JP3798108B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP3798108B2
JP3798108B2 JP09193497A JP9193497A JP3798108B2 JP 3798108 B2 JP3798108 B2 JP 3798108B2 JP 09193497 A JP09193497 A JP 09193497A JP 9193497 A JP9193497 A JP 9193497A JP 3798108 B2 JP3798108 B2 JP 3798108B2
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
refrigerant
heat
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09193497A
Other languages
Japanese (ja)
Other versions
JPH10288489A (en
Inventor
輝彦 平
宏範 伊藤
Original Assignee
松下冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下冷機株式会社 filed Critical 松下冷機株式会社
Priority to JP09193497A priority Critical patent/JP3798108B2/en
Publication of JPH10288489A publication Critical patent/JPH10288489A/en
Application granted granted Critical
Publication of JP3798108B2 publication Critical patent/JP3798108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、空調・冷凍用に使用され、冷媒と空気などの流体間で熱の授受を行う熱交換器に関するものである。
【0002】
【従来の技術】
従来の熱交換器としては特開平8−54194号公報に示されているものがある。以下、図面を参照しながら上記従来の熱交換器を説明する。
【0003】
図5は従来の熱交換器のフィンの平面図である。図5において1はフィン2に挿入されて密着された伝熱管で、内部を冷媒が流動する。
【0004】
以上のように構成された熱交換器について、以下その動作を説明する。
伝熱管1の内部には冷媒が流動しており、熱交換器が凝縮器として用いられる際に伝熱管1a,1c,1より高温のガス冷媒が流入し、気流5と熱交換しながら、伝熱管1b,1d,1fより低温の液冷媒となって流出する。ここで冷媒の有する熱は伝熱管1、フィン2、伝熱管1へと順次伝えられる。そこで伝熱管1aと1b、伝熱管1c,1d、伝熱管1e,1fとの列間にはフィン2に切断部3を設けて、冷媒出入り口伝熱管1間の熱伝導を防止している。これによって熱交換器から流出する冷媒を所定の温度まで低くするための伝熱管1の長さを短くできる。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来の構成は切断部3の長さが短く、例えば、冷媒出口伝熱管1dは比較的高温の中間伝熱管1iから熱を奪って伝熱管1d内を流動する冷媒の温度低下を妨げている。また、切断部3の長さを十分に長くした場合にはフィン2の大部分で列間を切断することとなり、フィン効率を低下させるために熱交換性能が低下する。
【0006】
本発明は従来の課題を解決するもので、熱交換器から流出する冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて熱交換性能を大幅に向上できる熱交換器を提供することを目的とする。
【0007】
【課題を解決するための手段】
この目的を達成するため本発明は、内部を冷媒が流動する連結された冷媒回路を構成する複数列で少なくとも10段以上の複数段の伝熱管群と、前記伝熱管群が挿入され、その間を気流が流動する多数のフィンより成り、伝熱管の配管は気流に対して風下側の列に冷媒入り口伝熱管を設け、風上側の列に冷媒出口伝熱管を設けて構成され、前記冷媒入り口伝熱管と前記冷媒出口伝熱管との列間にある前記フィンの段方向にのみ、少なくとも高温のガス冷媒が流れる伝熱管と低温の過冷却液が流れる伝熱管との間の熱伝導を遮断するように複数段連続して切断される切断部を、複数段の切断されない部分を残して設けたのである。
【0008】
これにより、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて熱交換性能を向上できる。
【0009】
また、本発明は、伝熱管の列ピッチPrと段ピッチPhとの比がPr/Ph≦0.7に配列させたのである。
【0010】
これにより、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて、薄型の熱交換器で熱交換性能を大幅に向上できる。
【0011】
また、本発明は、フィンに切り起こしが設けられ、切り起こしの占有面積Asと全フィン面積Afとの比がAs/Af≦0.3としたのである。
【0012】
これにより、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて、低圧力損失で熱交換性能を大幅に向上できる。
【0013】
また、本発明は、切断部の長さLは冷媒出口伝熱管から冷媒の流れの反対方向に向けてL≧Ph×4としたのである。
【0014】
これにより、冷媒を非常に低い所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて熱交換性能を大幅に向上できる。
【0015】
また、本発明の熱交換器は少なくとも1回以上折り曲げられ、下向き端部は列間に切断部を設けないとしたのである。
【0016】
これにより、小さいスペースに大きな体積の熱交換器を収納でき、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、かつ、フィン効率の低下を抑えて、熱交換性能を大幅に向上できるとともに、この熱交換器を蒸発器として用いる際には、フィン表面への結露水が列間の切断部により阻害されず、なめらかに落下するために、低圧力損失にできる。
【0017】
【発明の実施の形態】
本発明の請求項1に記載の発明は、
内部を冷媒が流動する連結された冷媒回路を構成する複数列で少なくとも10段以上の複数段の伝熱管群と、前記伝熱管群が挿入され、その間を気流が流動する多数のフィンより成り、伝熱管の配管は気流に対して風下側の列に冷媒入り口伝熱管を設け、風上側の列に冷媒出口伝熱管を設けて構成され、前記冷媒入り口伝熱管と前記冷媒出口伝熱管との列間にある前記フィンの段方向にのみ、少なくとも高温のガス冷媒が流れる伝熱管と低温の過冷却液が流れる伝熱管との間の熱伝導を遮断するように複数段連続して切断される切断部を、複数段の切断されない部分を残して設けたものであり、冷媒入り口伝熱管と冷媒出口伝熱管を近接させて、その列間のみをフィンを熱的に遮断したことで、最小限の切断部長さで温度の著しく異なる伝熱管間の熱伝導を遮断でき、その他の切断されていない部分を多くとることで、フィン効率の低下を最小限に抑えることができるため、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、熱交換性能を向上できる。
【0018】
請求項2に記載の発明は、請求項1に記載の発明に、さらに、伝熱管の列ピッチPrと段ピッチPhとの比がPr/Ph≦0.7に配列されたものであり、伝熱管が高密度に配列された薄型の熱交換器において冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、熱交換性能を向上できる。
【0019】
請求項3に記載の発明は、請求項1に記載の発明に、さらに、フィンには切り起こしが設けられ、切り起こしの占有面積Asと全フィン面積Afとの比がAs/Af≦0.3であるものであり、切り起こしが多い場合にはフィンの熱伝達率が向上するとともに、気流の圧力損失が増大する。従って、切り起こしの占有面積はある一定量以上に増やさないのが望ましい。また、切り起こしが多い場合には切り起こしのための切断部が多くなりフィン効率が低下する。従って温度差の異なる伝熱管間の熱伝導は切り起こしによって阻害され、列間に切断部を設けることによるフィン効率の低下率も少なくなる。従って、切り起こしの占有面積を前記の通り一定量以下とし、前記入り口伝熱管及び前記出口伝熱管の列間にのみに連続した切断部を設けることで、気流の圧力損失を小さく、熱交換性能も向上できる。
【0020】
請求項4に記載の発明は、請求項1に記載の発明に、さらに、切断部の長さLは冷媒出口伝熱管から冷媒の流れの反対方向に向けてL≧Ph×4としたものであり、凝縮器として用いる場合に冷媒が過冷却液となる領域を列間で切断することで、過冷却液全域への熱の流入を防止できるため、さらに熱交換性能を向上できる。
【0021】
請求項5に記載の発明は、請求項1に記載の発明に、さらに、少なくとも1回以上折り曲げられ、下向き端部は列間に切断部を設けていないとしたものであり、熱交換器を蒸発器として用いた場合には、下向き端部において結露水の排出を列間の切断部で阻害することがないため、気流の圧力損失の増大を抑えて、凝縮器として用いる場合も、蒸発器として用いる場合も熱交換性能を向上できる。
【0022】
【実施例】
以下、本発明による熱交換器の実施例について、図面を参照しながら説明する。
【0023】
図1は、本発明の実施例によるフィンの平面図である。図2は、同実施例の熱交換器の斜視図である。図3は同実施例の冷媒回路図である。
【0024】
図1,図2において、11は伝熱管で、段ピッチPhと列ピッチPrによって2列14段に配列され、図3に示す通り冷媒回路を構成している。11a,11bは冷媒入り口伝熱管で気流15に対して後列側にある。11cは冷媒出口伝熱管で気流15に対して前列側にある。
【0025】
12は伝熱管11が挿入密着されたフィンで、伝熱管11a,11bと11cとの間に連続した切断部13を長さL≒Ph×6で設けている。またフィン12には切り起こし14をフィン12の面積Afに対して切り起こし14の占有面積AsがAs/Af=0.17で設けている。
【0026】
16は熱交換器で、主にはフィン12と伝熱管11で構成されており、略Λ状に折り曲げ、切り離している。
【0027】
以上のように構成された熱交換器16について、以下その動作を説明する。
まず、熱交換器16が凝縮器として用いられる場合について説明する。
【0028】
伝熱管11a,11bから流入した高温高圧ガス冷媒はフィン12を介して気流15に放熱しながら、ほぼ一定温度の気液二相冷媒、低温の過冷却液冷媒となって伝熱管11cから流出する。このとき、冷媒は伝熱管11dから伝熱管11cの間で過冷却液となっている。
【0029】
このとき、フィン12には切り起こし14を設けているために、フィン効率を著しく低下させることなく、かつ、気流15の圧力損失を著しく増大させることなく、効率よく熱交換性能を向上させている。また、切断部13によって、高温のガス冷媒が流れる伝熱管11a,11bと低温の過冷却液伝熱管11d〜11cの間の熱伝導を遮断できるため、冷媒を所定の温度まで低くするための伝熱管11の長さを著しく短くでき、熱交換性能を向上できる。その他の切断されていない部分を多くとることで、フィン効率の低下を最小限に抑えることができる。
【0030】
また、段ピッチPhと列ピッチPrとの比がPr/Ph=0.6であるために薄型の熱交換器16を構成できている。ここで、特開平2−166394号公報に示された、列間を切断した場合のフィン効率についての特性図を図4に示す。図に示す通り、Pr/Ph≦0.7以下の場合に列間を分断するとフィン効率が大きく低下する。従って本実施例では冷媒温度のほぼ同じ伝熱管11間では列間を切断することなく、フィン効率の低下を防止しているために、この部分での熱交換性能の低下がない。
【0031】
つぎに、熱交換器16が蒸発器として用いられる場合について説明する。
気流15が冷却されながらフィン12の表面に付着した結露水は熱交換器16の下方向に落下する。本実施例においては、フィン12の両下端部近傍は列間に切断部13を設けていないために、結露水の上方よりの落下を妨げることがなく、気流15の圧力損失を最小限に抑えることができる。
【0032】
【発明の効果】
以上説明したように請求項1に記載の発明は、内部を冷媒が流動する連結された冷媒回路を構成する複数列で少なくとも10段以上の複数段の伝熱管群と、前記伝熱管群が挿入され、その間を気流が流動する多数のフィンより成り、伝熱管の配管は気流に対して風下側の列に冷媒入り口伝熱管を設け、風上側の列に冷媒出口伝熱管を設けて構成され、前記冷媒入り口伝熱管と前記冷媒出口伝熱管との列間にある前記フィンの段方向にのみ、少なくとも高温のガス冷媒が流れる伝熱管と低温の過冷却液が流れる伝熱管との間の熱伝導を遮断するように複数段連続して切断される切断部を、複数段の切断されない部分を残して設けたものであり、冷媒を所定の温度まで低くするための伝熱管長さを著しく短くでき、熱交換性能を向上できる。
【0033】
請求項2に記載の発明は、請求項1に記載の発明に加えて、伝熱管の列ピッチPrと段ピッチPhとの比がPr/Ph≦0.7に配列されたものであり、伝熱管が高密度に配列された薄型の熱交換器において熱交換性能を向上できる。
【0034】
請求項3に記載の発明は、請求項1に記載の発明に加えて、フィンには切り起こしが設けられ、切り起こしの占有面積Asと全フィン面積Afとの比がAs/Af≦0.3であるものであり、気流の圧力損失も小さく、熱交換性能も向上できる。
【0035】
請求項4に記載の発明は、請求項1に記載の発明に加えて、切断部の長さLは冷媒出口伝熱管から冷媒の流れの反対方向に向けてL≧Ph×4としたものであり、凝縮器として用いる場合に冷媒が過冷却液となる領域を列間で切断することで、さらに熱交換性能を向上できる。
【0036】
請求項5に記載の発明は、請求項1に記載の発明に加えて、少なくとも1回以上折り曲げられ、下向き端部は列間に切断部を設けていないとしたものであり、熱交換器を蒸発器として用いた場合にも、気流の圧力損失の増大を抑えて、凝縮器として用いる場合も、蒸発器として用いる場合も熱交換性能を向上できる。
【図面の簡単な説明】
【図1】本発明による熱交換器の実施例のフィンの平面図
【図2】同実施例の熱交換器の斜視図
【図3】同実施例の熱交換器の冷媒回路図
【図4】同実施例の熱交換器の列間を切断した場合のフィン効率の特性図
【図5】従来の熱交換器のフィンの平面図
【符号の説明】
11 伝熱管
11a,11b 冷媒入り口伝熱管
11c 冷媒出口伝熱管
12 フィン
13 切断部
14 切り起こし
15 気流
16 熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger that is used for air conditioning and refrigeration and transfers heat between fluids such as refrigerant and air.
[0002]
[Prior art]
A conventional heat exchanger is disclosed in Japanese Patent Laid-Open No. 8-54194. Hereinafter, the conventional heat exchanger will be described with reference to the drawings.
[0003]
FIG. 5 is a plan view of fins of a conventional heat exchanger. In FIG. 5, reference numeral 1 denotes a heat transfer tube inserted into and closely attached to the fin 2, in which the refrigerant flows.
[0004]
The operation of the heat exchanger configured as described above will be described below.
A refrigerant flows inside the heat transfer tube 1, and when the heat exchanger is used as a condenser, a gas refrigerant having a temperature higher than that of the heat transfer tubes 1 a, 1 c, 1 e flows in and exchanges heat with the air flow 5, It flows out as a liquid refrigerant having a temperature lower than that of the heat transfer tubes 1b, 1d, and 1f. Here, the heat of the refrigerant is sequentially transmitted to the heat transfer tubes 1, the fins 2, and the heat transfer tubes 1. Therefore, the cut portions 3 are provided in the fins 2 between the rows of the heat transfer tubes 1a and 1b, the heat transfer tubes 1c and 1d, and the heat transfer tubes 1e and 1f to prevent heat conduction between the refrigerant inlet / outlet heat transfer tubes 1. Thereby, the length of the heat transfer tube 1 for lowering the refrigerant flowing out from the heat exchanger to a predetermined temperature can be shortened.
[0005]
[Problems to be solved by the invention]
However, the length of the cutting part 3 is short in the above-described conventional configuration. For example, the refrigerant outlet heat transfer tube 1d takes heat away from the relatively high temperature intermediate heat transfer tube 1i and prevents the temperature drop of the refrigerant flowing in the heat transfer tube 1d. ing. Moreover, when the length of the cutting part 3 is made sufficiently long, the rows are cut at most of the fins 2, and the heat exchange performance is lowered in order to reduce the fin efficiency.
[0006]
The present invention solves the conventional problem, and can significantly shorten the length of the heat transfer tube for lowering the refrigerant flowing out of the heat exchanger to a predetermined temperature, and suppresses the decrease in fin efficiency, thereby improving the heat exchange performance. It aims at providing the heat exchanger which can be improved significantly.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the present invention includes a plurality of rows of heat transfer tube groups of at least 10 stages in a plurality of rows constituting a connected refrigerant circuit in which a refrigerant flows, and the heat transfer tube groups inserted between them. consists of a number of fins airflow flows, the pipe of the heat transfer tube is a refrigerant inlet heat transfer tubes arranged in columns on the leeward side of the air flow, the refrigerant outlet heat transfer tubes is formed by providing a column of the windward side, the refrigerant inlet Den Only in the step direction of the fin between the rows of the heat tubes and the refrigerant outlet heat transfer tubes, at least heat conduction between the heat transfer tubes through which the high-temperature gas refrigerant flows and the heat transfer tubes through which the low-temperature supercooling liquid flows is cut off. In other words, a plurality of cut portions that are continuously cut are provided, leaving a plurality of steps that are not cut .
[0008]
Thereby, the length of the heat transfer tube for lowering the refrigerant to a predetermined temperature can be remarkably shortened, and the heat exchange performance can be improved by suppressing the decrease in fin efficiency.
[0009]
In the present invention, the ratio between the row pitch Pr and the step pitch Ph of the heat transfer tubes is arranged so that Pr / Ph ≦ 0.7.
[0010]
Thereby, the length of the heat transfer tube for lowering the refrigerant to a predetermined temperature can be remarkably shortened, and the reduction in fin efficiency can be suppressed, and the heat exchange performance can be greatly improved with a thin heat exchanger.
[0011]
In the present invention, the fin is provided with a cut-and-raised portion, and the ratio of the cut-raised area As to the total fin area Af is As / Af ≦ 0.3.
[0012]
Thereby, the length of the heat transfer tube for lowering the refrigerant to a predetermined temperature can be remarkably shortened, and the decrease in fin efficiency can be suppressed, and the heat exchange performance can be greatly improved with low pressure loss.
[0013]
Further, according to the present invention, the length L of the cut portion is L ≧ Ph × 4 from the refrigerant outlet heat transfer tube in the direction opposite to the refrigerant flow.
[0014]
As a result, the length of the heat transfer tube for lowering the refrigerant to a very low predetermined temperature can be remarkably shortened, and the heat exchange performance can be greatly improved by suppressing the decrease in fin efficiency.
[0015]
Further, the heat exchanger of the present invention is bent at least once, and the downward end portion is not provided with a cutting portion between the rows.
[0016]
As a result, a large volume heat exchanger can be stored in a small space, the heat transfer tube length for reducing the refrigerant to a predetermined temperature can be remarkably shortened, and the decrease in fin efficiency can be suppressed, greatly increasing the heat exchange performance. In addition, when this heat exchanger is used as an evaporator, the condensed water on the fin surface is not hindered by the cut portions between the rows and falls smoothly, so that a low pressure loss can be achieved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 of the present invention
It is composed of a plurality of rows of heat transfer tube groups of at least 10 stages in a plurality of rows constituting a connected refrigerant circuit in which the refrigerant flows inside, and a plurality of fins into which the heat transfer tube groups are inserted, and airflow flows between them. The pipe of the heat transfer tube is configured by providing a refrigerant inlet heat transfer tube in a row on the leeward side with respect to the air flow, and providing a refrigerant outlet heat transfer tube in the row on the windward side, and a row of the refrigerant inlet heat transfer tube and the refrigerant outlet heat transfer tube Cutting that is continuously cut in a plurality of stages so as to cut off heat conduction between at least the heat transfer tube through which the high-temperature gas refrigerant flows and the heat transfer tube through which the low-temperature supercooled liquid flows, only in the step direction of the fins between them The part is provided by leaving a plurality of uncut portions , and the refrigerant inlet heat transfer tube and the refrigerant outlet heat transfer tube are brought close to each other, and the fins are thermally blocked only between the rows, thereby minimizing Heat transfer with significantly different temperatures depending on the cut length Since heat conduction between the two can be cut off, and a large number of other uncut parts can be taken, the decrease in fin efficiency can be minimized. It can be remarkably shortened and heat exchange performance can be improved.
[0018]
The invention according to claim 2 is the invention according to claim 1, wherein the ratio of the row pitch Pr to the step pitch Ph of the heat transfer tubes is arranged so that Pr / Ph ≦ 0.7. In a thin heat exchanger in which heat tubes are arranged at a high density, the heat transfer tube length for lowering the refrigerant to a predetermined temperature can be remarkably shortened, and the heat exchange performance can be improved.
[0019]
The invention according to claim 3 is the invention according to claim 1, wherein the fin is further provided with a cut-and-raised portion, and the ratio of the occupied area As of the raised portion and the total fin area Af is As / Af ≦ 0. When the number of cuts is large, the heat transfer coefficient of the fin is improved and the pressure loss of the airflow is increased. Therefore, it is desirable that the occupation area of the cut and raised does not increase beyond a certain amount. Moreover, when there are many cuts and raisings, the cutting part for cutting and raising will increase and fin efficiency will fall. Therefore, heat conduction between heat transfer tubes having different temperature differences is hindered by cutting and raising, and the rate of decrease in fin efficiency due to the provision of the cut portions between the rows is reduced. Therefore, the occupation area of the cut and raised is set to a certain amount or less as described above, and a continuous cutting portion is provided only between the rows of the inlet heat transfer tubes and the outlet heat transfer tubes, thereby reducing the pressure loss of the air flow and heat exchange performance. Can also be improved.
[0020]
The invention according to claim 4 is the same as that according to claim 1, wherein the length L of the cut portion is such that L ≧ Ph × 4 from the refrigerant outlet heat transfer tube in the opposite direction of the refrigerant flow. In addition, by cutting the region where the refrigerant becomes the supercooling liquid between the rows when used as a condenser, it is possible to prevent the heat from flowing into the entire supercooling liquid, thereby further improving the heat exchange performance.
[0021]
The invention according to claim 5 is the invention according to claim 1, wherein the invention is further bent at least once, and the downward end portion is not provided with a cut portion between the rows. When used as an evaporator, the condensate discharge at the downward end is not hindered by the cut part between the rows. The heat exchange performance can also be improved when used as a heat exchanger.
[0022]
【Example】
Embodiments of the heat exchanger according to the present invention will be described below with reference to the drawings.
[0023]
FIG. 1 is a plan view of a fin according to an embodiment of the present invention. FIG. 2 is a perspective view of the heat exchanger of the same embodiment. FIG. 3 is a refrigerant circuit diagram of the embodiment.
[0024]
1 and 2, reference numeral 11 denotes a heat transfer tube, which is arranged in two rows and 14 rows by a row pitch Ph and a row pitch Pr, and constitutes a refrigerant circuit as shown in FIG. Reference numerals 11a and 11b denote refrigerant inlet heat transfer tubes on the rear row side with respect to the air flow 15. 11c is a refrigerant | coolant exit heat exchanger tube, and exists in the front row side with respect to the airflow 15.
[0025]
12 is a fin in which the heat transfer tube 11 is inserted and adhered, and a continuous cutting portion 13 is provided between the heat transfer tubes 11a, 11b and 11c with a length L≈Ph × 6. Further, the fin 12 is provided with the cut-and-raised portion 14 with respect to the area Af of the fin 12 so that the occupied area As of As 14 is As / Af = 0.17.
[0026]
Reference numeral 16 denotes a heat exchanger mainly composed of fins 12 and heat transfer tubes 11, which are bent into a substantially Λ shape and separated.
[0027]
The operation of the heat exchanger 16 configured as described above will be described below.
First, the case where the heat exchanger 16 is used as a condenser will be described.
[0028]
The high-temperature and high-pressure gas refrigerant that has flowed in from the heat transfer tubes 11a and 11b radiates heat to the airflow 15 through the fins 12 and flows out from the heat transfer tube 11c as a substantially constant temperature gas-liquid two-phase refrigerant or low-temperature supercooled liquid refrigerant. . At this time, the refrigerant is a supercooled liquid between the heat transfer tube 11d and the heat transfer tube 11c.
[0029]
At this time, since the fins 12 are provided with the cut-and-raised parts 14, the heat exchange performance is efficiently improved without significantly reducing the fin efficiency and without significantly increasing the pressure loss of the air flow 15. . Moreover, since the cutting portion 13 can block heat conduction between the heat transfer tubes 11a and 11b through which the high-temperature gas refrigerant flows and the low-temperature supercooled liquid heat transfer tubes 11d to 11c, the transfer for lowering the refrigerant to a predetermined temperature is possible. The length of the heat pipe 11 can be remarkably shortened, and the heat exchange performance can be improved. By taking many other uncut portions, it is possible to minimize a decrease in fin efficiency.
[0030]
Further, since the ratio of the stage pitch Ph to the row pitch Pr is Pr / Ph = 0.6, the thin heat exchanger 16 can be configured. Here, FIG. 4 shows a characteristic diagram regarding fin efficiency in the case of cutting between rows, as disclosed in JP-A-2-166394. As shown in the figure, the fin efficiency is greatly reduced if the rows are separated when Pr / Ph ≦ 0.7 or less. Therefore, in this embodiment, the heat exchange performance is not lowered in this portion because the fin efficiency is prevented from being lowered without cutting the rows between the heat transfer tubes 11 having substantially the same refrigerant temperature.
[0031]
Next, a case where the heat exchanger 16 is used as an evaporator will be described.
Condensed water adhering to the surface of the fin 12 while the air flow 15 is cooled falls downward in the heat exchanger 16. In the present embodiment, the lower end portions of the fins 12 are not provided with the cutting portions 13 between the rows, so that the fall of the condensed water from above is not prevented, and the pressure loss of the airflow 15 is minimized. be able to.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, a plurality of heat transfer tube groups of at least 10 stages in a plurality of rows constituting a connected refrigerant circuit in which the refrigerant flows inside, and the heat transfer tube group are inserted. It is composed of a large number of fins through which the airflow flows, and the pipe of the heat transfer tube is configured by providing a refrigerant inlet heat transfer tube in the leeward row with respect to the airflow, and providing a refrigerant outlet heat transfer tube in the leeward row, Heat conduction between a heat transfer tube through which at least a high-temperature gas refrigerant flows and a heat transfer tube through which a low-temperature supercooled liquid flows only in the fin direction between the rows of the refrigerant inlet heat transfer tubes and the refrigerant outlet heat transfer tubes The cutting section that is continuously cut in a plurality of stages so as to cut off the heat is provided leaving the non-cut sections in a plurality of stages , and the length of the heat transfer tube for lowering the refrigerant to a predetermined temperature can be remarkably shortened. , Heat exchange performance can be improved.
[0033]
In addition to the invention described in claim 1, the invention described in claim 2 is such that the ratio of the row pitch Pr to the step pitch Ph of the heat transfer tubes is arranged so that Pr / Ph ≦ 0.7. Heat exchange performance can be improved in a thin heat exchanger in which heat tubes are arranged at high density.
[0034]
In the invention according to claim 3, in addition to the invention according to claim 1, the fin is provided with a cut and raised, and the ratio of the occupied area As of the cut and raised to the total fin area Af is As / Af ≦ 0. 3, the pressure loss of the airflow is small, and the heat exchange performance can be improved.
[0035]
In addition to the invention described in claim 1, the length L of the cutting part is such that L ≧ Ph × 4 from the refrigerant outlet heat transfer tube in the opposite direction of the refrigerant flow. In addition, the heat exchange performance can be further improved by cutting the region where the refrigerant becomes the supercooled liquid when used as a condenser, between the rows.
[0036]
In addition to the invention of claim 1, the invention according to claim 5 is bent at least once and the downward end portion is not provided with a cutting portion between the rows, and the heat exchanger is Even when used as an evaporator, an increase in air pressure loss can be suppressed, and heat exchange performance can be improved both when used as a condenser and as an evaporator.
[Brief description of the drawings]
FIG. 1 is a plan view of a fin of an embodiment of a heat exchanger according to the present invention. FIG. 2 is a perspective view of the heat exchanger of the embodiment. FIG. 3 is a refrigerant circuit diagram of the heat exchanger of the embodiment. [Characteristics of fin efficiency when the rows of heat exchangers of the same embodiment are cut] [FIG. 5] Plan view of fins of conventional heat exchanger [Explanation of symbols]
11 Heat Transfer Tubes 11a, 11b Refrigerant Inlet Heat Transfer Tube 11c Refrigerant Outlet Heat Transfer Tube 12 Fin 13 Cutting Section 14 Cut Up 15 Air Flow 16 Heat Exchanger

Claims (5)

内部を冷媒が流動する連結された冷媒回路を構成する複数列で少なくとも10段以上の複数段の伝熱管群と、前記伝熱管群が挿入され、その間を気流が流動する多数のフィンより成り、伝熱管の配管は気流に対して風下側の列に冷媒入り口伝熱管を設け、風上側の列に冷媒出口伝熱管を設けて構成され、前記冷媒入り口伝熱管と前記冷媒出口伝熱管との列間にある前記フィンの段方向にのみ、少なくとも高温のガス冷媒が流れる伝熱管と低温の過冷却液が流れる伝熱管との間の熱伝導を遮断するように複数段連続して切断される切断部を、複数段の切断されない部分を残して設けたことを特徴とする熱交換器。It is composed of a plurality of rows of heat transfer tube groups of at least 10 stages in a plurality of rows constituting a connected refrigerant circuit in which the refrigerant flows inside, and a plurality of fins into which the heat transfer tube groups are inserted, and airflow flows between them. The pipe of the heat transfer tube is configured by providing a refrigerant inlet heat transfer tube in a row on the leeward side with respect to the air flow, and providing a refrigerant outlet heat transfer tube in the row on the windward side, and the row of the refrigerant inlet heat transfer tube and the refrigerant outlet heat transfer tube Cutting that is continuously cut in a plurality of stages so as to cut off heat conduction between at least the heat transfer tube through which the high-temperature gas refrigerant flows and the heat transfer tube through which the low-temperature supercooled liquid flows, only in the step direction of the fins between them A heat exchanger characterized in that the portion is provided leaving a plurality of uncut portions . 伝熱管の列ピッチPrと段ピッチPhとの比がPr/Ph≦0.7に配列された請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein the ratio of the row pitch Pr to the step pitch Ph of the heat transfer tubes is arranged so that Pr / Ph≤0.7. フィンには切り起こしが設けられ、切り起こしの占有面積Asと全フィン面積Afとの比がAs/Af≦0.3である請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein the fin is provided with a cut and raised, and a ratio of the occupied area As of the cut and raised to the total fin area Af is As / Af ≦ 0.3. 切断部の長さLは冷媒出口伝熱管から冷媒の流れの反対方向に向けてL≧Ph×4である請求項1記載の熱交換器。2. The heat exchanger according to claim 1, wherein the length L of the cut portion is L ≧ Ph × 4 from the refrigerant outlet heat transfer tube in the direction opposite to the refrigerant flow. 少なくとも1回以上折り曲げられ、下向き端部は列間に切断部を設けていないことを特徴とする請求項1記載の熱交換器。The heat exchanger according to claim 1, wherein the heat exchanger is bent at least once and the downward end portion is not provided with a cut portion between the rows.
JP09193497A 1997-04-10 1997-04-10 Heat exchanger Expired - Fee Related JP3798108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09193497A JP3798108B2 (en) 1997-04-10 1997-04-10 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09193497A JP3798108B2 (en) 1997-04-10 1997-04-10 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH10288489A JPH10288489A (en) 1998-10-27
JP3798108B2 true JP3798108B2 (en) 2006-07-19

Family

ID=14040432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09193497A Expired - Fee Related JP3798108B2 (en) 1997-04-10 1997-04-10 Heat exchanger

Country Status (1)

Country Link
JP (1) JP3798108B2 (en)

Also Published As

Publication number Publication date
JPH10288489A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
KR100628793B1 (en) Heat exchanger and refrigeration system with split fin
JP4952196B2 (en) Heat exchanger
EP0085381A2 (en) Wrapped fin heat exchanger circuiting
US6857288B2 (en) Heat exchanger for refrigerator
KR900006245B1 (en) Heat exchanger
WO2015005352A1 (en) Heat exchanger, and heat pump device
US20080184734A1 (en) Flat Tube Single Serpentine Co2 Heat Exchanger
JP2006284133A (en) Heat exchanger
JP2010048473A (en) Heat exchanger unit and air conditioner equipped therewith
JP2004271113A (en) Heat exchanger
JP2005201492A (en) Heat exchanger
JP2005127597A (en) Heat exchanger
JP3798108B2 (en) Heat exchanger
EP3822570B1 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle device
JPS58214793A (en) Heat exchanger
JP3918284B2 (en) Cross fin tube heat exchanger
JPH02251093A (en) Finned heat exchanger
JPH10132480A (en) Heat exchanger for air conditioner
JP2005090805A (en) Heat exchanger
JP3215587B2 (en) Heat exchanger
JPH0410530Y2 (en)
JP4297250B2 (en) Air conditioner heat exchanger
JP3872996B2 (en) Heat exchanger
KR100790382B1 (en) Manufacturing method of tube for heat exchanger
JPH10185359A (en) Finned heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120428

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130428

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees