JP3801201B2 - Method and apparatus for removing hydride gas - Google Patents

Method and apparatus for removing hydride gas Download PDF

Info

Publication number
JP3801201B2
JP3801201B2 JP50640096A JP50640096A JP3801201B2 JP 3801201 B2 JP3801201 B2 JP 3801201B2 JP 50640096 A JP50640096 A JP 50640096A JP 50640096 A JP50640096 A JP 50640096A JP 3801201 B2 JP3801201 B2 JP 3801201B2
Authority
JP
Japan
Prior art keywords
gas
nickel
hydride
hydride gas
removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP50640096A
Other languages
Japanese (ja)
Inventor
忠弘 大見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Foundation for Advancement of International Science
Original Assignee
Foundation for Advancement of International Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foundation for Advancement of International Science filed Critical Foundation for Advancement of International Science
Application granted granted Critical
Publication of JP3801201B2 publication Critical patent/JP3801201B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Treating Waste Gases (AREA)

Description

技術分野
本発明は水素化物ガスの除去方法並び除去装置に係わり、特に半導体製造工程で使用する危険、有毒な水素化物ガスの除去方法並びに除去装置に関する。
背景技術
半導体製造工程で使用されるシラン、ホスフィン、ジボラン、アルシン等の水素化物ガスは自燃性や毒性があるため、未反応ガスを完全に除去し無害化してから大気に排出する必要がある。
これらのガス除去方法としては、多孔質担体にアルカリ及び酸化剤を担持させた充填塔にガスを通して除去する乾式除去方法(特開平3−137917号公報)、液体と気液接触させて吸収し、中和して分解除去する湿式除去方法(特開平4−59017号公報及び特開平4−310215号公報)等が知られている。
しかしこれらの方法において、例えばシランガスは分解によりSiO2の如き固体粉末となるため、充填塔の目詰まりが起こる等、管理や維持面で問題が多い。また、この障害を解決するために色々の方法や装置が提案されているが、いずれも不充分であり、また装置の複雑化、大型化につながっている。また、乾式除去方法では、除去に選択性があり、全ての水素化物ガスを除去できないという問題もある。
さらに、これら従来の除去装置は、真空排気ポンプから排出されるガスを処理するものであり、構成上真空内部に配置することは不可能なため、排気ポンプ上流の真空系内水素化物ガスの分解等により生じる種々の弊害に対処することは困難である。例えば未反応ガスが、反応チャンバーと真空ポンプ間で自己分解若しくは反応し、その反応生成物が配管や真空ポンプ内に付着し、その結果ポンプの吸引能力を低下著しくさせてしまう、さらにはポンプ回転羽根のバランスを崩す等の問題を生じる。従って、定期的にポンプ等を分解掃除する必要があるが、付着物自体に依然自燃性、毒性があるため、分解掃除作業も非常に危険である。
このような状況の中で、粉体等の発生により目詰まりがなくメンテナンスが容易で、しかも真空系内に設置できる、簡単な構成の水素化物ガスの除去装置が望まれている。
本発明は、簡単な構成で粉体発生による目詰まりがなく、複数の水素化物ガスを含む混合ガスを完全に除去して無害化することが可能な水素物ガスの除去方法及び除去装置を提供することを目的とする。さらに、簡単な構成で真空系内に配置でき、水素化物ガス使用装置のメンテナンスを容易とする水素化物ガスの除去方法及び除去装置を提供することを目的とする。
発明の開示
本発明の水素化物ガスの除去方法は、少なくとも2種以上の水素化物ガスを含有する混合ガスをニッケルフッ化物及びニッケルと接触させて分解または/及び吸着させることにより、水素化物ガスを除去することを特徴とする。
また、前記水素化物ガスは、周期律表第III族、第IV族、または第V族元素の水素化物ガスであることを特徴とする。
本発明において、前記ニッケルフッ化物及び前記ニッケルを加熱することにより、前記水素化物ガスを分解除去するのが好ましく、前記ニッケルフッ化物及び前記ニッケルを異なる温度に加熱するのがより好ましい
発明の水素化物ガスの除去装置は、少なくとも2種以上の水素化物ガスを含有する混合ガスの導入口と排出口とを有する容器を少なくとも1つ有し、該容器内に前記混合ガスと接触するようにニッケルフッ化物とニッケルとをそれぞれ別々にあるいは一緒に配置し、該ニッケルフッ化物及びニッケルを加熱するための加熱手段を設けたことを特徴とする。
前記加熱手段は、前記ニッケルフッ化物及びニッケルをそれぞれ異なる温度に加熱するものであることを特徴とする。
なお、参考発明の水素化物ガスの除去方法は、周期律表第III族元素または第V族元素の水素化物ガスをニッケルと接触させて分解または/及び吸着させることにより、前記水素化物ガスを除去することを特徴とする。さらに前記ニッケルを加熱することにより、前記水素化物ガスを分解除去するのが好ましい。
参考発明の水素化物ガスの除去装置は、周期律表第III族元素または第V族元素の水素化物ガスを含有する混合ガスの導入口と排出口とを有する容器内に、前記ガスと接触するようにニッケルを配し、該ニッケルを加熱するための加熱手段を設けたことを特徴とする。
作用
以下に本発明の作用を実験を参照して説明する。
本発明者は、種々の材料の内、特にニッケルフッ化物が、シランに対して優れた分解特性を示すことを発見し、これによりニッケルフッ化物をシランに接触させ、100℃以下の低温でシランを分解させることが可能となった。その結果、真空ポンプより上流側にニッケルフッ化物で内面被覆した配管を設置することによりシラン除去が可能となり、ポンプ内での粉末発生、付着を防止することが出来、装置全体のメンテナンスが非常に容易になった。
一方、半導体製造工程、例えば半導体膜の成膜工程では、導電性制御のためシランの他にホスフィン、アルシン、ジボラン等のガスが同時に導入される。これらの混合ガス中の水素化物ガスはいずれも危険であり、猛毒であるため、完全に除去して排気しなければならない。しかし、例えばシラン、ホスフィン混合ガスの処理を上記ニッケルフッ化物で除去しようとすると、ホスフィンを100%分解させるには300℃以上の高温に加熱する必要があるため、SiF4が発生してしまい、混合ガス系でニッケルフッ化物を用いるのには限界があることが分かった。
そこで、本発明者はこの問題を解決するために鋭意研究を続けた結果、金属Niは周期律表第III族元素及び第V族元素の水素化物ガスに対し高い吸着能を有するとともに分解促進効果も高く、特にホスフィンについては50℃程度の低温で100%分解できることが分かった。
本発明は、これらの知見に基づき完成したものであり、ニッケルフッ化物及びニッケルを用いることにより、低温で2種以上の水素化物ガスの混合ガスを除去することを可能となる。
ニッケルフッ素化物及びニッケルと水素化物系ガスとを接触させると、水素化物ガスは当量の水素ガスを発生して分解する。このため、従来の如き固体状生成物に基づく難点、即ちポンプへの反応生成物の付着、並びに充填塔の目詰まり等の問題を未然に防止する事が出来る。また、ニッケルフッ化物またはニッケル単位表面積当たりの水素化物ガス処理量は、分解して生成したSi,P,B等の元素がニッケルフッ化物及びニッケル表面を覆ってしまうまでの量と考えられるが、実際にはこの量よりもはるかに多量の水素化物ガスを処理することができる。この理由は現在のところ明確ではないが、Si,P,B等が表面を覆ってもNiが表面に拡散して分解能力が維持されるためと推測される。
また、周期律表第III族元素及び第V族元素は微量でも半導体特性に大きな影響を及ぼす。そこで、上述したようにNiは周期律表第III族元素及び第V族元素の水素化物ガスの吸着能が高いため、この特性を利用して種々のガス中の微量水素化物ガスを吸着除去して、ガスを高純度化することも可能である。
以下に、本発明にいたる過程で行った実験を挙げて、本発明の作用をより詳細に説明する。
(実験例1)
図1に示す測定系を用い、種々の材質の内表面を有する水素化物ガス除去管(長さ1mの1/4インチ管)を所定の温度に加熱してシランガスを流し、その分解特性を調べた。
図1において、種々の水素化物ガスについて、マスフローコントローラー(MFC)及びバルブを調整することにより、特定の水素化物ガスが水素化物ガス除去管11に導入され処理される。その後、フーリエ変換赤外分光器(FTIR)のセル12に送られ、ここで、ガス中のシラン濃度が測定される。セル12から排出されたガスはガスクロマトグラフィ13に送られ、H2ガス濃度の分析が行われる。図には示していないが、水素化物ガス除去管11の周囲には加熱用ヒータが配置されており、これによりガス除去管11を所定の温度に加熱することができる。
図1(b)はセル2の拡大図であり、窓材(KBr)保護のためにArガスが導入される構造となっている。
水素化物ガス除去管11に100ppmのシランガス(Arガス希釈)を5sccm流した時、排出されるガス中のシラン濃度の加熱温度に対する変化を図2(a)に示す。なお、除去管としては、NiF2管、純Ni管、ハステロイ電解研磨管、SUS316L電解研磨管、Cr23管を用いた。NiF2管はNi管の内表面にフッ素ガスを作用させて0.2μmのNiF2膜を形成したものである。また、Cr23管は、SUS316L電解研磨管の内表面にH210%,0250ppmを含むArガスを導入し500℃に加熱酸化し、表面にCr23不動体膜を形成したものである。
図2(a)から明らかなように、NiF2管が最も優れた分解特性を示し、Cr23管は殆ど分解促進作用を示さず、また金属ではNiの含有量が低下するにつれて分解特性が低下することが分かった。
また、排出ガス中のH2ガス濃度を熱伝導型検出器(TCD)を有するガスクロマトグラフィ3で分析した結果を図2(b)に示す。図が示すように水素濃度はある温度範囲で200ppmに達し、シランが完全に分解して当量のH2ガスを発生していることが分かった。さらに高温度に加熱すると、水素ガス濃度は低下するものの(この理由は現在不明であるが)、排ガス中のシラン濃度はゼロのままであった。しかし、NiF2管の場合、約220℃以上に加熱するとSiF4が生成することがFTIRの測定結果から分かり、NiF2を用いる場合は200℃以下の温度にする必要がある。
(実験例2)
実験例1と同様にして、PH3,B26及びAsH3ガスに対する各種材質のガス除去管の分解特性を調べた結果を図3、4及び10に、また100%分解の最低温度を表1に示す。なお、表、図において、Fe23とあるのは、SUS315L電解研磨管に30%O2を含むArガスを導入し425℃で加熱酸化して、内表面にFe23膜を20nm形成したものである。SiはSUS316L電解研磨管の内表面にSiH4ガスを流し480℃で熱分解してシリコン膜を30nm形成し、続いてH2を流して処理したものである。SiO2は、前記Si表面にO2を導入して600℃で表面を酸化したものである。他は実験例1と同様である。
図または表から明らかなように、Ni管が優れた分解特性を有し、特にPH3,AsH3ガスに対しては50℃の低温で完全にPH3を分解する等、極めて高い分解特性を有することが分かった。また、例えばNiF2管でPH3を分解除去しようとすると300℃以上に加熱する必要があり、前述したようにこの温度ではSiF4を生成することから、NiF2単独ではSiH4とPH3の混合ガスの除去には適しないことが分かった。
(実験例3)
図1の測定系を用い、室温(25℃)でB26,PH3ガスを各種ガス除去用管に流し、その濃度の時間変化を調べた。B26,PH3ガスの濃度変化を図5、6に、また図から計算した吸着分子量を表1に示す。
図または表が示すように、Ni管は他の管に比べてB26、PH3ガスに対する吸着能が高く、長時間ガスを吸着除去できることが分かった。従って、水素化物ガスを微量含む他のガスを精製することが可能となり、特にそのガスが熱的に不安定な場合に極めて有用な精製手段となる。
【表1】

Figure 0003801201
本発明で用いられるニッケルフッ化物は、水素化物ガスの分解能力の観点から、化学量論比にあるNiF2が好ましいが、これに限ることはない。また、ニッケルについては、純ニッケルが好ましいが、ニッケルを含む合金であっても良い。
これらニッケル及びニッケルフッ化物を水素化物ガスを接触させるべく配置する方法としては、配管、容器そのものをこれらの材料で構成したり、あるいは小径の管状、網状、繊維状、ペレット状として容器内に配置して、容器内部に水素化物ガスを導入すれば良い。あるいは、ステンレス製配管、容器等の内面をニッケルあるいはニッケルフッ化物膜で被覆したり、他の材質の前記形状の固体表面に被覆しても良い。この固体としては、Fe,Ni,Cr,SUS等種々の金属、合金の他、Al23,AlN,SiC等セラミック等が好適に用いられる。
ニッケルまたはニッケルフッ化物膜を固体にフッ素化物を被覆する方法としては、例えばメッキ、スパッタ膜、蒸着等が挙げられる。ニッケルフッ化物は、特にニッケルをフッ化処理したものが好適に用いられる。
フッ化処理を行うには、例えばNi管あるいはこれに無電解メッキ法で約10μm厚のNi−P(ニッケル−リン)メッキを施し、このメッキ膜に350℃でフッ素ガスを作用させることにより、約0.2μm程度のNiF2膜を形成すれば良い。
本発明において、水素化物ガスを分解除去する場合、分解効率の観点から加熱することが好ましい。好ましい加熱温度は、水素化物の種類、流量、圧力、ニッケル及びニッケルフッ化物のガスとの接触面積、ニッケルとニッケルフッ化物の配置等により適宜最適化されるが、ニッケルとニッケルフッ化物を同じ場所に配置する場合には85〜200℃が好ましい。また、ニッケルとニッケルフッ化物をそれぞれ別の場所に配置してそれぞれの最適な温度に加熱すればより好ましく、この時の好ましい温度は、ニッケルが50〜300℃、ニッケルフッ化物が85〜200℃である。
また、本発明において、多量の水素化ガスを処理する場合には、ペレット状や粒状固体の表面にニッケルあるいはニッケルフッ化物を被覆し、このペレット等を充填塔に充填し、処理に供する方法が効果的である。
本発明が適用される水素化物ガスとしては、B26等の周期律表第III族元素の水素化物ガス、PH3,AsH3等の第V族元素の水素化物ガス、及びSiH4,Si26,GeH4等の第IV族元素の水素化物ガス及びこれらの混合ガス等が挙げられる。
【図面の簡単な説明】
図1は、本発明の水素化物ガスの除去能力を調べる実験装置を示す概念図である。
図2は、各種材料について、シラン分解及びH2ガス発生に及ぼす温度の影響を示したグラフである。
図3は、各種材料についてホスフィンの分解と温度の関係を示すグラフである。
図4は、各種材料についてジボランの分解と温度の関係を示すグラフである。
図5は、各種材料のホスフィン吸着能を示すグラフである。
図6は、各種材料のジボラン吸着能を示すグラフである。
図7は、実施例1の除去装置の配置を示す概念図である。
図8は、実施例2の除去装置の配置を示す概念図である。
図9は、実施例3の除去装置の配置を示す概念図である。
図10は、各種材料についてアルシンの分解速度と温度との関係を示すグラフである。
(符号の説明)
11 水素化物ガス除去管、
12 FTIR用セル、
13 ガスクロマトグラフィ、
71、81 反応チャンバー、
72、82 配管、
73、83、83’ 水素化物ガス除去装置、
74、84 ターボ分子ポンプ、
75、85 ロータリーポンプ、
76、86、86’ ヒータ、
91 水素化物ガス導入口、
92、92’ ニッケル膜またはニッケルフッ素化物で被覆した担体を充填した充填塔、
93 加熱器、
94 ガス検知器、
95 水洗塔、
96 水循環槽、
97 水循環ポンプ。
発明を実施するための最良の形態
以下に実施例を挙げて本発明をより詳細に説明するが、本発明がこれら実施例に限定されることはない。
(実施例1)
本発明の第1の実施例を図7に示す。
図7は、除去装置を半導体製造装置の反応チャンバーから真空ポンプ間に配置した例である。図7に於いて、71は反応チャンバー、72は配管、73はNiF2を用いたガス除去装置、74はターボ分子ポンプ、75はロータリーポンプ、76はヒータを示す。
ここで、水素化物ガス除去装置は水素化物触媒分解を容易にならしめ、且つ装置抵抗を最小限に押さえるべく、直径40cmの円筒状の容器に4mm径、60cmのNi管と表面にNiF2層形成した同形状の管を、蜂巣構造にして挿入したものを用いた。
この装置を用い、n+ポリシリコン(5%SiH41slm,0.5%PH32slm,Ar10slm)400nmの成膜及びPSG(5%SiH4(N2希釈)800sccm,5%PH3(N2希釈)160sccm,O2800sccm)200nmの成膜を繰り返し行い、その間除去装置出口で検知器によりガスの分解を確認した。なお、除去装置は、90℃に加熱した。
上記成膜を30回繰り返した後でも、SiH4,PH3は全く検出されず、本実施例の除去装置が実用的であることが分かった。
本実施例では、4mm径、60cmの管を用いたが、蜂の巣の穴径及び長さは使用する水素化物ガスの圧力、流量により適宜決定すればよいが、穴径は通常数mm径が好適に用いられる。
(実施例2)
本発明の第2の実施例を図8に示す。
本実施例では、NiF2管とNi管をそれぞれ異なる容器83、83’に配し、それぞれ85℃、130℃に加熱し、BSG(5%SiH4(N2希釈)800sccm,5%B26(N2希釈)160sccm,O2800sccm)300nmの成膜及びn+ポリシリコン(5%SiH41slm,0.5%AsH32slm,Ar10slm)400nmの成膜を行った。この成膜を30回繰り返した後でも、SiH4,AsH3,B26は全く検出されなかった。
(実施例3)
本発明の第3の実施例を図9に示す。
本実施例は、従来の排ガス処理装置と同様に排気系の下流側に除去装置を設けた例である。
図9に於いて、91は特殊ガス導入口、92,92’はフッ素ニッケル膜およびNi膜で被覆した担体を充填した充填塔、93は加熱器、94はガス検知器、95は水洗塔、96は水循環糟、97は水循環ポンプを示す。
本実施例の除去装置では、2本の充填塔を並列に配置し、いずれか1本を使用する。充填塔のガス出口にガス検知器を取り付け稼働中の除去装置の状態をモニターし、充填塔の除去能力がなくなったところで他方の充填塔に切り替える。
排出されるガスは、他の半導体製造装置から排出されたガス用の水洗塔(スクラバー)に送り込めば良い。
産業上の利用可能性
本発明により、水素化物ガスの混合ガスを効果的に除去することが出来、しかも排気ポンプ上流側に設置することができるため、排気系等のメンテナンスが著しく楽になり、また半導体製造装置の稼働率を大幅に向上させることができる。
また、粉末固体が発生しないため、ポンプ、充填塔やその他装置において目詰まりを起こすことがなく、極めて安定して除去を行うことが出来る。TECHNICAL FIELD The present invention relates to a hydride gas removal method and a removal apparatus, and more particularly, to a danger and toxic hydride gas removal method and removal apparatus used in a semiconductor manufacturing process.
Background Art Since hydride gases such as silane, phosphine, diborane, and arsine used in semiconductor manufacturing processes have self-combustibility and toxicity, it is necessary to completely remove unreacted gases and make them harmless before discharging them to the atmosphere.
As these gas removal methods, a dry removal method in which gas is passed through a packed tower in which an alkali and an oxidant are supported on a porous carrier (Japanese Patent Laid-Open No. 3-137717), a liquid is brought into gas-liquid contact and absorbed, There are known wet removal methods for neutralization and decomposition removal (Japanese Patent Laid-Open Nos. 4-59017 and 4-310215) and the like.
However, in these methods, for example, silane gas is decomposed into a solid powder such as SiO 2 , so that there are many problems in management and maintenance such as clogging of the packed tower. In addition, various methods and apparatuses have been proposed to solve this problem, but all of them are insufficient, and the apparatus is complicated and increased in size. Further, the dry removal method has a problem in that removal is selective and not all hydride gas can be removed.
In addition, these conventional removal devices process the gas discharged from the vacuum exhaust pump and cannot be placed inside the vacuum because of the structure, so the hydride gas in the vacuum system upstream of the exhaust pump is decomposed. It is difficult to deal with various harmful effects caused by the above. For example, unreacted gas self-decomposes or reacts between the reaction chamber and the vacuum pump, and the reaction product adheres to the inside of the piping or vacuum pump, resulting in a significant decrease in pump suction capacity, and further pump rotation. This causes problems such as losing the balance of the blades. Therefore, it is necessary to periodically disassemble and clean the pump and the like. However, since the deposit itself is still flammable and toxic, the disassembly and cleaning work is very dangerous.
Under such circumstances, there is a demand for a hydride gas removing device having a simple configuration that is not clogged due to generation of powder or the like, is easy to maintain, and can be installed in a vacuum system.
The present invention provides a hydride gas removal method and a removal device that can be made harmless by completely removing a mixed gas containing a plurality of hydride gases with a simple configuration and without clogging due to powder generation. The purpose is to do. Furthermore, it aims at providing the removal method and removal apparatus of the hydride gas which can be arrange | positioned in a vacuum system with a simple structure and can make maintenance of the hydride gas use apparatus easy.
DISCLOSURE OF THE INVENTION A method for removing hydride gas according to the present invention is a method in which a mixed gas containing at least two hydride gases is brought into contact with nickel fluoride and nickel to decompose or / and adsorb hydride gas. It is characterized by removing.
The hydride gas is a hydride gas of a group III, group IV, or group V element of the periodic table.
In the present invention, it is preferable to decompose and remove the hydride gas by heating the nickel fluoride and the nickel, and it is more preferable to heat the nickel fluoride and the nickel to different temperatures .
The hydride gas removal apparatus of the present invention has at least one container having an inlet and an outlet for a mixed gas containing at least two or more hydride gases, and is in contact with the mixed gas in the container. Thus, the nickel fluoride and the nickel are arranged separately or together, and heating means for heating the nickel fluoride and nickel is provided.
The heating means heats the nickel fluoride and nickel to different temperatures.
The method for removing the hydride gas of the reference invention is to remove the hydride gas by bringing a hydride gas of group III element or group V element of the periodic table into contact with nickel to decompose or / and adsorb. It is characterized by doing. Furthermore, it is preferable to decompose and remove the hydride gas by heating the nickel.
The hydride gas removal apparatus of the reference invention is in contact with the gas in a container having an inlet and an outlet of a mixed gas containing a hydride gas of Group III element or Group V element of the Periodic Table. Thus, nickel is provided, and a heating means for heating the nickel is provided.
Operation The operation of the present invention will be described below with reference to experiments.
The present inventor has discovered that among various materials, particularly nickel fluoride exhibits excellent decomposition characteristics with respect to silane, whereby nickel fluoride is brought into contact with silane, and silane at a low temperature of 100 ° C. or less. Can be decomposed. As a result, it is possible to remove silane by installing a pipe covered with nickel fluoride on the upstream side of the vacuum pump, and it is possible to prevent the generation and adhesion of powder in the pump, and the maintenance of the entire device is very It became easy.
On the other hand, in a semiconductor manufacturing process, for example, a film forming process of a semiconductor film, gases such as phosphine, arsine, diborane and the like are simultaneously introduced in addition to silane for controlling conductivity. Any of these hydride gases in the mixed gas is dangerous and extremely toxic, and must be completely removed and exhausted. However, for example, when the treatment of a mixed gas of silane and phosphine is to be removed with the above nickel fluoride, since it is necessary to heat to a high temperature of 300 ° C. or higher in order to decompose 100% of phosphine, SiF 4 is generated, It has been found that there is a limit to using nickel fluoride in a mixed gas system.
Therefore, as a result of continuous researches to solve this problem, the inventor of the present invention has a high adsorption ability for the hydride gas of Group III elements and Group V elements of the Periodic Table and the decomposition promoting effect. In particular, it was found that phosphine could be decomposed 100% at a low temperature of about 50 ° C.
The present invention has been completed based on these findings, and by using nickel fluoride and nickel, it becomes possible to remove a mixed gas of two or more hydride gases at a low temperature.
When nickel fluoride and nickel are brought into contact with a hydride-based gas, the hydride gas generates an equivalent amount of hydrogen gas and decomposes. Therefore, it is possible to prevent problems such as those due to the conventional solid product, that is, adhesion of the reaction product to the pump and clogging of the packed tower. In addition, the amount of hydride gas treated per nickel fluoride or nickel unit surface area is considered to be an amount until elements such as Si, P, and B generated by decomposition cover the nickel fluoride and the nickel surface. In practice, much larger amounts of hydride gas can be processed than this amount. The reason for this is not clear at present, but it is assumed that even if Si, P, B, etc. cover the surface, Ni diffuses on the surface and the decomposition ability is maintained.
In addition, Group III elements and Group V elements in the periodic table have a great influence on semiconductor characteristics even in trace amounts. Therefore, as described above, Ni has a high ability to adsorb hydride gases of Group III elements and Group V elements of the Periodic Table. Therefore, by utilizing this characteristic, a small amount of hydride gas in various gases can be adsorbed and removed. Thus, the gas can be highly purified.
Hereinafter, the effects of the present invention will be described in more detail with reference to experiments conducted in the course of the present invention.
(Experimental example 1)
Using the measurement system shown in FIG. 1, a hydride gas removal pipe (1 meter length 1/4 inch pipe) having an inner surface made of various materials is heated to a predetermined temperature to flow silane gas, and its decomposition characteristics are examined. It was.
In FIG. 1, by adjusting a mass flow controller (MFC) and a valve for various hydride gases, a specific hydride gas is introduced into the hydride gas removal pipe 11 and processed. Then, it sends to the cell 12 of a Fourier-transform infrared spectrometer (FTIR), and the silane density | concentration in gas is measured here. The gas discharged from the cell 12 is sent to the gas chromatography 13 where the H 2 gas concentration is analyzed. Although not shown in the figure, a heater for heating is disposed around the hydride gas removal pipe 11, whereby the gas removal pipe 11 can be heated to a predetermined temperature.
FIG. 1B is an enlarged view of the cell 2 and has a structure in which Ar gas is introduced to protect the window material (KBr).
FIG. 2A shows the change of the silane concentration in the discharged gas with respect to the heating temperature when 100 ppm of silane gas (Ar gas dilution) flows through the hydride gas removal pipe 11 at 5 sccm. As the removal tube, a NiF 2 tube, a pure Ni tube, a Hastelloy electrolytic polishing tube, a SUS316L electrolytic polishing tube, and a Cr 2 O 3 tube were used. The NiF 2 tube is one in which a fluorine gas is allowed to act on the inner surface of the Ni tube to form a 0.2 μm NiF 2 film. In addition, the Cr 2 O 3 tube is formed by introducing Ar gas containing 10% H 2 and 0 2 50 ppm into the inner surface of the SUS316L electrolytic polishing tube and heating it to 500 ° C. to form a Cr 2 O 3 non-passive film on the surface. It is a thing.
As is clear from FIG. 2 (a), the NiF 2 tube exhibits the most excellent decomposition characteristics, the Cr 2 O 3 tube exhibits almost no decomposition promoting action, and the metal exhibits a decomposition characteristic as the Ni content decreases. Was found to decrease.
Also, it is shown in FIG. 2 (b) the results of analysis of the H 2 gas concentration in the exhaust gas by gas chromatography 3 having the heat conduction type detector (TCD). As shown in the figure, it was found that the hydrogen concentration reached 200 ppm within a certain temperature range, and silane was completely decomposed to generate an equivalent amount of H 2 gas. When heated to a higher temperature, the hydrogen gas concentration decreased (although this reason is currently unknown), but the silane concentration in the exhaust gas remained zero. However, in the case of a NiF 2 tube, SiF 4 is produced when heated to about 220 ° C. or more, and the measurement results of FTIR show that when NiF 2 is used, the temperature must be 200 ° C. or less.
(Experimental example 2)
In the same manner as in Experimental Example 1, the results of investigating the decomposition characteristics of the gas removal pipes of various materials with respect to PH 3 , B 2 H 6 and AsH 3 gases are shown in FIGS. Table 1 shows. In the tables and figures, Fe 2 O 3 means that Ar gas containing 30% O 2 is introduced into a SUS315L electrolytic polishing tube and heated and oxidized at 425 ° C. to form an Fe 2 O 3 film on the inner surface by 20 nm. Formed. Si was processed by flowing SiH 4 gas on the inner surface of the SUS316L electrolytic polishing tube and thermally decomposing it at 480 ° C. to form a silicon film of 30 nm, and then flowing H 2 . SiO 2 is obtained by oxidizing the surface at 600 ° C. by introducing O 2 into the Si surface. Others are the same as those of Experimental Example 1.
As can be seen from the figure or table, the Ni tube has excellent decomposition characteristics, especially for PH 3 and AsH 3 gases, such as complete decomposition of PH 3 at a low temperature of 50 ° C. It turns out to have. Further, for example, it is necessary to heat the PH 3 to try to the 300 ° C. or higher to decompose and remove at NiF 2 tube and generating a SiF 4 at this temperature, as described above, in the NiF 2 alone SiH 4 and PH 3 It has been found that it is not suitable for removing mixed gas.
(Experimental example 3)
Using the measurement system shown in FIG. 1, B 2 H 6 and PH 3 gases were allowed to flow through various gas removal tubes at room temperature (25 ° C.), and changes in concentration over time were examined. Changes in the concentration of B 2 H 6 and PH 3 gas are shown in FIGS.
As shown in the figure or table, it was found that the Ni tube has higher adsorption ability for B 2 H 6 and PH 3 gas than other tubes, and can remove the gas for a long time. Therefore, it is possible to purify other gas containing a small amount of hydride gas, and it is an extremely useful purification means particularly when the gas is thermally unstable.
[Table 1]
Figure 0003801201
The nickel fluoride used in the present invention is preferably NiF 2 in a stoichiometric ratio from the viewpoint of the ability to decompose hydride gas, but is not limited thereto. As for nickel, pure nickel is preferable, but an alloy containing nickel may be used.
As a method of arranging these nickel and nickel fluoride so as to contact the hydride gas, pipes and containers themselves are composed of these materials, or they are arranged in the container as small diameter tubes, nets, fibers or pellets. Then, hydride gas may be introduced into the container. Or you may coat | cover the inner surface of stainless steel piping, a container, etc. with nickel or a nickel fluoride film | membrane, or may coat | cover the solid surface of the said shape of another material. As this solid, various metals and alloys such as Fe, Ni, Cr, and SUS, ceramics such as Al 2 O 3 , AlN, and SiC are preferably used.
Examples of the method for coating a nickel or nickel fluoride film with a fluoride on a solid include plating, a sputtered film, and vapor deposition. As the nickel fluoride, nickel fluoride is preferably used.
In order to perform the fluorination treatment, for example, Ni-P (nickel-phosphorus) plating having a thickness of about 10 μm is applied to the Ni tube or the electroless plating method, and fluorine gas is allowed to act on the plating film at 350 ° C. A NiF 2 film having a thickness of about 0.2 μm may be formed.
In the present invention, when the hydride gas is decomposed and removed, it is preferable to heat from the viewpoint of decomposition efficiency. The preferred heating temperature is appropriately optimized depending on the type of hydride, flow rate, pressure, contact area with nickel and nickel fluoride gas, arrangement of nickel and nickel fluoride, etc. When arrange | positioning to 85-200 degreeC. Further, it is more preferable if nickel and nickel fluoride are arranged in different places and heated to respective optimum temperatures, and preferable temperatures at this time are 50 to 300 ° C. for nickel and 85 to 200 ° C. for nickel fluoride. It is.
Further, in the present invention, when a large amount of hydrogenated gas is treated, there is a method in which the surface of a pellet or granular solid is coated with nickel or nickel fluoride, and the pellets are packed in a packed tower and used for the treatment. It is effective.
Examples of the hydride gas to which the present invention is applied include hydride gases of Group III elements such as B 2 H 6 , hydride gases of Group V elements such as PH 3 and AsH 3 , and SiH 4 , Examples include hydride gases of Group IV elements such as Si 2 H 6 and GeH 4 , and mixed gases thereof.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an experimental apparatus for examining the hydride gas removal capability of the present invention.
FIG. 2 is a graph showing the effect of temperature on silane decomposition and H 2 gas generation for various materials.
FIG. 3 is a graph showing the relationship between phosphine decomposition and temperature for various materials.
FIG. 4 is a graph showing the relationship between the decomposition of diborane and the temperature for various materials.
FIG. 5 is a graph showing the phosphine adsorption ability of various materials.
FIG. 6 is a graph showing diborane adsorption ability of various materials.
FIG. 7 is a conceptual diagram illustrating the arrangement of the removing device according to the first embodiment.
FIG. 8 is a conceptual diagram illustrating the arrangement of the removing device according to the second embodiment.
FIG. 9 is a conceptual diagram illustrating the arrangement of the removing device according to the third embodiment.
FIG. 10 is a graph showing the relationship between arsine decomposition rate and temperature for various materials.
(Explanation of symbols)
11 Hydride gas removal pipe,
12 FTIR cell,
13 Gas chromatography,
71, 81 reaction chamber,
72, 82 piping,
73, 83, 83 'hydride gas removal device,
74, 84 Turbo molecular pump,
75, 85 Rotary pump,
76, 86, 86 'heater,
91 Hydride gas inlet,
92, 92 ′ packed tower packed with carrier coated with nickel film or nickel fluoride,
93 Heater,
94 Gas detector,
95 Flushing tower,
96 water circulation tank,
97 Water circulation pump.
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
Example 1
A first embodiment of the present invention is shown in FIG.
FIG. 7 shows an example in which the removing apparatus is arranged between the reaction chamber of the semiconductor manufacturing apparatus and the vacuum pump. In Figure 7, the reaction chamber 71, 72 is a pipe, 73 gas removal apparatus using NiF 2, 74 is a turbo-molecular pump, 75 is a rotary pump, 76 denotes a heater.
Here, the hydride gas removal device facilitates hydride catalytic decomposition and minimizes the resistance of the device, and a 4 mm diameter, 60 cm Ni tube and a NiF 2 layer on the surface of a cylindrical vessel with a diameter of 40 cm. The formed tube having the same shape and having a honeycomb structure was used.
Using this apparatus, n + polysilicon (5% SiH 4 1 slm, 0.5% PH 3 2 slm, Ar 10 slm) 400 nm film formation and PSG (5% SiH 4 (N 2 diluted) 800 sccm, 5% PH 3 (N (2 dilution) 160 sccm, O 2 800 sccm) 200 nm film formation was repeated, and during this time, gas decomposition was confirmed by a detector at the removal device outlet. The removing device was heated to 90 ° C.
Even after repeating the above film formation 30 times, SiH 4 and PH 3 were not detected at all, indicating that the removal apparatus of this example was practical.
In this example, a 4 mm diameter, 60 cm tube was used, but the hole diameter and length of the honeycomb may be determined appropriately depending on the pressure and flow rate of the hydride gas used. Used for.
(Example 2)
A second embodiment of the present invention is shown in FIG.
In this example, NiF 2 tubes and Ni tubes are placed in different containers 83 and 83 ′, respectively heated to 85 ° C. and 130 ° C., and BSG (5% SiH 4 (N 2 diluted) 800 sccm, 5% B 2 is used. H 6 (N 2 dilution) 160 sccm, O 2 800 sccm) 300 nm and n + polysilicon (5% SiH 4 1 slm, 0.5% AsH 3 2 slm, Ar 10 slm) 400 nm were formed. Even after this film formation was repeated 30 times, SiH 4 , AsH 3 , and B 2 H 6 were not detected at all.
Example 3
A third embodiment of the present invention is shown in FIG.
The present embodiment is an example in which a removal device is provided on the downstream side of the exhaust system as in the conventional exhaust gas treatment device.
In FIG. 9, 91 is a special gas inlet, 92 and 92 'are packed towers filled with a carrier coated with a fluorine nickel film and a Ni film, 93 is a heater, 94 is a gas detector, 95 is a washing tower, 96 is a water circulation tank, and 97 is a water circulation pump.
In the removal apparatus of this embodiment, two packed towers are arranged in parallel, and any one of them is used. A gas detector is attached to the gas outlet of the packed tower, and the state of the removal apparatus in operation is monitored. When the removal capacity of the packed tower is lost, the other packed tower is switched to.
The discharged gas may be sent to a scrubber for gas discharged from another semiconductor manufacturing apparatus.
Industrial Applicability According to the present invention, the mixed gas of hydride gas can be effectively removed and installed on the upstream side of the exhaust pump, so that the maintenance of the exhaust system and the like is remarkably facilitated. The operating rate of the semiconductor manufacturing apparatus can be greatly improved.
In addition, since no solid powder is generated, clogging does not occur in pumps, packed towers and other devices, and removal can be performed extremely stably.

Claims (6)

少なくとも2種以上の水素化物ガスを含有する混合ガスをニッケルフッ化物及びニッケルと接触させて分解または/及び吸着させることにより、水素化物ガスを除去することを特徴とする水素化物ガスの除去方法。A method for removing hydride gas, comprising removing a hydride gas by bringing a mixed gas containing at least two or more hydride gases into contact with nickel fluoride and nickel to cause decomposition or / and adsorption. 前記水素化物ガスは、周期律表第III族、第IV族または第V族元素の水素化物ガスであることを特徴とする請求項1に記載の水素化物ガスの除去方法。2. The hydride gas removal method according to claim 1, wherein the hydride gas is a hydride gas of a Group III, Group IV, or Group V element of the periodic table. 前記ニッケルフッ化物及び前記ニッケルを加熱することにより、前記水素化物ガスを分解除去することを特徴とする請求項1または2に記載の水素化物ガスの除去方法。The hydride gas removal method according to claim 1 or 2, wherein the hydride gas is decomposed and removed by heating the nickel fluoride and the nickel. 前記ニッケルフッ化物及び前記ニッケルを異なる温度に加熱することを特徴とする請求項3に記載の水素化物ガスの除去方法。The method for removing hydride gas according to claim 3, wherein the nickel fluoride and the nickel are heated to different temperatures. 少なくとも2種以上の水素化物ガスを含有する混合ガスの導入口と排出口とを有する容器を少なくとも1つ有し、該容器内に前記混合ガスと接触するようにニッケルフッ化物及びニッケルとそれぞれ個別にあるいは一緒に配置し、該ニッケルフッ化物及びニッケルを加熱するための加熱手段を設けたことを特徴とする水素化物ガスの除去装置。At least one container having an inlet and an outlet for a mixed gas containing at least two kinds of hydride gases, and nickel fluoride and nickel individually in contact with the mixed gas in the container A hydride gas removal apparatus, characterized by being provided with or together with a heating means for heating the nickel fluoride and nickel. 前記加熱手段は、前記ニッケルフッ化物及び前記ニッケルを異なる温度に加熱するものであることを特徴とする請求項に記載の水素化物ガスの除去装置。6. The hydride gas removal apparatus according to claim 5 , wherein the heating means heats the nickel fluoride and the nickel to different temperatures.
JP50640096A 1994-08-05 1995-08-04 Method and apparatus for removing hydride gas Expired - Fee Related JP3801201B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6184951A JPH09239232A (en) 1994-08-05 1994-08-05 Method for removing hydride gas and apparatus therefor
PCT/JP1995/001553 WO1996004064A1 (en) 1994-08-05 1995-08-04 Hydride gas removing method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006041930A Division JP4579847B2 (en) 1994-08-05 2006-02-20 Method and apparatus for removing hydride gas

Publications (1)

Publication Number Publication Date
JP3801201B2 true JP3801201B2 (en) 2006-07-26

Family

ID=16162212

Family Applications (2)

Application Number Title Priority Date Filing Date
JP6184951A Pending JPH09239232A (en) 1994-08-05 1994-08-05 Method for removing hydride gas and apparatus therefor
JP50640096A Expired - Fee Related JP3801201B2 (en) 1994-08-05 1995-08-04 Method and apparatus for removing hydride gas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP6184951A Pending JPH09239232A (en) 1994-08-05 1994-08-05 Method for removing hydride gas and apparatus therefor

Country Status (3)

Country Link
JP (2) JPH09239232A (en)
KR (1) KR970704501A (en)
WO (1) WO1996004064A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068034A (en) * 1983-09-14 1985-04-18 Nippon Paionikusu Kk Process for removing poisonous component
JPS60125233A (en) * 1983-12-08 1985-07-04 Mitsui Toatsu Chem Inc High degree treatment of exhaust gas
DE3777182D1 (en) * 1987-09-24 1992-04-09 Fina Research METHOD FOR THE REMOVAL OF ARSINE FROM LIGHT OLEFINE-CONTAINING CARBON FEEDS.

Also Published As

Publication number Publication date
JPH09239232A (en) 1997-09-16
KR970704501A (en) 1997-09-06
WO1996004064A1 (en) 1996-02-15

Similar Documents

Publication Publication Date Title
US6153150A (en) Apparatus and method for controlled decomposition oxidation of gaseous pollutants
JP5241982B2 (en) Method and apparatus for supplying gas phase reactants into a reaction chamber
US5451386A (en) Hydrogen-selective membrane
EP2000195B1 (en) Method of making hcd gas harmless and apparatus therefor
JP2002521192A (en) Method and apparatus for obtaining enhanced production rates of thermochemical reactions
WO2003047729A1 (en) Method and apparatus for treating exhaust gas
EP1129775A1 (en) Method and apparatus for treating waste gas containing fluorochemical
KR20060053164A (en) Exhaust gas decompositon treatment device
JP2013095618A (en) Method and apparatus for producing hydrogen
US20040112056A1 (en) Integrated system and process for effluent abatement and energy generation
WO2006093037A1 (en) Semiconductor production system and semiconductor production method
KR101097240B1 (en) Method and apparatus for treating exhaust gas
US20120125260A1 (en) System for Abating the Simultaneous Flow of Silane and Arsine
JP3801201B2 (en) Method and apparatus for removing hydride gas
JP4579847B2 (en) Method and apparatus for removing hydride gas
WO2002045823A1 (en) Exhaust gas treatment device
WO2005066387A1 (en) Method for cleaning film-forming apparatuses
TW567088B (en) Process and apparatus for treating gas containing fluorine-containing compounds and CO
JP3215074B2 (en) Method and device for removing semiconductor manufacturing flue gas
JP2018186228A (en) Deposit removing method and deposit removing apparatus
JP3520361B2 (en) Hydride decomposition treatment method and treatment device
WO1999030809A1 (en) Method and device for treating exhaust gas
JP4583880B2 (en) Exhaust gas treatment method and treatment apparatus
CN218871691U (en) Filtering device and chemical vapor deposition equipment
JP2005185961A (en) Removing method of volatile inorganic noble metal compound and device therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees