JP3798322B2 - Oxygen-containing powder blowing method from blast furnace tuyere - Google Patents

Oxygen-containing powder blowing method from blast furnace tuyere Download PDF

Info

Publication number
JP3798322B2
JP3798322B2 JP2002036255A JP2002036255A JP3798322B2 JP 3798322 B2 JP3798322 B2 JP 3798322B2 JP 2002036255 A JP2002036255 A JP 2002036255A JP 2002036255 A JP2002036255 A JP 2002036255A JP 3798322 B2 JP3798322 B2 JP 3798322B2
Authority
JP
Japan
Prior art keywords
oxygen
powder
blowing
blast furnace
containing powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002036255A
Other languages
Japanese (ja)
Other versions
JP2003160805A (en
Inventor
守政 一田
政利 酒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002036255A priority Critical patent/JP3798322B2/en
Publication of JP2003160805A publication Critical patent/JP2003160805A/en
Application granted granted Critical
Publication of JP3798322B2 publication Critical patent/JP3798322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉等のシャフト炉型高温反応容器に含酸素粉体を吹き込むための含酸素粉体吹き込み方法に関するものである。
【0002】
【従来の技術】
製鉄用高炉は大量の銑鉄を製造でき、しかも熱効率が90%と高い。このため、現在でも銑鉄製造の主流となっている。しかし、高炉は巨大な向流移動層であるために、生産性、生産弾力性等に問題があり、安定した生産性と溶銑品質の確保のためにはより一層の制御性の向上が望まれている。
【0003】
また、高炉では鉄源コスト競争力強化の観点から、安価原燃料の多量使用や高微粉炭比高O/C操業が実施されつつある。例えば、微粉炭比で100kg/t以上の微粉炭を高炉羽口から吹き込み、且つ1チャージあたりの鉱石とコークスの装入重量比(O/C)が4.0以上であるような高微粉炭比高O/Cの操業下では、微粉炭比の増大に伴う炉内の粉率上昇やO/Cの増大に伴う融着帯の垂れ下がり等が発生し、特に高炉炉芯部の通気・通液性が低下しやすくなる。
高炉炉芯部の通気・通液性の低下は、炉床湯流れの不均一さの問題を引き起こすため、安定した高生産性操業を継続するためには、高微粉炭比高O/Cの操業時における有効な炉芯の活性化技術の確立が望まれている。
【0004】
上記高炉炉芯部の通気性,通液性が低下した場合の対策としては、従来から知られている燃料比上昇や水蒸気添加のほかにも、最近いくつかの炉芯活性化方法が開示されている。例えば、特開平6−93319号公報、特開平6−93320号公報では、高炉の休風時に複数の羽口を介して高炉炉芯部の特性を測定することにより炉芯部の状態を判定し、加熱が必要な炉芯部位の近傍にある羽口から中空パイプを挿入して、その部位のコークスをサンプリングすることにより通気孔を設ける方法がある。
【0005】
また、特開平7−268416号公報では、高炉休風時あるいは操業時に炉芯粉率を測定し、粉率が20%以上の場合に加熱が必要な部位や粉除去が必要な部位の近傍にある羽口から中空パイプを挿入して炉芯内コークスをサンプリングすることにより空洞の通気孔を設ける方法が提示されている。
【0006】
【発明が解決しようとする課題】
上記特開平6−93319号公報、特開平6−93320号公報、特開平7−268416号公報で示されている方法、すなわち羽口から炉芯内コークスのサンプリングを行い炉芯内に空洞の通気孔を設ける方法では、高炉休風時のコークスサンプリングにより形成された炉芯内の空洞の通気孔が送風立ち上げ時に確実に維持されている保証はない。
【0007】
したがって、上記のような炉芯の通気孔から炉芯内へ高温ガスの一部を吹き込むことにより炉芯内のコークス、メタル、スラグを加熱したり、コークス粉除去を行う方法では、送風立ち上げ時の炉芯の通気孔の状態により、その効果にバラツキが生じてしまうため、安定して予想通りの効果を得ることは困難である。
また、この方法により炉芯内に形成された空洞の通気孔が仮に送風立ち上げ時に確実に維持されて炉芯部の温度が一時的に上昇したとしても、炉芯表層部位の通気・通液性を悪化させる根本的な原因を解消したわけではないため、操業時に再度炉芯部に通気性,通液性の悪い部位が形成される可能性は大きい。
【0008】
本発明者らは、上記のような従来技術の問題点に鑑み、特に高炉の微粉炭吹き込み操業時に炉芯温度低下の原因となる炉芯表層部の通気・通液性の悪化を従来のように燃料比を上げずに、根本的に解消することを目的とした技術の開発を行い、特願2001−040229号として出願している。該発明は「微粉炭吹き込み操業において、高炉羽口から微粉炭と共に含酸素粉体を高炉内に吹き込む含酸素粉体吹き込みによる炉芯昇熱方法」にある。
しかして、本発明は、上記発明を実施するに当たって含酸素粉体をいかにして炉芯部へ、効率よく到達せしめるかを目的としてさらなる開発を行ったものである。
【0009】
【課題を解決するための手段】
本発明は前記した従来方法における問題点を解決するためになされたものであって、その要旨とするところは、下記手段にある。
(1) 含酸素粉体の吹き込みに際して、三重管ランスを用い二酸化マンガン粉、または、酸素含有廃プラスチック粉を中心管内部から、酸素を中心管と中間管の間から、窒素を外管と中間管の間から、それぞれ供給する高炉羽口からの含酸素粉体吹き込み方法。
(2) 酸素粉体の吹き込みに際して、二重管ランスを用い二酸化マンガン粉、または、酸素含有廃プラスチック粉を内管内部から、窒素を内管と外管の間から、それぞれ供給する高炉羽口からの含酸素粉体吹き込み方法。
【0010】
(3) 前記含酸素粉体の吹き込みに際し、二酸化マンガン粉、または、酸素含有廃プラスチック粉の供給管の外管から供給する窒素の速度をブローパイプ内の加熱空気の速度より大きくした(1)または(2)記載の高炉羽口からの含酸素粉体吹き込み方法。
) 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉を微粉炭と混合して吹き込む(1)ないし()のいずれかに記載の高炉羽口からの含酸素粉体吹き込み方法。
) 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉と混合して吹き込む微粉炭としては、揮発分25質量%以下のものを用いる()記載の高炉羽口からの含酸素粉体吹き込み方法。
【0011】
)前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流速を調整制御する(1)ないし()のいずれかに記載の高炉羽口からの含酸素粉体吹き込み方法。
)前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流量を調整制御する(1)ないし()のいずれかに記載の高炉羽口からの含酸素粉体吹き込み方法。
)前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流速および流量を調整制御する(1)ないし()のいずれかに記載の高炉羽口からの含酸素粉体吹き込み方法。
【0012】
【発明の実施の形態】
本発明は高炉への微粉炭吹き込み操業法を前提として、該操業法を実施するに際し、含酸素粉体を炉芯部へ送り込むための方法にある。
先ず、含酸素粉体吹き込みランスの設置状態を図1に示した。
高炉炉壁1には羽口2が設けられ、羽口2の後端にブローパイプ3が連接されている。ブローパイプ3には加熱空気等のガスが供給されており、ブローパイプ3を介して羽口2から炉内4に送風される。このような送風羽口においてランス7がブローパイプ3を貫通してガス通路内に開口し、該ランス7を介して含酸素粉体がガス通路内に吹き込まれるように構成されており、羽口2の前方にはガスによる噴流5が形成され、さらに、炉内4に充填されたコークスが旋回しながら燃焼する領域、すなわちレースウェイ6が形成されている。
【0013】
通常羽口2から吹き込まれた微粉炭は、その中に含まれるAshの含有成分であるSiO2 が噴流域5の中で、コークス中のカーボン(C)、或いは吹き込まれた微粉炭中のカーボン(C)と反応してSiOとなるため、微粉炭Ash中のSiO2 濃度は低下し、Al23 濃度は相対的に上昇する。
このようにして、Al23 濃度および塩基度(CaO/SiO2 )が高くなった微粉炭中のAshは、レースウェイ6奥のコークス充填層31の空隙に付着蓄積して、高融点及び高粘性の滴下スラグを形成し、これがコークス粉とともに炉芯への通気・通液性を悪化させる原因となる。なお図中30は飛翔している含酸素粉体を示す。
【0014】
上記のような含酸素粉体吹き込み状況下において、含酸素粉体はランス7から高炉内部4に吹き込まれた後に、噴流5の内部で含酸素粉体の組成如何によっては熱分解・溶解・反応等が起こり、炉芯部へ到達するまでに含酸素粉体は消失または減少する惧れがある。
そこで本発明者らは、この含酸素粉体を吹き込むにあたり、高温雰囲気にあるレースウェイ奥まで該含酸素粉体を到達させるためには、吹き込んだ含酸素粉体がレースウェイ内を飛翔の途次で、消失または減少させないことが最も重要であるとの見解の基に検討を行った。
【0015】
すなわち、レースウェイ内部を飛翔する含酸素粉体をいかにして高温雰囲気から遮断せしめ、前述した現象の発現を極力抑制し、含酸素粉体をでき得る限り炉芯部へ到達せしめるかについて、鋭意研究を重ねた。
その結果、窒素をはじめとする不活性ガス体を含酸素粉体吹き込みと同時に供給し、該ガス流によって含酸素粉体を周辺から包み込むカーテン状のガス遮断膜を形成せしめ、レースウェイ内部での含酸素粉体と外部雰囲気との接触を抑制し、さらにこのガスの流速を調節することによって、含酸素粉体をレースウェイ奥の炉芯部まで運ぶことができることを見出した。
【0016】
したがって本発明においては、前述した窒素ガスの効果により、レースウェイ内での含酸素粉体の減少を抑制することができるので、含酸素粉体を目的とする炉芯部まで到達させることができる。
しかして、このような含酸素粉体の吹き込み方法としては種々考えられるが、本発明者らが適切と考えた方法は前記した課題を解決するための手段に記載した通りである。
【0017】
次に、本発明方法について図面に基づき説明する。
まずその1としては三重管ランス8を用いる方法があり、その実施態様としては図2(a)と(b)にそれぞれランスの断面図と側面図を示したが、三重管ランス8から含酸素粉体、窒素、酸素をそれぞれ同時に吹き込むものである。
すなわち、ランス8は外管10の内部に中間管11を挿入し、さらにその内部に中心管12を挿入した三重管構造をとり、ガス体流路を3通路としたところに特長があり、中心管内部15には含酸素粉体を供給し、中心管と中間管の間16には酸素を、中間管と外管の間(外管部)17には窒素を供給できるように構成し、それぞれの通路から含酸素粉体の中での炭素,水素(含酸素粉体中には燃焼成分を含有する物質もある)が消費するのに見合う酸素量と、含酸素粉体のレースウェイ内での雰囲気に接触するのを極力抑制する窒素を適切な流速のもとで供給するものである。
【0018】
その2としては二重管ランス9を用いる方法であり、図3(a)と(b)にそれぞれランスの断面図と側面図を示した。
すなわち、ランス9は外管20の内部に内管21を挿入した二重管構造をとり、ガス体流路を2通路としたもので、内管内部25からは含酸素粉体を供給し、内管と外管の間(外管部)26からは含酸素粉体のレースウェイ内での雰囲気に接触するのを極力抑制する窒素を適切な流速のもとで供給する。
【0019】
以上、含酸素粉体をレースウェイ奥の炉芯部のコークス粉堆積部まで運ぶに当たり、レースウェイ内での雰囲気から含酸素粉体をできるだけ遮断するために窒素を用いる方法について説明したが、窒素の代替として不活性ガスまたは空気が考えられる。空気の場合は冷風(大気)の方がレースウェイ内雰囲気からの遮断効果があることが予測される。
【0020】
また、通常ブローパイプを通って高炉へ供給される送風速度は速くとも250m/secなので、窒素ガスはそれ以上の速度をもった流速を保持するよう考慮する必要がある。
さらに、ランスにおいては、窒素ガスの流速を高速に維持するために、窒素供給口先端部を絞り構造13となし、かつその絞り部の長さは窒素ガス流が層流状態で所定の距離まで達するような長さを付与しておく必要がある。この場合、ランス管自体に窒素ガスが層流状に流れるように通路間隔を予め設計し、その形状を保持せしめておくことも必要である。いずれにしても、窒素ガスによるガスカーテンを形成せしめてレースウェイ内で含酸素粉体の消失または減少を極力抑えることが肝要である。
【0021】
さらに、前記した含酸素粉体の吹き込みランス(二重管または三重管)の外管部から供給する窒素ガスまたはその代替えガスの流速または/および流量を調整することによって、含酸素粉体の燃焼によるレースウェイ内で高炉羽口先端からの燃焼焦点距離を自由に調整することができるので、本発明実施時の炉芯の状態、または炉況状態の如何によってレースウェイ内での含酸素粉体の燃焼による最高温点位置を調整制御することが容易である。
【0022】
すなわち、レースウェイ内での最高温度位置を羽口先端からできるだけ遠く離れた位置に存在せしめようとするならば、前記ランス外管部からのガス体の流速または流量を増大せしめることによって容易に目的を達することが可能である。
なお、含酸素粉体の組成については特に触れなかったが、前記した本発明者らの発明になる特願2001−040229号に記載の含酸素粉体には全て適用可能である。
【0023】
図4は含酸素粉体吹き込み時に窒素を付加した本発明の1例を従来例,比較例と共に示したもので、(a)は従来の微粉炭のみの吹き込み,(b)はこれに加えて含酸素粉体の吹き込み(比較例),(c)はさらに(b)におけるガスカーテン(本発明)を付加した吹き込みである。高炉レースウェイ内での高温領域が、前記吹き込み手段の相違(a,b,cの差)によりaからcにいくにつれて順次炉芯部側へ移行していることが図から明瞭に認められる。
なお、上記説明では主に含酸素粉体の吹き込みについて述べたが、本発明においては含酸素粉体を微粉炭またはその他の炭材と混合して吹き込んでも同様の効果が得られるので、ランスから吹き込む物質が含酸素粉体単独のみでなくとも充分適用が可能である。
【0024】
また、前記含酸素粉体と混合して吹き込む微粉炭としては、揮発分25質量%以下のものを用いることが好ましく、レースウェイ内での微粉炭の燃焼位置が炉芯部側へ移行すると共に、含酸素粉体が炉芯部へ到達するのに役立つ。
さらに、微粉炭以外の炭材としては粉コークス,トナー廃材,石炭ガス化時の発生未燃チャーやバイオマス処理時の発生炭材等が考えられ、これら炭材が燃焼することにより、含酸素粉体が炉芯部まで到達するのが容易となる。
【0025】
【実施例】
以下本発明の効果を実際の高炉に適用した実施例について以下説明する。
実施例に用いた含酸素粉体吹き込み用ランスの先端は何れも羽口先端から20mm内部に入った羽口先端部近傍に設置した。
(実施例1)
本発明方法を用いて3280m3 の高炉にて図2に示したような三重管ランスを使用し、含酸素粉体(酸素含有廃プラスチック粉)吹き込んだ例について述べる。
含酸素粉体吹き込み量は10kg/t−pig(以下t−pigを単にt・pと記す)で、同時に同一ランスより窒素を流速220m/secで5m3 /h/(羽口1本)吹き込み、また酸素も同様に3m3 /h/(羽口1本)を同一ランスより吹き込んだ。
その結果、従前の方法に比し含酸素粉体の炉芯部への到達率が向上し、粉率低下幅が20%低下した。
【0026】
(実施例2)
本発明方法を用いて3280m3 の高炉にて図3に示したような二重管ランスを使用し、含酸素粉体(二酸化マンガン粉)吹き込み時に窒素を付加した例について述べる。
含酸素粉体吹き込み量は8kg/t・pで、同時に同一ランスより窒素を流速260m/secで6m3 /h/(羽口1本)吹き込んだ。
その結果、従前の方法に比し含酸素粉体の炉芯部への到達率が向上し、粉率が実施前に比べて15%低下した。
【0027】
(実施例3)
本発明方法を用いて3280m3 の高炉にて図2に示したような三重管ランスを使用し、含酸素粉体吹き込み時に窒素に代替して空気を付加した例について述べる。
含酸素粉体(酸素含有廃プラスチック粉)吹き込み量は12kg/t・pで、同時に同一ランスより常温の空気を流速240m/secで5.5m3 /h/(羽口1本)吹き込み、また酸素を4m3 /h/(羽口1本)吹き込んだ。
その結果、従前の方法に比し含酸素粉体の炉芯部への到達率が向上し、粉率が実施前に比べて20%低下した。
【0028】
(実施例4)
本発明方法を用いて3280m3 の高炉にて図3に示したような二重管ランスを使用し、含酸素粉体(二酸化マンガン粉)と揮発分18質量%の微粉炭を混合して吹き込み、吹き込み時に窒素を付加した例について述べる。
含酸素粉体吹き込み量は10kg/t・pで、微粉炭吹き込み量は150kg/t・pであった。同時に同一ランスより窒素を流速250m/secで8m3/h/(羽口1本)吹き込んだ。
その結果、従前の方法に比し含酸素粉体の炉芯部への到達率が向上し、粉率が実施前に比べて35%低下した。
【0029】
【発明の効果】
本発明によれば、微粉炭吹き込み操業において、含酸素粉体を同時に吹き込むにあたり、窒素ガス,不活性ガスまたは空気をガスカーテンとして用いることにより、含酸素粉体のレースウェイ内部での消失または減少を極力抑制し、その状態を維持してレースウェイ奥まで運ぶことができた。また本発明は入手が簡単で価格が低廉である気体を利用できるので、その実施が容易であるため高炉操業上有益な効果をもたらす。
【図面の簡単な説明】
【図1】高炉の送風に用いられている羽口の断面を示す模式図
【図2】本発明に用いられる三重管ランスの断面を示す図
【図3】本発明に用いられる二重管ランスの断面を示す図
【図4】吹き込み手段の相違によるレースウェイ内での高温域の移動を示す図
【符号の説明】
1 高炉炉壁
2 羽口
3 ブローパイプ
4 炉内
5 噴流
6 レースウェイ
7 ランス
8 三重管ランス
9 二重管ランス
10 外管
11 中間管
12 中心管
13 管先端絞り部
15 中心管内部
16 中心管と中間管の間
17 中間管と外管の間
20 外管
21 内管
25 内管内部
26 内管と外管の間
30 飛翔中の含酸素粉体
31 コークス充填層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxygen-containing powder blowing method for blowing oxygen-containing powder into a shaft furnace type high temperature reaction vessel such as a blast furnace.
[0002]
[Prior art]
A steelmaking blast furnace can produce a large amount of pig iron and has a high thermal efficiency of 90%. For this reason, it is still the mainstream of pig iron production. However, since the blast furnace is a huge counter-current moving bed, there are problems in productivity, production elasticity, etc. Further improvement of controllability is desired in order to ensure stable productivity and hot metal quality. ing.
[0003]
Moreover, in the blast furnace, from the viewpoint of strengthening the iron source cost competitiveness, a large amount of low-cost raw fuel and high pulverized coal ratio O / C operation are being implemented. For example, high pulverized coal in which pulverized coal with a pulverized coal ratio of 100 kg / t or more is blown from the blast furnace tuyere and the charging weight ratio (O / C) of ore and coke per charge is 4.0 or more. Under specific high O / C operation, an increase in the powder ratio accompanying the increase in the pulverized coal ratio and drooping of the cohesive zone due to an increase in O / C occur. Liquidity tends to decrease.
A decrease in ventilation and liquid permeability in the core of the blast furnace furnace causes a problem of non-uniformity in the flow of the hearth hot water. In order to continue stable high productivity operation, a high pulverized coal ratio of high O / C is required. Establishment of an effective core activation technology during operation is desired.
[0004]
In addition to the conventionally known increase in fuel ratio and steam addition, several methods for activating the core are recently disclosed as countermeasures when the air permeability and liquid permeability of the blast furnace core are reduced. ing. For example, in JP-A-6-93319 and JP-A-6-93320, the state of the core part of the blast furnace is determined by measuring the characteristics of the blast furnace core part through a plurality of tuyere when the blast furnace is closed. There is a method of providing a vent hole by inserting a hollow pipe from a tuyere in the vicinity of a core part requiring heating and sampling coke at that part.
[0005]
Further, in JP-A-7-268416, the furnace core powder rate is measured at the time of blast furnace shut-down or operation, and when the powder rate is 20% or more, it is in the vicinity of a part where heating is necessary or a part where powder removal is necessary. A method of providing a hollow vent by inserting a hollow pipe from a certain tuyere and sampling coke in the furnace core has been proposed.
[0006]
[Problems to be solved by the invention]
The methods disclosed in the above-mentioned JP-A-6-93319, JP-A-6-93320, and JP-A-7-268416, that is, sampling the coke in the core from the tuyere and passing the cavity into the core. In the method of providing the pores, there is no guarantee that the air holes in the cavity in the furnace core formed by the coke sampling at the time of blast furnace resting are reliably maintained when the air blows up.
[0007]
Therefore, in the method of heating the coke, metal, slag in the furnace core or removing the coke powder by blowing a part of the high-temperature gas into the furnace core from the vent hole of the furnace core as described above, the air blowing is started. Depending on the state of the vent hole of the furnace core at the time, the effect varies, and it is difficult to stably obtain the expected effect.
Further, even if the hollow vent hole formed in the furnace core by this method is reliably maintained at the time of air blow-up and the temperature of the furnace core portion temporarily rises, the ventilation / fluidization of the core surface layer part Since the root cause of deterioration of the performance has not been eliminated, there is a high possibility that a portion having poor air permeability and liquid permeability will be formed again in the furnace core during operation.
[0008]
In view of the problems of the prior art as described above, the present inventors have experienced a deterioration in the ventilation and liquid permeability of the core layer of the core that causes a decrease in the core temperature, particularly during the operation of blowing pulverized coal in the blast furnace. On the other hand, a technology aimed at fundamentally solving the problem without increasing the fuel ratio has been developed, and has been filed as Japanese Patent Application No. 2001-040229. The invention resides in a “core heating method by blowing oxygen-containing powder into which oxygen-containing powder is blown into the blast furnace together with pulverized coal from a blast furnace tuyere in pulverized coal blowing operation”.
Therefore, the present invention has been further developed for the purpose of efficiently reaching the oxygen-containing powder to the furnace core in carrying out the above invention.
[0009]
[Means for Solving the Problems]
The present invention has been made in order to solve the problems in the above-described conventional methods, and the gist thereof is the following means.
(1) When blowing oxygen-containing powder, use a triple-pipe lance to place manganese dioxide powder or oxygen-containing waste plastic powder from the center tube, oxygen from between the center tube and the intermediate tube, and nitrogen from the outer tube to the middle Oxygen-containing powder blowing method from the blast furnace tuyere supplied from between the tubes.
(2) Blast furnace tuyere that supplies manganese dioxide powder or oxygen-containing waste plastic powder from the inner tube and nitrogen from the inner tube to the outer tube using a double tube lance when blowing oxygen powder Oxygen-containing powder blowing method from
[0010]
(3) When blowing the oxygen-containing powder, the speed of nitrogen supplied from the outer pipe of the supply pipe of manganese dioxide powder or oxygen-containing waste plastic powder was made larger than the speed of heated air in the blow pipe (1) Or the oxygen-containing powder blowing method from the blast furnace tuyere described in (2).
( 4 ) The oxygen-containing powder blowing method from a blast furnace tuyere according to any one of (1) to ( 3 ), wherein the manganese dioxide powder or the oxygen-containing waste plastic powder is mixed and blown into pulverized coal.
( 5 ) As the pulverized coal to be mixed and blown with the manganese dioxide powder or the oxygen-containing waste plastic powder, those having a volatile content of 25% by mass or less are used. ( 4 ) Oxygenated powder blowing from the blast furnace tuyere Method.
[0011]
( 6 ) The flow rate of the gas body supplied from the outer pipe portion of the triple pipe lance or double pipe lance used for blowing the manganese dioxide powder or the oxygen-containing waste plastic powder is adjusted and controlled (1) to ( 5 ) An oxygen-containing powder blowing method from a blast furnace tuyere according to any one of the above.
( 7 ) Adjusting and controlling the flow rate of the gas body supplied from the outer pipe portion of the triple pipe lance or double pipe lance used for blowing the manganese dioxide powder or oxygen-containing waste plastic powder (1) to ( 5 ) An oxygen-containing powder blowing method from a blast furnace tuyere according to any one of the above.
( 8 ) Adjusting and controlling the flow velocity and flow rate of the gas body supplied from the outer pipe portion of the triple pipe lance or double pipe lance used for blowing the manganese dioxide powder or oxygen-containing waste plastic powder (1) to ( 5 ) The method for blowing oxygen-containing powder from the blast furnace tuyeres.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention resides in a method for feeding oxygen-containing powder into the furnace core when the pulverized coal blowing operation method into a blast furnace is performed.
First, the installation state of the oxygen-containing powder blowing lance is shown in FIG.
A tuyere 2 is provided on the blast furnace wall 1, and a blow pipe 3 is connected to the rear end of the tuyere 2. A gas such as heated air is supplied to the blow pipe 3 and is blown from the tuyere 2 into the furnace 4 through the blow pipe 3. In such a ventilation tuyere, the lance 7 passes through the blow pipe 3 and opens into the gas passage, and oxygen-containing powder is blown into the gas passage through the lance 7. A gas jet 5 is formed in front of 2, and a region in which coke filled in the furnace 4 burns while turning, that is, a raceway 6 is formed.
[0013]
Normally, the pulverized coal blown from the tuyere 2 is carbon (C) in the coke or carbon in the pulverized coal in which the SiO 2 component contained in the Ash is contained in the jet region 5. Since it reacts with (C) to become SiO, the SiO 2 concentration in the pulverized coal Ash decreases, and the Al 2 O 3 concentration relatively increases.
In this way, Ash in the pulverized coal having a high Al 2 O 3 concentration and basicity (CaO / SiO 2 ) adheres and accumulates in the voids of the coke packed bed 31 at the back of the raceway 6, and has a high melting point and A highly viscous dripping slag is formed, and this causes deterioration of ventilation and liquid permeability to the furnace core together with coke powder. In the figure, reference numeral 30 denotes a flying oxygen-containing powder.
[0014]
Under the above oxygen-containing powder blowing conditions, the oxygen-containing powder is blown into the blast furnace inside 4 from the lance 7 and then pyrolyzed / dissolved / reacted depending on the composition of the oxygen-containing powder inside the jet 5. Oxygen-containing powder may disappear or decrease before reaching the core of the furnace.
Therefore, the inventors of the present invention, in blowing this oxygen-containing powder, in order for the oxygen-containing powder to reach the back of the raceway in a high temperature atmosphere, the blown oxygen-containing powder is in the course of flight in the raceway. Next, the examination was based on the view that it is most important not to disappear or decrease.
[0015]
In other words, we are keen on how to block the oxygen-containing powder flying inside the raceway from the high-temperature atmosphere, suppress the occurrence of the above-mentioned phenomenon as much as possible, and reach the core of the oxygen-containing powder as much as possible. Repeated research.
As a result, an inert gas body such as nitrogen is supplied at the same time as the oxygen-containing powder is blown, and the gas flow forms a curtain-like gas barrier film that wraps the oxygen-containing powder from the periphery, and the inside of the raceway It has been found that the oxygen-containing powder can be transported to the furnace core at the back of the raceway by suppressing the contact between the oxygen-containing powder and the external atmosphere and further adjusting the flow rate of this gas.
[0016]
Therefore, in the present invention, the reduction of oxygen-containing powder in the raceway can be suppressed by the above-described effect of nitrogen gas, so that the oxygen-containing powder can reach the target furnace core. .
Various methods for injecting such oxygen-containing powder are conceivable, but the methods that the present inventors have considered appropriate are as described in the means for solving the problems described above.
[0017]
Next, the method of the present invention will be described with reference to the drawings.
First, there is a method using a triple tube lance 8. As an embodiment, a cross-sectional view and a side view of the lance are shown in FIGS. 2 (a) and 2 (b). Powder, nitrogen and oxygen are blown simultaneously.
That is, the lance 8 has a triple tube structure in which an intermediate tube 11 is inserted into the outer tube 10 and a central tube 12 is inserted into the outer tube 10, and has three gas passages. An oxygen-containing powder is supplied to the inside 15 of the tube, oxygen is supplied between the center tube and the intermediate tube 16, and nitrogen is supplied between the intermediate tube and the outer tube (outer tube portion) 17. The amount of oxygen commensurate with the consumption of carbon and hydrogen in the oxygen-containing powder from each passage (some substances that contain combustion components in the oxygen-containing powder) and the raceway of the oxygen-containing powder Nitrogen that suppresses contact with the atmosphere in the atmosphere as much as possible is supplied at an appropriate flow rate.
[0018]
Part 2 is a method using a double-tube lance 9. FIGS. 3 (a) and 3 (b) show a sectional view and a side view of the lance, respectively.
That is, the lance 9 has a double tube structure in which the inner tube 21 is inserted into the outer tube 20 and has two gas body passages, and oxygen-containing powder is supplied from the inner tube interior 25. From an inner pipe and an outer pipe (outer pipe portion) 26, nitrogen that suppresses contact with the atmosphere in the raceway of oxygen-containing powder as much as possible is supplied at an appropriate flow rate.
[0019]
As described above, the method of using nitrogen in order to cut off the oxygen-containing powder from the atmosphere in the raceway as much as possible when transporting the oxygen-containing powder to the coke powder accumulation portion in the furnace core at the back of the raceway has been described. As an alternative to this, an inert gas or air is conceivable. In the case of air, it is predicted that cold air (atmosphere) will have a shielding effect from the atmosphere in the raceway.
[0020]
Moreover, since the blowing speed normally supplied to the blast furnace through the blow pipe is 250 m / sec at the fastest, it is necessary to consider that the nitrogen gas has a flow rate with a higher speed.
Further, in the lance, in order to maintain the flow rate of nitrogen gas at a high speed, the front end portion of the nitrogen supply port is formed as the throttle structure 13 and the length of the throttle portion is a predetermined distance when the nitrogen gas flow is in a laminar flow state. It is necessary to give the length to reach. In this case, it is also necessary to design the passage interval in advance so that the nitrogen gas flows in a laminar flow in the lance tube itself, and keep the shape of the passage. In any case, it is important to form a gas curtain with nitrogen gas to suppress the disappearance or reduction of the oxygen-containing powder as much as possible in the raceway.
[0021]
Further, the oxygen-containing powder is burned by adjusting the flow rate or / and the flow rate of the nitrogen gas supplied from the outer tube portion of the oxygen-containing powder blowing lance (double tube or triple tube) or an alternative gas thereof. It is possible to freely adjust the focal length of combustion from the tip of the blast furnace tuyere in the raceway according to the above, so that the oxygen-containing powder in the raceway depends on the state of the core of the present invention or the state of the furnace. It is easy to adjust and control the position of the highest temperature point due to combustion.
[0022]
That is, if the highest temperature position in the raceway is to be located as far as possible from the tip of the tuyere, it is easy to increase the flow rate or flow rate of the gas body from the outer lance pipe. Is possible to reach.
The composition of the oxygen-containing powder was not particularly mentioned, but all of the oxygen-containing powder described in Japanese Patent Application No. 2001-040229, which is the invention of the present inventors, can be applied.
[0023]
FIG. 4 shows an example of the present invention in which nitrogen is added when oxygen-containing powder is blown, together with a conventional example and a comparative example. (A) is a blow of only conventional pulverized coal, and (b) is in addition to this. Oxygen-containing powder blowing (comparative example) and (c) are further blown by adding the gas curtain (present invention) in (b). It can be clearly seen from the figure that the high temperature region in the blast furnace raceway is gradually shifted from the a to c due to the difference in the blowing means (difference between a, b and c).
In the above description, the oxygen-containing powder is mainly blown. However, in the present invention, even if the oxygen-containing powder is mixed with pulverized coal or other charcoal and blown, the same effect can be obtained. Even if the material to be blown is not only oxygen-containing powder alone, it can be sufficiently applied.
[0024]
As the pulverized coal mixed with the oxygen-containing powder and blown in, it is preferable to use one having a volatile content of 25% by mass or less, and the combustion position of the pulverized coal in the raceway moves to the furnace core side. This helps oxygenated powder to reach the furnace core.
In addition, coal materials other than pulverized coal include powdered coke, toner waste materials, unburned char generated during coal gasification, and generated carbon materials during biomass processing. It becomes easy for the body to reach the furnace core.
[0025]
【Example】
Examples in which the effects of the present invention are applied to an actual blast furnace will be described below.
The tips of the oxygen-containing powder blowing lances used in the examples were all installed near the tip of the tuyere that was 20 mm from the tip of the tuyere.
Example 1
An example in which an oxygen-containing powder (oxygen-containing waste plastic powder) is blown using a triple pipe lance as shown in FIG. 2 in a 3280 m 3 blast furnace using the method of the present invention will be described.
The oxygen-containing powder blowing rate is 10 kg / t-pig (hereinafter t-pig is simply referred to as tp), and nitrogen is simultaneously blown from the same lance at a flow rate of 220 m / sec at 5 m 3 / h / (one tuyere). Similarly, oxygen was blown at 3 m 3 / h / (one tuyere) from the same lance.
As a result, the arrival rate of the oxygen-containing powder to the furnace core portion was improved as compared with the conventional method, and the reduction rate of the powder rate was reduced by 20%.
[0026]
(Example 2)
An example in which nitrogen is added when oxygen-containing powder (manganese dioxide powder) is blown using a double-tube lance as shown in FIG. 3 in a 3280 m 3 blast furnace using the method of the present invention will be described.
The amount of oxygen-containing powder blown was 8 kg / t · p, and nitrogen was simultaneously blown from the same lance at a flow rate of 260 m / sec at 6 m 3 / h / (one tuyere).
As a result, the arrival rate of the oxygen-containing powder to the furnace core portion was improved as compared with the conventional method, and the powder rate was reduced by 15% compared to before implementation.
[0027]
Example 3
An example of using the triple pipe lance as shown in FIG. 2 in a 3280 m 3 blast furnace using the method of the present invention and adding air instead of nitrogen when oxygen-containing powder is blown will be described.
Oxygen-containing powder (oxygen-containing waste plastic powder) is blown in at a rate of 12 kg / t · p. At the same time, air at normal temperature is blown at 5.5 m 3 / h / (one tuyere) at a flow rate of 240 m / sec. Oxygen was blown in at 4 m 3 / h / (one tuyere).
As a result, the arrival rate of the oxygen-containing powder to the furnace core portion was improved as compared with the conventional method, and the powder rate was reduced by 20% compared to before the implementation.
[0028]
(Example 4)
Using a double tube lance as shown in FIG. 3 in a 3280 m 3 blast furnace using the method of the present invention, oxygen-containing powder (manganese dioxide powder) and pulverized coal with a volatile content of 18% by mass are mixed and blown. An example in which nitrogen is added during blowing will be described.
The oxygen-containing powder blowing rate was 10 kg / t · p, and the pulverized coal blowing rate was 150 kg / t · p. At the same time, nitrogen was blown in at 8 m 3 / h / (one tuyere) at a flow rate of 250 m / sec from the same lance.
As a result, the arrival rate of the oxygen-containing powder to the furnace core portion was improved as compared with the conventional method, and the powder rate was reduced by 35% compared to the previous method.
[0029]
【The invention's effect】
According to the present invention, in the operation of blowing pulverized coal, the oxygen-containing powder disappears or decreases inside the raceway by using nitrogen gas, inert gas, or air as a gas curtain when blowing oxygen-containing powder at the same time. As much as possible, I was able to carry it to the back of the raceway while maintaining that state. In addition, since the present invention can use a gas that is easily available and inexpensive, it is easy to implement and brings about a beneficial effect on blast furnace operation.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a cross section of a tuyere used for blowing air in a blast furnace. FIG. 2 is a diagram showing a cross section of a triple pipe lance used in the present invention. FIG. 3 is a double pipe lance used in the present invention. FIG. 4 is a diagram showing the movement of the high temperature region in the raceway due to the difference in blowing means.
1 Blast Furnace Wall 2 Tuyere 3 Blow Pipe 4 Furnace 5 Jet 6 Raceway 7 Lance 8 Triple Pipe Lance 9 Double Pipe Lance 10 Outer Pipe 11 Intermediate Pipe 12 Central Pipe 13 Pipe Tip Restriction 15 Central Pipe Inside 16 Central Pipe Between the intermediate pipe and the intermediate pipe 17 Between the intermediate pipe and the outer pipe 20 Outer pipe 21 Inner pipe 25 Inner pipe inner 26 Between the inner pipe and outer pipe 30 Oxygenated powder 31 in flight Coke packed bed

Claims (8)

含酸素粉体の吹き込みに際して、三重管ランスを用い二酸化マンガン粉、
または、酸素含有廃プラスチック粉を中心管内部から、酸素を中心管と中間管の間から、
窒素を外管と中間管の間から、それぞれ供給することを特徴とする高炉羽口からの含酸素粉体吹き込み方法。
When blowing oxygen-containing powder, manganese dioxide powder using a triple tube lance,
Or oxygen waste plastic powder from inside the central tube, oxygen from between the central tube and the intermediate tube,
A method for blowing oxygen-containing powder from a blast furnace tuyere, wherein nitrogen is supplied from between an outer tube and an intermediate tube.
含酸素粉体の吹き込みに際して、二重管ランスを用い用い二酸化マンガン粉、または、酸素含有廃プラスチック粉を内管内部から、窒素を内管と外管の間から、それぞれ供給することを特徴とする高炉羽口からの含酸素粉体吹き込み方法。 When blowing oxygen-containing powder, manganese dioxide powder or oxygen-containing waste plastic powder is supplied from the inner tube and nitrogen is supplied from the inner tube to the outer tube using a double tube lance. To blow oxygen-containing powder from the blast furnace tuyeres. 前記含酸素粉体の吹き込みに際し、二酸化マンガン粉、または、酸素含有廃プラスチック粉の供給管の外管から供給する窒素の速度をブローパイプ内の加熱空気の速度より大きくしたことを特徴とする請求項1または請求項2記載の高炉羽口からの含酸素粉体吹き込み方法。 When blowing the oxygen-containing powder, the speed of nitrogen supplied from the outer pipe of the supply pipe of manganese dioxide powder or oxygen-containing waste plastic powder is made larger than the speed of heated air in the blow pipe. Item 3. A method for blowing oxygen-containing powder from a blast furnace tuyere according to item 1 or 2. 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉を微粉炭またはその他の炭材と混合して吹き込むことを特徴とする請求項1ないし請求項のいずれか1項に記載の高炉羽口からの含酸素粉体吹き込み方法。The blast furnace tuyere according to any one of claims 1 to 3 , wherein the manganese dioxide powder or the oxygen-containing waste plastic powder is mixed with pulverized coal or other carbonaceous material and blown. Oxygen-containing powder blowing method. 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉と混合して吹き込む微粉炭としては、揮発分25質量%以下のものを用いることを特徴とする請求項記載の高炉羽口からの含酸素粉体吹き込み方法。The oxygen-containing powder from the blast furnace tuyere according to claim 4 , wherein the pulverized coal mixed with the manganese dioxide powder or the oxygen-containing waste plastic powder is blown with a volatile content of 25% by mass or less. Body blowing method. 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流速を調整制御することを特徴とする請求項1ないし請求項のいずれか1項に記載の高炉羽口からの含酸素粉体吹き込み方法。The flow rate of the gas body supplied from the outer pipe part of the triple pipe lance or the double pipe lance used when blowing the manganese dioxide powder or oxygen-containing waste plastic powder is adjusted and controlled. Item 6. The method of blowing oxygen-containing powder from the blast furnace tuyeres according to any one of Items 5 to 6. 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流量を調整制御することを特徴とする請求項1ないし請求項のいずれか1項に記載の高炉羽口からの含酸素粉体吹き込み方法。The flow rate of the gas body supplied from the outer pipe part of the triple pipe lance or the double pipe lance used for blowing the manganese dioxide powder or oxygen-containing waste plastic powder is controlled and controlled. Item 6. The method of blowing oxygen-containing powder from the blast furnace tuyeres according to any one of Items 5 to 6. 前記二酸化マンガン粉、または、酸素含有廃プラスチック粉の吹き込みに際して使用する三重管ランスまたは二重管ランスの外管部から供給するガス体の流速および流量を調整制御することを特徴とする請求項1ないし請求項のいずれか1項に記載の高炉羽口からの含酸素粉体吹き込み方法。2. A flow rate and a flow rate of a gas body supplied from an outer pipe portion of a triple pipe lance or a double pipe lance used for blowing the manganese dioxide powder or oxygen-containing waste plastic powder are adjusted and controlled. The method for blowing oxygen-containing powder from the blast furnace tuyere according to any one of claims 5 to 6.
JP2002036255A 2001-02-19 2002-02-14 Oxygen-containing powder blowing method from blast furnace tuyere Expired - Lifetime JP3798322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002036255A JP3798322B2 (en) 2001-02-19 2002-02-14 Oxygen-containing powder blowing method from blast furnace tuyere

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001041565 2001-02-19
JP2001-41565 2001-02-19
JP2001-281264 2001-09-17
JP2001281264 2001-09-17
JP2002036255A JP3798322B2 (en) 2001-02-19 2002-02-14 Oxygen-containing powder blowing method from blast furnace tuyere

Publications (2)

Publication Number Publication Date
JP2003160805A JP2003160805A (en) 2003-06-06
JP3798322B2 true JP3798322B2 (en) 2006-07-19

Family

ID=27346017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002036255A Expired - Lifetime JP3798322B2 (en) 2001-02-19 2002-02-14 Oxygen-containing powder blowing method from blast furnace tuyere

Country Status (1)

Country Link
JP (1) JP3798322B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4915074B2 (en) * 2004-09-30 2012-04-11 Jfeスチール株式会社 Apparatus for injecting reducing material into a blast furnace, and blast furnace operating method using the apparatus
KR100948927B1 (en) * 2007-08-29 2010-03-23 주식회사 포스코 Tuyere for manufacturing molten iron and method for injecting gas using the same
JP5200618B2 (en) * 2008-03-27 2013-06-05 Jfeスチール株式会社 Blast furnace operation method
JP5923967B2 (en) * 2010-12-27 2016-05-25 Jfeスチール株式会社 Blast furnace operation method
CN110612487A (en) * 2017-05-10 2019-12-24 三菱电机株式会社 Control device and alternative selection program

Also Published As

Publication number Publication date
JP2003160805A (en) 2003-06-06

Similar Documents

Publication Publication Date Title
US4849015A (en) Method for two-stage melt reduction of iron ore
JP4341131B2 (en) Pulverized coal blowing burner
JPS6153399B2 (en)
JP3798322B2 (en) Oxygen-containing powder blowing method from blast furnace tuyere
KR20090099538A (en) Process for making pig iron in a blast furnace
JP2011102439A (en) Method for operating blast furnace by injecting large-quantity of fine-powdery coals
JP3796021B2 (en) Method of blowing pulverized coal from blast furnace tuyere and blowing lance
US4740242A (en) Method for transferring heat to molten metal, and apparatus therefor
JP4044711B2 (en) Heating method of core at the time of pulverized coal injection into blast furnace
JP2002121609A (en) Method for operating blast furnace by injecting large quantity of pulverized coal
JP4893291B2 (en) Hot metal production method using vertical scrap melting furnace
JPH11315310A (en) Method for blowing pulverized coal into blast furnace
JP3598084B2 (en) Furnace core heating method by injecting exothermic metal powder
JP2001247908A (en) Heating method for furnace core in powder coal injection operation
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JP2789995B2 (en) Blast furnace operation method
JPS6043883B2 (en) Direct reduction method in rotary kiln
JP2003089809A (en) Method for blowing exothermic metallic powder from tuyere in blast furnace
JP2004091921A (en) Method for blowing solid fuel into blast furnace and blown lance
JPS6067609A (en) Refinement of molten metal bath
JP2002241814A (en) Method for heating up furnace core part by injecting oxygen-containing powdery material
JP3615673B2 (en) Blast furnace operation method
JPH0543924A (en) Secondary combustion blow-refining method
JP4307696B2 (en) Reactor core heating method in pulverized coal injection operation.
KR100356156B1 (en) A method for promoting combustibility in balst furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R151 Written notification of patent or utility model registration

Ref document number: 3798322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term