…試料、7…試料ステージ、8…バイアス電圧印加装置、9…2次電子検出器、10…電子分光器、11…表示制御手段、12…分析エネルギー設定手段、13…偏向信号発生手段、14…入力手段、15…表示手段、16…排気装置、17…イオンエッチング装置

Claims (1)

  1. 試料上の複数の点に電子線を照射し、
    その電子線照射により試料から放出される2次電子を検出して各点におけるエネルギースペクトルを得、
    そのエネルギースペクトルの中から2次電子が出現するエネルギーが最も低いスペクトルLを選択して、その選択したスペクトルLにおける2次電子が出現するエネルギーEonset(L)と、
    前記エネルギースペクトルの中から2次電子が出現するエネルギーが最も高いスペクトルHを選択して、その選択したスペクトルHにおける2次電子が出現するエネルギーEonset(H)と、
    前記Eonset(L)と前記スペクトルLのピーク位置エネルギーとの間でできるだけピーク位置に近くてかつスペクトルの直線性が保たれているところのエネルギーEと、
    そのエネルギーEと前記Eonset(L)との間のエネルギー幅Ew(=E−Eonset(L))と、
    前記スペクトルLのエネルギーEにおける2次電子強度Ioをそれぞれ求め、
    前記EがE≧Eonset(H)ならば、電子分光器の設定分析エネルギーをEだけに決め、
    一方、E≧Eonset(H)でないならば、前記Eに加えてE=E+Ewを電子分光器の設定分析エネルギーとして決め、
    さらに、E≧Eonset(H)でないならば、前記E,Eに加えてE=E+2Ewを電子分光器の設定分析エネルギーとして決め、
    以後同様にしてn+1個の設定分析エネルギーEn=E+n×Ew(n=0,1,2,…)を決め、
    このようにして電子分光器の設定分析エネルギーEnが決まると、電子線を試料上の各画素に照射すると共に、電子分光器の分析エネルギーをその求めたn+1個のEnに順次設定して、試料上の各画素ごとに各エネルギーEnにおける2次電子強度I(n)を検出し、
    前記n=0の場合、すなわち、設定分析エネルギーがEだけの時には、検出した2次電子強度信号を像信号に変換して試料像を表示する一方、
    前記n≠0の場合、以下の(1),(2)の規則にしたがって各画素における2次電子強度信号を選定し、
    (1)k×Ioよりも強度の大きい2次電子強度信号を捨てる(kは係数)
    (2)強度がk×Ioに等しいか、またはそれより小さい2次電子強度信号が複数ある 場合には、その中で最も強度が大きい2次電子強度信号を選ぶ
    選定した2次電子強度信号の前記nの値とその電子強度I(n)とからパラメータS’=I(n)−n×Ioを算出し、
    算出したパラメータに基づいて像信号を作成して試料像を表示する
    ことを特徴とする電子線装置における試料像表示方法。
JP28916398A 1998-10-12 1998-10-12 電子線装置における試料像表示方法および電子線装置 Expired - Fee Related JP3802242B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28916398A JP3802242B2 (ja) 1998-10-12 1998-10-12 電子線装置における試料像表示方法および電子線装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28916398A JP3802242B2 (ja) 1998-10-12 1998-10-12 電子線装置における試料像表示方法および電子線装置

Publications (2)

Publication Number Publication Date
JP2000123772A JP2000123772A (ja) 2000-04-28
JP3802242B2 true JP3802242B2 (ja) 2006-07-26

Family

ID=17739586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28916398A Expired - Fee Related JP3802242B2 (ja) 1998-10-12 1998-10-12 電子線装置における試料像表示方法および電子線装置

Country Status (1)

Country Link
JP (1) JP3802242B2 (ja)

Also Published As

Publication number Publication date
JP2000123772A (ja) 2000-04-28

Similar Documents

Publication Publication Date Title
EP2530699B1 (en) Charged particle beam microscope and method of measurement employing same
US6211518B1 (en) Electron beam dose control for scanning electron microscopy and critical dimension measurement instruments
US6987265B2 (en) Method and an apparatus of an inspection system using an electron beam
KR102674528B1 (ko) 전자 현미경을 위한 개선된 탐색
KR20200021401A (ko) 하전 입자 현미경을 사용한 샘플 검사 방법
US7872232B2 (en) Electronic microscope apparatus
US20200393392A1 (en) Method of examining a sample using a charged particle microscope
KR20200130159A (ko) 하전 입자 현미경을 사용한 샘플 검사 방법
US20220139667A1 (en) Charged particle beam device
JP2019194585A (ja) 電子顕微鏡におけるeels検出技術
US11062434B2 (en) Method of generating elemental map and surface analyzer
JP3802242B2 (ja) 電子線装置における試料像表示方法および電子線装置
JP3780620B2 (ja) 電子分光器及びそれを備えた透過型電子顕微鏡
WO2020166049A1 (ja) 欠陥検査装置、及び欠陥検査方法
US10957513B2 (en) Electron microscope and image processing method
US6995369B1 (en) Scanning electron beam apparatus and methods of processing data from same
JP4431624B2 (ja) 荷電粒子線調整方法、及び荷電粒子線装置
JP2006172919A (ja) 三次元形状解析機能を有する走査型電子顕微鏡
US20240027377A1 (en) Method of examining a sample using a charged particle microscope
JP2001236916A (ja) 電子線装置
WO2023175908A1 (ja) 分析システム、分析方法、分析プログラム
JPH1167138A (ja) 微小領域観察装置
JPH0676781A (ja) イオンビーム走査画像の取得方法、および集束イオンビーム装置
CN116830236A (zh) 用于具有多个带电粒子束的装置并用于绘制表面电势的2d像素化检测器的操作方法
CN110223901A (zh) 扫描透射带电粒子显微镜中的区别成像技术

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees