JP3799716B2 - Method for producing 2-propanol derivative - Google Patents

Method for producing 2-propanol derivative Download PDF

Info

Publication number
JP3799716B2
JP3799716B2 JP04189697A JP4189697A JP3799716B2 JP 3799716 B2 JP3799716 B2 JP 3799716B2 JP 04189697 A JP04189697 A JP 04189697A JP 4189697 A JP4189697 A JP 4189697A JP 3799716 B2 JP3799716 B2 JP 3799716B2
Authority
JP
Japan
Prior art keywords
substituted
propanol
producing
group
derivative according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04189697A
Other languages
Japanese (ja)
Other versions
JPH10237039A (en
Inventor
幸生 猪飼
哲弥 柳本
雅史 三上
喜朗 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Soda Co Ltd
Original Assignee
Daiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiso Co Ltd filed Critical Daiso Co Ltd
Priority to JP04189697A priority Critical patent/JP3799716B2/en
Publication of JPH10237039A publication Critical patent/JPH10237039A/en
Application granted granted Critical
Publication of JP3799716B2 publication Critical patent/JP3799716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は医薬および農薬などの合成中間体およびプロピレンオキサイドに容易に変換できる合成等価体として有用な化合物である1−置換−2−プロパノール誘導体の製造方法に関する。
【0002】
【従来の技術】
1−置換−2−プロパノール誘導体の製造方法としては従来、1−ハロゲノ−2−プロパノールの製造方法として(1)エピクロロヒドリンのラネーニッケル存在下における接触水素添加(S.Searles and C.F.Butler, J.Amer.Chem.Soc., 76 (1954) 56)、(2)エピクロロヒドリンの水素化リチウムアルミニウムによる還元(E.L.Eliel and M.N.Rerick, J.Amer.Chem.Soc., 82 (1960) 1362)、(3)エピクロロヒドリンのアルミニウム−ニッケル触媒による還元(B.K.Sarmah and N.C.Barua, Tetrahedron, 47 (1991) 8587)、(4)クロロアセトンの還元(C.A.Stewart and A.VanderWerf, J.Amer.Chem.Soc., 76 (1954) 1259)が知られており、光学活性体の1−ハロゲノ−2−プロパノール製造法としては、(5)酵母による不斉還元(T.Sakai, et.al., Bull.Chem.Soc.Jpn., 65 (1992) 631)、(6)酵素によるラセミ体の分割(特開昭63−169996)が知られている。
また、1−スルホニルオキシ−2−プロパノールの製造法としては、(7)グリシジルスルホニルオキシのBH3・THF−NaBH4還元による方法 (J. M. Klunder, T. Onami, and K. B. Sharpless, J.Org.Chem., 54 (1989) 1295) が知られている。
【0003】
【発明が解決しようとする課題】
医薬および農薬などの合成中間体であるプロピレンオキサイドは、大変有用な化合物である。しかしながら、プロピレンオキサイドは沸点が 34 ℃ と低いため、取り扱いが難しい。このため、容易に入手しうる化合物を原料とし、且つ経済的に安価な方法によってプロピレンオキサイドに容易に変換できる合成等価体として有用な化合物である1−置換−2−プロパノール誘導体を得る方法が望まれていた。しかしながら、1−ハロゲノ−2−プロパノールを得る(1)の方法では、収率が15.1%と低く、しかも副生成物として、3−ハロゲノ−1−プロパノールが生成し、精製が困難である。また反応条件も120℃、90気圧と過酷なものであった。(2)の方法では、還元剤として工業的に操作しにくく、且つ高価な水素化リチウムアルミニウムを用いなければならない。(3)の方法では、試薬を加えると激しい発熱反応が起こり、反応温度の制御が難しい。(4)の方法では、水素化ホウ素ナトリウムおよび水素化アルミニウムリチウムのどちらを用いた場合でも収率は32%、44%と低い等の問題点があった。また光学活性体の1−ハロゲノ−2−プロパノールを得る(5)および(6)の方法では、いずれか一方の光学活性体しか得られない。更に1−スルホニルオキシ−2−プロパノールを得る(7)の方法では、還元剤として高価なボラン錯体および水素化ホウ素ナトリウムを用いなければならないなどの問題点があった。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決しようとして研究を重ねた結果、上記式(1)または(3)で表されるグリシジル化合物を接触水素添加して、目的とする1−置換−2−プロパノール誘導体を有利に製造する方法を見出し、本発明を完成した。
【0009】
【発明の実施の形態】
本発明は式(3)で表されるグリシジル化合物を、有機溶媒中、弱塩基存在下に、パラジウム炭素触媒存在下で接触水素添加する事を特徴とする式(4)で表される1−置換−2−プロパノール誘導体の製造方法である。
【0010】
【化7】

Figure 0003799716
【0011】
【化8】
Figure 0003799716
【0012】
(式(3)、式(4)においてYはハロゲン原子、または、RSO2−Oで示されるスルホニルオキシ基を表し、さらにRは置換もしくは無置換の炭素数1〜4のアルキル基または置換もしくは無置換のアリール基を表す。)
【0013】
また本発明によれば、原料に光学活性体のグリシジル化合物を用いることにより、光学活性体の1−置換−2−プロパノール誘導体を得ることもできる。
【0014】
前記式(3)で表されるグリシジル化合物は、どのような方法によって得られてもよいが、特に光学活性体を用いる場合には、本出願人により先に出願された特開平6−211822あるいは特開平7−165743の方法に準じて容易に入手することができる。
【0015】
グリシジル化合物としてエピハロヒドリンを用いる場合は、エピクロルヒドリンまたはエピブロモヒドリンが好ましく使用でき、またグリシジルスルホネートを用いる場合は、スルホニルオキシ基が置換もしくは無置換の炭素数1〜4のアルキルスルホニルオキシ基または置換もしくは無置換のアリールスルホニルオキシ基であれば特に問題はなく、アルキルスルホニルオキシ基としては、例えばメタンスルホニルオキシ基、エタンスルホニルオキシ基、プロパンスルホニルオキシ基、イソプロパンスルホニルオキシ基、ブタンスルホニルオキシ基、イソブタンスルホニルオキシ基、t−ブタンスルホニルオキシ基、トリフルオロメタンスルホニルオキシ基等があげられ、またアリールスルホニルオキシ基としては例えばベンゼンスルホニルオキシ基、パラトルエンスルホニルオキシ基、メタトルエンスルホニルオキシ基、パラニトロベンゼンスルホニルオキシ基、メタニトロベンゼンスルホニルオキシ基、パラメトキシベンゼンスルホニルオキシ基、パラクロロベンゼンスルホニルオキシ基、メタクロロベンゼンスルホニルオキシ基、2,6−ジメチルベンゼンスルホニルオキシ基、2,4−ジメチルベンゼンスルホニルオキシ基、3,5−ジニトロベンゼンスルホニルオキシ基等があげられるが、好ましくはメタンスルホニルオキシ基、パラトルエンスルホニルオキシ基、メタニトロベンゼンスルホニルオキシ基である。
【0016】
反応に用いられる有機溶媒としては、アルコール系、エステル系、ハロゲン系の溶媒が使用できるが、好ましくはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール等のアルコール系溶媒または、酢酸メチル、酢酸エチル、酢酸プロピル、酢酸イソプロピル、酢酸ブチル、酢酸イソブチル、酢酸tーブチル等のエステル系溶媒であり、特にメタノール、エタノール、プロパノール、イソプロパノール、酢酸エチルを使用することが好ましい。
【0017】
本発明はグリシジル化合物を有機溶媒中、パラジウム炭素触媒存在下で接触水素添加に付すわけであるが、特にパラジウムの含量が1〜50重量%であるパラジウム炭素、更に好ましくはパラジウムの含量が3〜15重量%のものを使用することが好ましい。触媒の使用量は原料のグリシジル化合物1モル当たり0.1〜100grであり、好ましくは1〜50grである。
【0018】
接触水素添加する際の水素源としては水素ガスまたは蟻酸アンモニウムが使用できるが、蟻酸アンモニウムの場合、反応後、過剰の蟻酸アンモニウムの除去が繁雑な工程となるため、水素ガスを用いるほうがより好ましい。用いられる水素源の量は、理論的にはグリシジル化合物に対して1倍モルであるが、水素ガスの場合は反応の進行状況により随時際限なく加えることができるが、蟻酸アンモニウムの場合は固形物であるためグリシジル化合物に対してに対して10倍モル程度までであり、10倍モルをこえて加えても経済的でない。
【0019】
本発明の反応は、特に弱塩基を加えなくても進行するが、弱塩基を添加することにより、副生成物の生成が抑えられるので好ましい。反応に用いられる弱塩基としては、無機、有機の弱塩基が使用できるが、無機弱塩基としてはアルカリもしくはアルカリ土類金属の炭酸塩または炭酸水素塩等の無機弱塩基、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸水素マグネシウム、炭酸水素カルシウム等が挙げられる。
また有機弱塩基としては、炭素数1〜6のアルキル基を有するトリアルキルアミン、例えばトリメチルアミン、トリエチルアミン、エチルジイソプロピアミン、N,N−ジメチルエチルアミン,N,N−ジメチルプロピルアミン,N,N−ジエチルイソプロピルアミン、N,N−ジエチルシクロヘキシルアミン、N−メチルジシクロヘキシルアミン等、炭素数1〜4のアルキル置換基を有するアニリン誘導体、例えばN,N−ジメチルアニリン、N,N−ジエチルアニリン、N,N−ジプロピルアニリン、N,N−ジイソプロピルアニリン、N,N−ジブチルアニリン、N,N−ジイソブチルアニリン、N,N−ジtーブチルアニリン、N−メチル−N−エチルアニリン、N−メチル−N−プロピルアニリン、N−メチル−N−イソプロピルアニリン、N−メチル−N−ブチルアニリン、N−メチル−N−イソブチルアニリン、N−メチル−N−tーブチルアニリン、N−エチル−N−プロピルアニリン、N−エチル−N−イソプロピルアニリン、N−エチル−N−ブチルアニリン、N−エチル−N−イソブチルアニリン、N−エチル−N−tーブチルアニリン、N−プロピル−N−ブチルアニリン、N−プロピル−N−イソブチルアニリン、N−プロピル−N−tーブチルアニリン、N−イソプロピル−N−ブチルアニリン、N−イソプロピル−N−イソブチルアニリン等、炭素数1〜4のアルキルで置換した3級アミンを有する含窒素飽和複素環化合物、例えばN−メチルピロリジン、N−エチルピロリジン、N−ブチルピロリジン、N−メチルピペリジン、N−エチルピペリジン、N−メチルモルホリン、N−エチルモルホリン等、炭素数1〜4のアルキル置換基を有していても良いピリジン誘導体例えば、ピリジン、2,3−ジメチルピリジン、2,4−ジメチルピリジン、2,5−ジメチルピリジン、2,6−ジメチルピリジン、3,4−ジメチルピリジン、3,5−ジメチルピリジン、ピラジン、2,3−ジメチルピラジン、2,5−ジメチルピラジン、2,6−ジメチルピラジン等のピリジン誘導体が挙げられるが、好ましくはアルカリまたはアルカリ土類金属の炭酸塩または炭酸水素塩であり、更に好ましくはアルカリ金属の炭酸塩である。
【0020】
反応に用いられる弱塩基の量は、原料のグリシジル化合物1モルに対し、0.01 モル〜10モルが好ましい。0.01 モルより少ないと副生成物が生成するため、収率が低下し、10モルより多いとコストの増加につながり好ましくない。また、塩基として水酸化物等の強塩基を用いるとプロピレンオキサイドを生成するため好ましくない。
【0021】
反応終了後は触媒等の不溶物を濾去、過剰の溶媒を減圧下に留去し、得られた残渣を蒸留、カラムクロマトグラフィー、再結晶等の通常の処理をすることにより、目的とする1−置換−2−プロパノール誘導体が得られる。
【0022】
原料として光学活性体のグリシジル化合物を用いて反応を行った場合は、光学純度がほとんど低下することなく光学活性1−置換−2−プロパノール誘導体が得られる。
【0023】
【実施例】
次に、実施例、比較例により本発明を具体的に説明するが、本発明はこれらの実施例に制限されるものではない。
比較例1:1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)31.0g存在下、エピクロロヒドリン72.3g(0.78モル)の酢酸エチル(250ml)溶液のフラスコ内を水素置換して撹拌した。室温にて36時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、蒸留して標題の1−クロロ−2−プロパノール60.5g(収率82%)を得た。
【0024】
比較例2:(S)−1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)15.6g存在下、(S)−エピクロロヒドリン36.2g(0.39モル、光学純度99.0%ee)の酢酸エチル(250ml)溶液のフラスコ内を水素置換して撹拌した。室温にて38時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、蒸留して標題の(S)−1−クロロ−2−プロパノール30.6g(収率83%、光学純度98.7%ee)を得た。
【0025】
比較例3:(R)−1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)30.8g存在下、(R)−エピクロロヒドリン68g(0.74モル、光学純度99.0%ee)のメタノール(500ml)溶液のフラスコ内を水素置換して撹拌した。室温にて38時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、蒸留して標題の(R)−1−クロロ−2−プロパノール26.5g(収率72%、光学純度98.4%)を得た。
【0026】
比較例4:(R)−1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)14.8g存在下、(R)−エピクロロヒドリン34g(0.37モル、光学純度99.0%ee)のメタノール(250ml)溶液に蟻酸アンモニウム35.3g(0.56モル)を加えて撹拌した。室温にて41時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、アセトン50mlを加えて塩を析出させた。濾去した後、濾液を減圧下で濃縮し、残渣を蒸留して標題の(R)−1−クロロ−2−プロパノール19.2g(収率52%、光学純度97.7%)を得た。
【0027】
比較例5:(S)−1−ブロモ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)1.48g存在下、(R)−エピブロモヒドリン5g(0.037モル、光学純度99.0%ee)のメタノール(25ml)溶液のフラスコ内を水素置換して撹拌した。室温にて26時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した後、蒸留して標題の(S)−1−ブロモ−2−プロパノール4.1g(収率80%、光学純度98.4%)を得た。
【0028】
実施例1:(S)−1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)3.1g存在下、(S)−エピクロロヒドリン7.2g(0.078モル、光学純度99.0%ee)の酢酸エチル(50ml)溶液に炭酸カリウム1.1g(7.8mmol)を加え、フラスコ内を水素置換して撹拌した。室温にて31時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、蒸留して標題の(S)−1−クロロ−2−プロパノール6.6g(収率90%、光学純度98.7%ee)を得た。
【0029】
実施例2:(S)−1−クロロ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)3.1g存在下、(S)−エピクロロヒドリン7.2g(0.078モル、光学純度99.0%ee)の酢酸エチル(50ml)溶液に炭酸水素ナトリウム1.3g(15.6mmol)を加え、フラスコ内を水素置換して撹拌した。室温にて34時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した後、蒸留して標題の(S)−1−クロロ−2−プロパノール6.4g(収率87%、光学純度98.6%ee)を得た。
【0030】
比較例6:(R)−1−パラトルエンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.088g存在下、(R)−グリシジルトシレート1g(0.004モル、光学純度98.6%ee)の酢酸エチル(10ml)溶液のフラスコ内を水素置換して撹拌した。室温にて4時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(R)−1−パラトルエンスルホニルオキシ−2−プロパノール0.75g(収率81%、光学純度98.5%ee)を得た。
【0031】
比較例7:(R)−1−パラトルエンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.88g存在下、(R)−グリシジルトシレート5g(0.022モル、光学純度98.6%ee)のイソプロピルアルコール(25ml)溶液のフラスコ内を水素置換して撹拌した。室温にて8時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(R)−1−パラトルエンスルホニルオキシ−2−プロパノール3.75g(収率74%、光学純度98.3%ee)を得た。
【0032】
比較例8:(S)−1−メタニトロベンゼンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.088g存在下、(S)−グリシルノシレート1g(0.004モル、光学純度98.9%ee)の酢酸エチル(10ml)溶液のフラスコ内を水素置換して撹拌した。室温にて5時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(S)−1−メタニトロベンゼンスルホニルオキシ−2−プロパノール0.77g(収率74%、光学純度98.7%ee)を得た。
【0033】
実施例3:(R)−1−パラトルエンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.88g存在下、(R)−グリシジルトシレート5g(0.022モル、光学純度98.6%ee)の酢酸エチル(30ml)溶液に炭酸カリウム0.3g(2.2mmol)を加え、フラスコ内を水素置換して撹拌した。室温にて9時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(R)−1−パラトルエンスルホネートオキシ−2−プロパノール4.56g(収率90%、光学純度98.5%)を得た。
【0034】
実施例4:1−パラトルエンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.88g存在下、グリシジルトシレート5g(0.022モル)の酢酸エチル(30ml)溶液に炭酸カリウム0.3g(2.2mmol)を加え、フラスコ内を水素置換して撹拌した。室温にて9時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の1−パラトルエンスルホニルオキシ−2−プロパノール4.58g(収率90%)を得た。
【0035】
実施例5:(R)−1−パラトルエンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.88g存在下、(R)−グリシジルトシレート5g(0.022モル、光学純度98.6%ee)の酢酸エチル(30ml)溶液に炭酸水素ナトリウム0.37g(4.4mmol)を加え、フラスコ内を水素置換して撹拌した。室温にて10時間撹拌した後、不溶物を濾去し、濾液を40℃と減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(R)1−パラトルエンスルホニルオキシ−2−プロパノール4.41g(収率87%、光学純度98.5%ee)を得た。
【0036】
実施例6:(S)−1−メタニトロベンゼンスルホニルオキシ−2−プロパノールの製造
10%パラジウム炭素(50%wet品)0.088g存在下、(S)−グリシルノシレート1g(0.004モル、光学純度98.9%ee)の酢酸エチル(10ml)溶液に炭酸カリウム0.05g(0.36mmol)を加えフラスコ内を水素置換して撹拌した。室温にて6時間撹拌した後、不溶物を濾去し、濾液を40℃減圧下(5−10mmHg)で濃縮した。残渣をカラムクロマトグラフィーにより精製を行い、標題の(S)−1−メタニトロベンゼンスルホニルオキシ−2−プロパノール0.84g(収率81%、光学純度98.7%ee)を得た。
【0037】
【発明の効果】
本発明によれば、1−置換−2−プロパノール誘導体のラセミ体または光学活性体を高純度、高収率かつ経済的に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a 1-substituted-2-propanol derivative, which is a useful compound as a synthetic intermediate that can be easily converted into propylene oxide, and a synthetic intermediate such as pharmaceuticals and agricultural chemicals.
[0002]
[Prior art]
Conventional methods for producing 1-substituted-2-propanol derivatives include (1) catalytic hydrogenation of epichlorohydrin in the presence of Raney nickel (S. Seales and CF Butler, J. Amer. Chem. Soc., 76 (1954) 56), (2) Reduction of epichlorohydrin with lithium aluminum hydride (ELEliel and MNRerick, J. Amer. Chem. Soc., 82 (1960) 1362), ( 3) Reduction of epichlorohydrin with an aluminum-nickel catalyst (BKSarmah and NC Barua, Tetrahedron, 47 (1991) 8587), (4) Reduction of chloroacetone (CAStewart and A. Vander Werf, J. Amer. Chem. Soc., 76 (1954) 1259) is known, and as a method for producing 1-halogeno-2-propanol of an optically active substance, (5) asymmetric reduction with yeast (T. Sakai, et.al., Bull. Chem. Soc. Jpn., 65 (1992) 631), (6) Resolution of racemate by enzyme 69 996) is known.
In addition, as a method for producing 1-sulfonyloxy-2-propanol, (7) a method of reducing glycidylsulfonyloxy by BH 3 · THF-NaBH 4 (JM Klunder, T. Onami, and KB Sharpless, J. Org. Chem. ., 54 (1989) 1295) are known.
[0003]
[Problems to be solved by the invention]
Propylene oxide, which is a synthetic intermediate for pharmaceuticals and agricultural chemicals, is a very useful compound. However, propylene oxide has a low boiling point of 34 ° C and is difficult to handle. Therefore, a method for obtaining a 1-substituted-2-propanol derivative, which is a compound useful as a synthetic equivalent that can be easily converted into propylene oxide by an economically inexpensive method using a readily available compound as a raw material, is desired. It was rare. However, in the method (1) for obtaining 1-halogeno-2-propanol, the yield is as low as 15.1%, and 3-halogeno-1-propanol is produced as a by-product, which is difficult to purify. . Also, the reaction conditions were as severe as 120 ° C. and 90 atm. In the method (2), it is difficult to industrially operate as a reducing agent, and expensive lithium aluminum hydride must be used. In the method (3), when a reagent is added, a vigorous exothermic reaction occurs and it is difficult to control the reaction temperature. In the method (4), there is a problem that the yield is as low as 32% or 44% when either sodium borohydride or lithium aluminum hydride is used. In addition, in the methods (5) and (6) for obtaining 1-halogeno-2-propanol as an optically active substance, only one of the optically active substances can be obtained. Further, the method (7) for obtaining 1-sulfonyloxy-2-propanol has a problem that an expensive borane complex and sodium borohydride must be used as a reducing agent.
[0004]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, the inventors of the present invention catalytically hydrogenated the glycidyl compound represented by the above formula (1) or (3) to obtain the target 1-substituted-2- A method for producing a propanol derivative advantageously was found and the present invention was completed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention , the glycidyl compound represented by the formula (3) is catalytically hydrogenated in the presence of a palladium carbon catalyst in the presence of a weak base in an organic solvent. It is a manufacturing method of substituted-2-propanol derivative.
[0010]
[Chemical 7]
Figure 0003799716
[0011]
[Chemical 8]
Figure 0003799716
[0012]
(Equation (3), Equation (4) Y is a halogen atom, or a sulfonyloxy group represented by RSO 2 -O, further R is an alkyl group having a substituted or unsubstituted 1 to 4 carbon atoms or a substituted or Represents an unsubstituted aryl group.)
[0013]
According to the present invention, an optically active 1-substituted-2-propanol derivative can also be obtained by using an optically active glycidyl compound as a raw material.
[0014]
The glycidyl compound represented by the formula (3) may be obtained by any method, but particularly when an optically active substance is used, Japanese Patent Application Laid-Open No. 6-211182 previously filed by the present applicant or It can be easily obtained according to the method of JP-A-7-165743.
[0015]
When epihalohydrin is used as the glycidyl compound, epichlorohydrin or epibromohydrin can be preferably used. When glycidyl sulfonate is used, the sulfonyloxy group is a substituted or unsubstituted alkylsulfonyloxy group having 1 to 4 carbon atoms or a substituted or unsubstituted sulfonyl group. There is no particular problem as long as it is an unsubstituted arylsulfonyloxy group. Examples of the alkylsulfonyloxy group include methanesulfonyloxy group, ethanesulfonyloxy group, propanesulfonyloxy group, isopropanesulfonyloxy group, butanesulfonyloxy group, isobutane. Examples include a sulfonyloxy group, a t-butanesulfonyloxy group, a trifluoromethanesulfonyloxy group, and the arylsulfonyloxy group includes, for example, benzenesulfonyl Xyl group, paratoluenesulfonyloxy group, metatoluenesulfonyloxy group, paranitrobenzenesulfonyloxy group, metanitrobenzenesulfonyloxy group, paramethoxybenzenesulfonyloxy group, parachlorobenzenesulfonyloxy group, metachlorobenzenesulfonyloxy group, 2,6- Examples thereof include dimethylbenzenesulfonyloxy group, 2,4-dimethylbenzenesulfonyloxy group, 3,5-dinitrobenzenesulfonyloxy group, etc., preferably methanesulfonyloxy group, paratoluenesulfonyloxy group, metanitrobenzenesulfonyloxy group. is there.
[0016]
As the organic solvent used in the reaction, alcohol solvents, ester solvents and halogen solvents can be used, but alcohol solvents such as methanol, ethanol, propanol, isopropanol, butanol and isobutanol, or methyl acetate and ethyl acetate are preferred. Ester solvents such as propyl acetate, isopropyl acetate, butyl acetate, isobutyl acetate and t-butyl acetate, and methanol, ethanol, propanol, isopropanol and ethyl acetate are particularly preferred.
[0017]
In the present invention, the glycidyl compound is subjected to catalytic hydrogenation in an organic solvent in the presence of a palladium carbon catalyst. In particular, palladium carbon having a palladium content of 1 to 50% by weight, more preferably a palladium content of 3 to 3%. It is preferable to use 15% by weight. The amount of the catalyst used is 0.1 to 100 gr, preferably 1 to 50 gr, per mol of the starting glycidyl compound.
[0018]
Hydrogen gas or ammonium formate can be used as the hydrogen source for the catalytic hydrogenation. However, in the case of ammonium formate, it is more preferable to use hydrogen gas because the removal of excess ammonium formate is a complicated process after the reaction. The amount of the hydrogen source used is theoretically 1 mol per mol of the glycidyl compound, but in the case of hydrogen gas, it can be added indefinitely depending on the progress of the reaction, but in the case of ammonium formate, it is a solid substance. Therefore, it is up to about 10-fold mol with respect to the glycidyl compound, and adding over 10-fold mol is not economical.
[0019]
The reaction of the present invention proceeds without particularly adding a weak base, but the addition of a weak base is preferable because generation of by-products can be suppressed. As the weak base used in the reaction, an inorganic or organic weak base can be used, but as the inorganic weak base, an inorganic weak base such as alkali or alkaline earth metal carbonate or hydrogen carbonate, for example, lithium carbonate, carbonate Sodium, potassium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, magnesium carbonate, calcium carbonate, magnesium hydrogen carbonate, calcium hydrogen carbonate and the like can be mentioned.
Examples of the weak organic base include trialkylamines having an alkyl group having 1 to 6 carbon atoms such as trimethylamine, triethylamine, ethyldiisopropylamine, N, N-dimethylethylamine, N, N-dimethylpropylamine, N, N- Aniline derivatives having an alkyl substituent having 1 to 4 carbon atoms such as diethylisopropylamine, N, N-diethylcyclohexylamine, N-methyldicyclohexylamine, such as N, N-dimethylaniline, N, N-diethylaniline, N, N-dipropylaniline, N, N-diisopropylaniline, N, N-dibutylaniline, N, N-diisobutylaniline, N, N-di-t-butylaniline, N-methyl-N-ethylaniline, N-methyl-N- Propylaniline, N-methyl-N-isopropyl Niline, N-methyl-N-butylaniline, N-methyl-N-isobutylaniline, N-methyl-N-t-butylaniline, N-ethyl-N-propylaniline, N-ethyl-N-isopropylaniline, N-ethyl -N-butylaniline, N-ethyl-N-isobutylaniline, N-ethyl-N-t-butylaniline, N-propyl-N-butylaniline, N-propyl-N-isobutylaniline, N-propyl-N-t-butylaniline N-isopropyl-N-butylaniline, N-isopropyl-N-isobutylaniline and the like, nitrogen-containing saturated heterocyclic compounds having a tertiary amine substituted with alkyl having 1 to 4 carbon atoms, such as N-methylpyrrolidine, N- Ethylpyrrolidine, N-butylpyrrolidine, N-methylpiperidine, N-ethylpiperidine Pyridine derivatives optionally having an alkyl substituent having 1 to 4 carbon atoms, such as pyridine, 2,3-dimethylpyridine, 2,4-dimethylpyridine, 2, N-methylmorpholine, N-ethylmorpholine, etc. , 5-dimethylpyridine, 2,6-dimethylpyridine, 3,4-dimethylpyridine, 3,5-dimethylpyridine, pyrazine, 2,3-dimethylpyrazine, 2,5-dimethylpyrazine, 2,6-dimethylpyrazine, etc. The pyridine derivative is preferably an alkali or alkaline earth metal carbonate or hydrogen carbonate, and more preferably an alkali metal carbonate.
[0020]
The amount of the weak base used in the reaction is preferably 0.01 mol to 10 mol with respect to 1 mol of the starting glycidyl compound. If the amount is less than 0.01 mol, a by-product is generated, and thus the yield is lowered. Further, if a strong base such as a hydroxide is used as the base, propylene oxide is generated, which is not preferable.
[0021]
After completion of the reaction, insoluble matter such as catalyst is filtered off, excess solvent is distilled off under reduced pressure, and the resulting residue is subjected to usual treatments such as distillation, column chromatography, recrystallization, etc. A 1-substituted-2-propanol derivative is obtained.
[0022]
When the reaction is carried out using an optically active glycidyl compound as a raw material, an optically active 1-substituted-2-propanol derivative can be obtained with almost no decrease in optical purity.
[0023]
【Example】
EXAMPLES Next, although an Example and a comparative example demonstrate this invention concretely, this invention is not restrict | limited to these Examples.
Comparative Example 1 : Production of 1-chloro-2-propanol A solution of 72.3 g (0.78 mol) of epichlorohydrin in ethyl acetate (250 ml) in the presence of 31.0 g of 10% palladium carbon (50% wet product). The flask was purged with hydrogen and stirred. After stirring at room temperature for 36 hours, the insoluble material was removed by filtration, the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg), and distilled to obtain 60.5 g of the title 1-chloro-2-propanol (yield). 82%).
[0024]
Comparative Example 2 : Production of (S) -1-chloro-2-propanol 36.2 g (0.39 mol) of (S) -epichlorohydrin in the presence of 15.6 g of 10% palladium carbon (50% wet product) The flask in an ethyl acetate (250 ml) solution with an optical purity of 99.0% ee) was purged with hydrogen and stirred. After stirring at room temperature for 38 hours, the insoluble material was removed by filtration, the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg), and then distilled to give the title (S) -1-chloro-2-propanol 30. 6 g (yield 83%, optical purity 98.7% ee) was obtained.
[0025]
Comparative Example 3 Production of (R) -1-chloro-2-propanol 68 g (0.74 mol, optical purity) of (R) -epichlorohydrin in the presence of 30.8 g of 10% palladium carbon (50% wet product) The flask in a 99.0% ee) methanol (500 ml) solution was purged with hydrogen and stirred. After stirring at room temperature for 38 hours, the insoluble material was removed by filtration, the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg), and distilled to give the title (R) -1-chloro-2-propanol 26. 5 g (yield 72%, optical purity 98.4%) was obtained.
[0026]
Comparative Example 4 : Production of (R) -1-chloro-2-propanol In the presence of 14.8 g of 10% palladium carbon (50% wet product), 34 g (0.37 mol, optical purity) of (R) -epichlorohydrin To a solution of 99.0% ee) in methanol (250 ml), 35.3 g (0.56 mol) of ammonium formate was added and stirred. After stirring at room temperature for 41 hours, insoluble matters were removed by filtration, and the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg), and then 50 ml of acetone was added to precipitate a salt. After filtration, the filtrate was concentrated under reduced pressure, and the residue was distilled to obtain 19.2 g of the title (R) -1-chloro-2-propanol (52% yield, optical purity 97.7%). .
[0027]
Comparative Example 5 : Production of (S) -1-bromo-2-propanol In the presence of 1.48 g of 10% palladium carbon (50% wet product), 5 g (0.037 mol, optical purity) of (R) -epibromohydrin The flask in a methanol (25 ml) solution of 99.0% ee) was purged with hydrogen and stirred. After stirring at room temperature for 26 hours, the insoluble material was removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg) and then distilled to give the title (S) -1-bromo-2-propanol 4 0.1 g (yield 80%, optical purity 98.4%) was obtained.
[0028]
Example 1 : Production of (S) -1-chloro-2-propanol In the presence of 3.1 g of 10% palladium carbon (50% wet product), 7.2 g (0.078 mol, 0.078 mol, (S) -epichlorohydrin was present. To a solution of optical purity 99.0% ee) in ethyl acetate (50 ml) was added 1.1 g (7.8 mmol) of potassium carbonate, and the flask was purged with hydrogen and stirred. After stirring at room temperature for 31 hours, the insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure (5-10 mmHg) at 40 ° C. and distilled to give the title (S) -1-chloro-2-propanol. 6 g (yield 90%, optical purity 98.7% ee) was obtained.
[0029]
Example 2 : Production of (S) -1-chloro-2-propanol In the presence of 3.1 g of 10% palladium on carbon (50% wet product), 7.2 g (0.078 mol, 0.078 mol, (S) -epichlorohydrin was present. To a solution of optical purity 99.0% ee) in ethyl acetate (50 ml) was added sodium hydrogen carbonate 1.3 g (15.6 mmol), and the flask was purged with hydrogen and stirred. After stirring at room temperature for 34 hours, the insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg) and then distilled to give the title (S) -1-chloro-2-propanol. 4 g (yield 87%, optical purity 98.6% ee) was obtained.
[0030]
Comparative Example 6 : Production of (R) -1-paratoluenesulfonyloxy-2-propanol In the presence of 0.088 g of 10% palladium on carbon (50% wet product), 1 g of (R) -glycidyl tosylate (0.004 mol, The flask in an ethyl acetate (10 ml) solution having an optical purity of 98.6% ee) was purged with hydrogen and stirred. After stirring at room temperature for 4 hours, insolubles were removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg). The residue was purified by column chromatography to obtain 0.75 g (yield 81%, optical purity 98.5% ee) of the title (R) -1-paratoluenesulfonyloxy-2-propanol.
[0031]
Comparative Example 7 : Production of (R) -1-paratoluenesulfonyloxy-2-propanol In the presence of 0.88 g of 10% palladium carbon (50% wet product), 5 g (0.022 mol) of (R) -glycidyl tosylate The flask in an isopropyl alcohol (25 ml) solution having an optical purity of 98.6% ee) was purged with hydrogen and stirred. After stirring at room temperature for 8 hours, the insoluble material was removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg). The residue was purified by column chromatography to obtain 3.75 g (yield 74%, optical purity 98.3% ee) of the title (R) -1-paratoluenesulfonyloxy-2-propanol.
[0032]
Comparative Example 8 : Production of (S) -1-metanitrobenzenesulfonyloxy-2-propanol In the presence of 0.088 g of 10% palladium carbon (50% wet product), 1 g (0.004 mol) of (S) -glycylnosylate In a flask of an ethyl acetate (10 ml) solution having an optical purity of 98.9% ee) was replaced with hydrogen and stirred. After stirring at room temperature for 5 hours, insolubles were removed by filtration, and the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg). The residue was purified by column chromatography to obtain 0.77 g (yield 74%, optical purity 98.7% ee) of the title (S) -1-metanitrobenzenesulfonyloxy-2-propanol.
[0033]
Example 3 Production of (R) -1-paratoluenesulfonyloxy-2-propanol In the presence of 0.88 g of 10% palladium carbon (50% wet product), 5 g of (R) -glycidyl tosylate (0.022 mol, To a solution of optical purity 98.6% ee) in ethyl acetate (30 ml) was added 0.3 g (2.2 mmol) of potassium carbonate, and the flask was purged with hydrogen and stirred. After stirring at room temperature for 9 hours, insoluble matters were removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg). The residue was purified by column chromatography to obtain 4.56 g (yield 90%, optical purity 98.5%) of the title (R) -1-paratoluenesulfonate oxy-2-propanol.
[0034]
Example 4 Production of 1-paratoluenesulfonyloxy-2-propanol In the presence of 0.88 g of 10% palladium carbon (50% wet product), a solution of 5 g (0.022 mol) of glycidyl tosylate in a solution of ethyl acetate (30 ml) 0.3 g (2.2 mmol) of potassium carbonate was added, and the inside of the flask was replaced with hydrogen and stirred. After stirring at room temperature for 9 hours, insoluble matters were removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg). The residue was purified by column chromatography to obtain 4.58 g (yield 90%) of the title 1-paratoluenesulfonyloxy-2-propanol.
[0035]
Example 5 : Preparation of (R) -1-paratoluenesulfonyloxy-2-propanol In the presence of 0.88 g of 10% palladium carbon (50% wet product), 5 g of (R) -glycidyl tosylate (0.022 mol, To a solution of optical purity 98.6% ee) in ethyl acetate (30 ml) was added sodium bicarbonate 0.37 g (4.4 mmol), and the flask was purged with hydrogen and stirred. After stirring at room temperature for 10 hours, the insoluble material was removed by filtration, and the filtrate was concentrated at 40 ° C. under reduced pressure (5-10 mmHg). The residue was purified by column chromatography to obtain 4.41 g (yield 87%, optical purity 98.5% ee) of the title (R) 1-paratoluenesulfonyloxy-2-propanol.
[0036]
Example 6 : Preparation of (S) -1-metanitrobenzenesulfonyloxy-2-propanol In the presence of 0.088 g of 10% palladium carbon (50% wet product), 1 g (0.004 mol) of (S) -glycylnosylate. In addition, 0.05 g (0.36 mmol) of potassium carbonate was added to an ethyl acetate (10 ml) solution having an optical purity of 98.9% ee), and the flask was purged with hydrogen and stirred. After stirring at room temperature for 6 hours, insolubles were removed by filtration, and the filtrate was concentrated under reduced pressure at 40 ° C. (5-10 mmHg). The residue was purified by column chromatography to obtain 0.84 g (yield 81%, optical purity 98.7% ee) of the title (S) -1-metanitrobenzenesulfonyloxy-2-propanol.
[0037]
【The invention's effect】
According to the present invention, a racemic or optically active form of a 1-substituted-2-propanol derivative can be produced with high purity, high yield and economically.

Claims (10)

式(3)で表されるグリシジル化合物を有機溶媒中、弱塩基存在下に、パラジウム炭素触媒存在下で、接触水素添加する事を特徴とする式(4)で表される1−置換−2−プロパノール誘導体の製造方法。
Figure 0003799716
Figure 0003799716
(式(3)、式(4)においてはYはハロゲン原子、または、RSO−Oで示されるスルホニルオキシ基を表し、さらにRは置換もしくは無置換の炭素数1〜4のアルキル基または置換もしくは無置換のアリール基を表す。)
1-Substitution-2 represented by the formula (4), wherein the glycidyl compound represented by the formula (3) is catalytically hydrogenated in an organic solvent in the presence of a weak base in the presence of a palladium carbon catalyst. -Production method of propanol derivative.
Figure 0003799716
Figure 0003799716
(Equation (3), Y is a halogen atom in the formula (4), or represents a sulfonyloxy group represented by RSO 2 -O, further R is alkyl group or substituted 1 to 4 carbon atoms substituted or unsubstituted Alternatively, it represents an unsubstituted aryl group.)
Yがハロゲン原子である請求項に記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to claim 1 , wherein Y is a halogen atom. ハロゲン原子が、塩素原子または臭素原子である請求項記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to claim 2 , wherein the halogen atom is a chlorine atom or a bromine atom. Yがスルホニルオキシ基である請求項に記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to claim 1 , wherein Y is a sulfonyloxy group. スルホニルオキシ基が、パラトルエンスルホニルオキシ基、メタニトロベンゼンスルホニルオキシ基、または、メタンスルホニルオキシ基である請求項に記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to claim 4 , wherein the sulfonyloxy group is a paratoluenesulfonyloxy group, a metanitrobenzenesulfonyloxy group, or a methanesulfonyloxy group. 溶媒がエステル系溶媒またはアルコール系溶媒である請求項1〜5のいずれかに記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to any one of claims 1 to 5 , wherein the solvent is an ester solvent or an alcohol solvent. 溶媒がメタノール、エタノール、プロパノール、イソプロパノール、または酢酸エチルである請求項に記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to claim 6 , wherein the solvent is methanol, ethanol, propanol, isopropanol, or ethyl acetate. 接触水素添加の水素源が水素ガスである請求項1〜7のいずれかに記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to any one of claims 1 to 7 , wherein a hydrogen source for catalytic hydrogenation is hydrogen gas. 弱塩基がアルカリもしくはアルカリ土類金属の炭酸塩、または炭酸水素塩である請求項1〜8のいずれかに記載の1−置換−2−プロパノール誘導体の製造方法。The method for producing a 1-substituted-2-propanol derivative according to any one of claims 1 to 8, wherein the weak base is an alkali or alkaline earth metal carbonate or hydrogen carbonate. グリシジル化合物が光学活性体である請求項1〜9のいずれかに記載の光学活性1−置換−2−プロパノール誘導体の製造方法。The method for producing an optically active 1-substituted-2-propanol derivative according to any one of claims 1 to 9 , wherein the glycidyl compound is an optically active substance.
JP04189697A 1997-02-26 1997-02-26 Method for producing 2-propanol derivative Expired - Fee Related JP3799716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04189697A JP3799716B2 (en) 1997-02-26 1997-02-26 Method for producing 2-propanol derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04189697A JP3799716B2 (en) 1997-02-26 1997-02-26 Method for producing 2-propanol derivative

Publications (2)

Publication Number Publication Date
JPH10237039A JPH10237039A (en) 1998-09-08
JP3799716B2 true JP3799716B2 (en) 2006-07-19

Family

ID=12621058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04189697A Expired - Fee Related JP3799716B2 (en) 1997-02-26 1997-02-26 Method for producing 2-propanol derivative

Country Status (1)

Country Link
JP (1) JP3799716B2 (en)

Also Published As

Publication number Publication date
JPH10237039A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
KR100769381B1 (en) Catalytic asymmetric desymmetrization of meso compounds
TW201323406A (en) Process for making beta 3 agonists and intermediates
CN110759853B (en) Preparation method of (S) -N-BOC-3-hydroxy piperidine
US20210107873A1 (en) Intermediates for Optically Active Piperidine Derivatives and Preparation Methods Thereof
US7057038B2 (en) Kinetic resolutions of chiral 2- and 3-substituted carboxylic acids
Willems et al. Asymmetric ketone reduction using chiral oxazaborolidines derived from aziridine carbinols
JPWO2002051781A1 (en) Method for producing optically active halohydrin compound
JP4649645B2 (en) Process for producing optically active alcohol compounds
KR20160125115A (en) Preparation Method for 3-Hydroxytetrahydrofuran
JP3799716B2 (en) Method for producing 2-propanol derivative
US6620954B1 (en) Phosphinometallocenylamides as novel ligands for asymmetric catalysis
Banfi et al. Synthesis of new chiral phase-transfer catalysts and their application to michael additions.
JP3831954B2 (en) Process for producing 4-hydroxy-2-pyrrolidone
CN114315609A (en) Process for preparing cis-2-aminocyclohexanol
KR20130107698A (en) A PROCESS FOR PREPARING HIGH PURITY OF (s)-METOPROLOL
JP2008536484A (en) Process for the preparation of (R) -4,4-dialkoxy-pyran-3-ol such as (R) -4,4-dimethoxy-pyran-3-ol
JP3018296B2 (en) Method for producing glycidyl ether
US6639095B1 (en) Process for preparing optically active α-hydroxy acids and derivatives thereof
JP2007119418A (en) Method for producing benzyloxy nitrogen-containing cyclic compound
EP1020421A1 (en) Process for producing 1,2-propanediol
CN111635359B (en) Method for preparing aromatic alkenyl compound through fluoroalkyl sulfinyl
WO2009130056A1 (en) Process for making montelukast intermediates
JP2974181B2 (en) A new method for producing cyclobutanol
JP2006070001A (en) Chiral phase transfer catalyst with spiro skeleton, its preparation method and catalytic asymmetric reaction using the same
JPH0551341A (en) New alkoxytrifluoropropanol and its production

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees